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Abstract

Thesuccessof CSFreiburg atRoboCup2000canbeattributed
to a robust and accurateperceptionapproachand an effec-
tive cooperationbetweenplayersbasedon sophisticatedsoc-
cer skills. In this paper, we presentour multi-agentcoordi-
nationapproachfor both, actionandperception,andour rich
setof basicskills which allow to respondto a large rangeof
situationsin an appropriateway. Furthermore,our actionse-
lectionmethodbasedon an extensionto behavior networks is
described.Resultsincluding statisticsfrom CS Freiburg final
gamesat RoboCup2000arepresented.

1 Intr oduction

After winning RoboCupin 1998andcomingin third in 1999,
CS Freiburg won the competition in the F2000 league at
RoboCup2000 again . One of the reasonsfor this success
is most probably the accurateand reliable self-localization
methodbasedon laserrangefinders[8]. However, while this
wasbasicallyenoughto win the competitionin 1998, it was
necessaryto work on a numberof differentproblemareasin
orderto staycompetitive.

Our mainresearchaim for RoboCup2000wasto developand
testnew techniquesin theareasof actionselectionandmulti-
robotcooperation. In orderto dosowealsohadto redesignthe
action repertoire andto rethink what kind of problemscould
be solved by a groupof robotsin which way. In addition to
theseissueswe further enhancedour perceptiontechnology.
However, most of the work in this areawas alreadydonein
1999[10] andwill bedescribedonly briefly.

Figure1 depictsthesoftwarearchitectureof our players.The
perceptiontechnologyasdescribedin Section3 is thebasisof
our team. For RoboCup2000we completelyredesignedour
strategy component. We employ a variation of the dynamic
role assignmentasusedin theARTteam[3] anda variationof
theSPAR [11] techniquefor determiningoptimalpositionson
thefield for eachplayer. Oneof theobjectivesin thedevelop-
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Fig. 1. Playerarchitecture

mentfor the year2000wasto enhancethe basicskills of the
socceragents.In particular, we addeda dribbling skill anda
ball-shootingskill. For bothof thesenew skills, it wasneces-
saryto modify the hardwareandto accountfor thesemodifi-
cationsby incorporatingnew software. In orderto choosethe
right actionin eachsituation,someactionselectionmechanism
is necessary. We designeda new actionselectionmechanism
basedon Dorer’s [4] extendedbehavior networks, which are
usedin Dorer’s simulationteam[5], therunner-up in the1999
competition.

2 Hardware

Thebasichardwaresetupof CSFreiburg hasremainedmainly
unchangedsincetheteamfirst participatedatRoboCupin 1998
[7]. Figure2 shows a pictureof oneof our Pioneer1 robots
enhancedby a custom-madekicking device, theCognachrome
vision systemfor ball recognition,a SICK laserrangefinder
for self-localizationandobjectrecognition,a ToshibaLibretto
Notebookfor local information processingand the WaveLan
radioethernetfor communication.

Themajorhardwareimprovementin 2000wasanew powerful
kickerandanew ball steeringmechanism.Thekicker is based
on a wind-screenwiper motorwhich compressesfour springs
attachedto theball steeringplate.Thespringscanbereleased
by a solenoidwith the result of a very strongkick. The ball
steeringflipperscanbeturnedto anuprightpositionandback
by two separatelyworking DC motors. The movableflippers
helpedto avoid situationswhererobotswould getstuckor ac-
cidentallyhit theball while turningtowardsit. In thefuturewe



Fig. 2. A CSFreiburg player.

intendto exploit thenew featurefor anelaborateball intercep-
tion behavior.

3 Perception

As our researchgroupalreadygot a lot of experiencewith dif-
ferent self-localizationmethodsusing laserrangefinder data
[6] it hasbeenan obvious stepto adapta variantof themfor
our soccerrobots. Themethoddevelopedfor theCSFreiburg
teamextractsline segmentsfrom alaserscanandmatchesthem
to an a priori line modelof the soccerfield. Only lines of a
certainminimumextendaretaken into accountfor discarding
otherplayersthat arepresentin the field of the rangefinder.
Thescan-matchedpositionis fusedin a Kalmanfilter with the
estimatefrom odometry[7].

After matchingascanto thea priori modelof thesoccerfield,
playersareextractedfrom thescanby removing all pointsbe-
longing to the field walls and clusteringthe remainingones.
For eachclusterthecenterof gravity is computedandconsid-
eredasthecenterof a player. Inherentto this approachis the
systematicalerrordueto thedifferentshapesof therobots.At
leastfor someplayersthis error canbe reduced,e.g. in our
systemwe assumethattheopponentgoalkeeperis usuallyori-
entedparallelto thegoal line, thusaddinga constantoffset to
thecenterof gravity generallyreducesthepositionerrorfor the
opponentgoalie1.

For recognizingandtrackingtheball we makeuseof theCog-
nachromevision systemwhich deliverspixel-areainformation
(socalledblobs) of previously trainedcolors.We extendedthe
suppliedsoftwareto overcomeproblemswith noisy readings,
to enhancecolor training,andto customizethecomputedblob
informationto ourneeds.

A filter doesplausibility teststo discardblobs whoseshape,
sizeor positionmake it veryunlikely to correspondto theball.
Fromtheremainingblobstheoneclosestto thepreviously se-
lectedblob is chosenand– by fitting a circle to it – various
propertiessuchas center, radius,or size in pixels are deter-
mined.Fitting a circle to theblobseemedto improvetheover-

1Of coursethis offset dependson the shapeof the opponent’s goalieand
hasto beadjustedbeforethegame.

all positionestimationof theball aslocalizationwasstill accu-
ratewhentheball waspartially occludedby otherrobots.

From the computedblob centerthe globalball positionis de-
terminedby usinganoff-line learnedmappingtablethat con-
tainsdistanceandheadingvaluesfor eachpixel. This lookup
table is autonomouslylearnedby the robot before the game
by positioningitself at variouspositionon thefield andtaking
measurementsof theball whichstaysatafixedposition.Inter-
polationis thenusedto computethedistanceandheadingpairs
for pixelswhereno explicit informationis available.

Despiteof theappliedfilterswestill observedinfrequentwrong
ball measurementsdueto reflectionsonshiny surfacesor badly
trainedcolors,e.g.wehadproblemswith thewhitefield mark-
ingsbecausewhentraining theball color, shiny reflectionson
theball appearedto haveasimilarcolor. In orderto detectsuch
wrong ball measurementsa global sensorintegrationmodule
comparestheobservationsof all players.

In thefirst versionof ourmulti-robotsensorintegrationmodule
wewereusingasimpleaveragingmethodfor computingglobal
positionsof all objectson thefield [7]. However, we encoun-
teredproblemswith very inaccurateor evencompletelywrong
measurements,e.g. wrong ball observationsasmentionedin
the previous section,which corrupteda coherentglobal posi-
tion. Thereforea moresophisticatedmethod,namelyKalman
filtering, for fusing observationsandrejectingoutliers is now
employed. Whentrackingtheball, however, rejectingoutliers
by using a validation gatehasa big disadvantage:Oncethe
systemis trackingtheball basedon a wrongball observation,
thefilter needsseveralcyclesuntil it acceptsotherobservations
again.

Therefore,weemployedadualmethodcombiningMarkov Lo-
calization[2] which employs a multi-modalprobabilitydistri-
bution for fusing ball observationswith a uni-modalKalman
filter for preciseball localization[6]. Thisway, theKalmanfil-
teralwaystrackstheball usingobservationsvalidatedby oneor
morerobotsandonly few cyclesareneededin casethesystem
wastrackingaball basedonwrongobservations.

4 Strategy

TheCSFreiburg playersorganizethemselvesin roles,namely
active, supportandstrategic. While the active playeralways
triesto getandplay theball, thesupportingplayerattemptsto
assistby positioningitself appropriately. The strategic player
occupiesa gooddefensiveposition.

Eachplayerconstantlycalculatesits utility to pursuea certain
role andcommunicatesthe result to its teammates.Basedon
its own andthereceivedutilities a playerdecideswhich role it
wantsto take. This approachis similar to theonetakenby the
ARTteam[3],2 however, theCSFreiburg playersadditionally
communicateto their teammateswhich role they arecurrently
pursuingandwhich role they desireto take. A rolecanonly be
takenfrom anotherplayerif theown utility for this role is the

2Note,however, thatourapproachwasdevelopedindependently.



bestof all playersandtherobotcurrentlypursuingtherolealso
wantsto changeits role. Following this strategy makesit less
likely that two or moreplayersarepursuingthe samerole at
thesametime thanassigningrolesbasedonutility valuesonly.

Fig. 3. Visualizationof the resultsof the global sensorintegration
togetherwith a player’s utilities for taking a certainrole, its current
roleandits currentaction.Thesmallwhitecircledenotestheposition
of theball asdeterminedby theglobalsensorintegration,whereasthe
smallgrey onescorrespondto theball asperceivedby the individual
players.

Figure3 showsa screenshotof theglobalview duringa game.
While theactiveplayerdribblestheball aroundanopponentthe
supportingplayermovesto its targetpositionandthestrategic
playerobservestheball. Rolesfor thefield playersareassigned
in theorderactive, strategic, support. Sincethegoalkeeperhas
a specialhardwaresetup,it’s role is fixedby assigningappro-
priateutility valuesto all roles.

The target positionsof the playersare determinedsimilar to
the SPAR methodof the CMU teamin the small size league
[11]. Fromthecurrentsituationobservedby therobotsapoten-
tial field is constructedwhich includesrepulsive forcesarising
from opponentplayersandattractingonesfrom desirablepo-
sitions,e.g.positionsfrom wheretheball is visible. Positions
arethenselectedbasedon therobot’s currentrole, i.e. thepo-
sitionof theactiveplayeris setcloseto theball, thesupporting
playeris placedto thesideandbehindtheactive one,andthe
strategic playertakesa defensive positionwhich is abouthalf
waybetweentheown goalandtheball but behindall opponent
players.

Figure4 shows a traceof thepositionsof our playersandthe
ball duringthequarterfinal againstCMU andthefinal against
Golem. While in the quarterfinal our teamspentmostof the
time in theopponent’s half, our playerswereforcedinto their
own half mostof thetimeduringthefinal game.Thehigh cor-
relationbetweenthepositionof theball andour playershow-
everdemonstratestheeffectivepositioningof our team.

5 Tactics: BasicSkills and Action Selection

In order to play an effective and successfulgameof robotic
soccera powerful set of basicskills is needed.This section
describesthe basicskills implementedfor the goalkeeperand

(a)

(b)

Fig. 4. Traceof thepositionsof theball (black)andtheCSFreiburgs’
player’s during(a) thequarterfinal and(b) thefinal.

thefield playersin CSFreiburg,aswell asthemethodof action
selectiondevelopedfor thefield players.

5.1 Goalkeeper

As in mostotherrobotsoccerteamsin themiddlesizeleague
the hardwareconfigurationof our goalkeeperdiffers from the
one of the field playerswhich is mainly becauseof the dif-
ferenttasksthe goalkeeperandfield playersaredesignedfor.
Our goaliehasa specialhardwaresetupwheretheheadof the
robot,containingthesonararray, laserrangefinderandvision
camera,is mounted����� to onesideallowing therobotto move
quickly parallel to the goal line (seeFigure5). This kind of
setupis quite popularin the middle size leagueandusedby
otherteams,too.

Ourgoalkeeperusessix skills sketchedin Figure5 for keeping
the ball from rolling over our goal line. If the robot doesn’t
know wheretheball is, it rotatesleft andright searchingfor it
(SearchBall). If theball doesnotdirectlyroll towardsourgoal,
the areaof attackis minimizedby moving to a positionfrom
whereboth sidesto the robot allow approximatelythe same
amountof angularspacefor the ball passingbetweengoalie
andgoal posts(BlockBall). On the left and right side of the
goal, the robot turns towardsthe cornersgiving lesschances
for anopponentto scoreadirectgoal.Thelastthreeskills con-
cerncasesof directgoaldangerwheretheball or anopponent
is moving directly towardsour goal (InterceptBall). Herethe
robot movesto an interceptionpoint basedon the headingof
the ball (Figure5(d)), theheadingof anopponentowning the
ball (Figure 5(e)), or the headingof an opponentto the ball
(Figure5(f)). The last two andmoresophisticatedtacticsare
basedon theassumptionthat theattackingrobotwill kick the
ball in astraightwaywhich is truefor mostrobotteamspartic-
ipating in themiddlesizeleaguebut is not true for teamslike
Golemor Alpha++. Thereforethesetwo tacticscanbeturned
on or off beforea gamestarts.
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Fig. 5. Goalkeeper’s tacticsfor saving CS Freiburg’s goal: (a) ball
searching,(b) minimizing areaof attack, (c) turning to corner, (d)
interceptingball, (e) intelligent interceptionusingopponentheading,
and(f) intelligent interceptionusingopponentto ball heading.

5.2 BasicSkills for Field Players

To gethold of theball a playermovesto a positionbehindthe
ball following a collision-freetrajectorygeneratedby a path
planningsystemwhich constantly(re)planspathsbasedon the
player’s perceptionof the world (GoToBall). The systemis
basedonpotentialfieldsanduses	 � searchfor finding its way
out of local minima. If closeto the ball a playerapproaches
the ball in a reactive mannerto get it preciselybetweenthe
flipperswhile still avoiding obstacles(GetBall). Oncein ball
possession,a player turns and moves the ball carefully until
facingin a directionwhich allows for anattack(TurnBall). If
the player is right in front of the opponentsgoal it kicks the
ball in a directionwhereno obstaclesblock the direct way to
thegoal (ShootGoal). Otherwiseit first headstowardsa clear
areain the goal andturnssharplyjust beforekicking in case
the opponentgoalkeepermoved in its way (MoveShootFeint).
However, if obstaclesare in the way to the goal, the player
tries to dribble aroundthem(DribbleBall) unlessthereis not
enoughroom. In this casetheball is kickedto a positionclose
to theopponentsgoalby alsoconsideringreboundshotsusing
the walls (ShootToPos). In the event of beingtoo closeto an
opponentor to the field borderthe ball is propelledaway by
turningquickly in anappropriatedirection(TurnAwayBall). If
a playergetsstuckcloseto anobstacleit tries to free itself by
first moving away slowly and (if this doesn’t help) then try-
ing randommoves(FreeFromStall). Howevera playerdoesn’t
give way if theball is stuckbetweenhimselfandanopponent
to avoid beingpushedwith theball towardshisown goal(Wai-
tAndBlock).

Againstfastplayingteamsour robotswereoftenoutperformed
in theracefor theball whenapproachingit carefully. Wethere-

fore developedtwo variantsof a skill for situationsin which
speedis crucial. Both let the robot rush to the ball and hit
it forwardswhile still avoiding obstacles. In offensive play
BumpShootOffenseis employed to hit the ball into the oppo-
nentsgoal whenvery closeto it. In defensive play the useof
BumpShootDefensecanbeswitchedon or off accordingto the
strengthof theopponent.

Playersfulfilling strategic taskspositionthemselvesfollowing
collision-freepathsto dynamicallydeterminedpositions(Go-
ToPos). Fromthesepositionstheplayerseithersearchtheball
if not visible (SearchBall) by rotatingconstantlyor observe it
by turning until facing it (ObserveBall). In offensive play a
supportingplayermayalsotakeapositionfrom whereit should
beableto scorea goaldirectly (WaitForPass). Oncein sucha
positionit signalsto its teammatesthat it is waiting to get the
ball passed.Thedecisionis thenup to theball owning player
whetherto passthe ball (PassBall) or try to scorea goal by
itself. Especiallyagainstfastplaying teamswe rarely got the
chanceto try out ball passingbetweenplayers.Equippedwith
the strongkicking device shootingat the opponentsgoal al-
waysappearedmorepromisingthanpassingtheball to another
teammate.

To comply with the ”10-secondsrule” a player keepstrack
of the time it is spendingin a penalty area. Whenever it
spentmorethantheallowedtime it leavestheareafollowing a
collision-freepathgeneratedby thesamepathplanningsystem
asemployedin theGoToBall skill (LeavePenaltyArea).

At RoboCup2000,ourteamseemedto beoneof thefew teams
capableof effectively dribbling with theball andtheonly one
which exploited deliberatelythe possibility of reboundshots
usingthewalls. Thereforetheseskillswill bedescribedin more
detail.

Figure6(a) shows a screenshotof a player’s local view while
dribbling. In every cycle, potentialcontinuationsof the cur-
rentplayareconsidered.Suchcontinuationsarelinesto points
closer to the opponent‘sgoal within a certain angle range
aroundtherobot’sheading.

(a) (b)

Fig. 6. A CSFreiburg player’s view of theworld while (a) dribbling
and(b) ball-shooting.Circlesdenoteotherrobotsandthesmallcircle
in front of the playercorrespondsto the ball. Lines almostparallel
to thefield bordersareperceivedby the laserrangefinder. Theother
linesleadingaway from theplayerareevaluatedby theskills.



All thepossiblelinesareevaluatedandthedirectionof thebest
line sampleis takenasthenew desiredheadingof therobot.A
line is evaluatedby assigninga valueto it, which is thehigher
thefurtherit is away from objects,thelessturningis necessary
for the playerand the closerits headingis to the opponent‘s
goal center. Determiningthe robotsheadingthis way andad-
justing the wheel velocitiesappropriatelyin every cycle lets
therobotsmoothlyandsafelydribblearoundobstacleswithout
loosingtheball. TheCSFreiburg teamscoredsomebeautiful
goals aftera playerhaddribbledtheball over thefield around
opponentsalongan S-like trajectory. Of course,all this only
works becausethe ball steeringmechanismallows for a tight
ball control.

Figure 6(b) shows a screenshotof a player during ball-
shooting.For this skill the lines arereflectedat the walls and
areevaluatedto find the bestdirectionwhereto kick the ball.
A line’s value is the higher the further away from obstacles
it is, the closerits endpointis to the opponent’s goal andthe
lessturningis requiredfor theplayerto facein thesamedirec-
tion. Taking into accountthat theball doesn’t rebounceat the
field bordersin aperfectbilliard-likemannerwemanuallycal-
ibratedthecorrelationbetweentheanglesof reflection.Using
theshootingskill our playerswereableto play the ball effec-
tively to favorablepositionsandevento scoregoalsdirectly.

Figure7 shows statisticsof how long a skill wasactive for a
certainrole. Sincewe constantlyimproved andmodified the
actionselectionmechanismduring the preliminarygamesthe
statisticsare basedon the threefinal gamesonly. We found
it quite surprisingthat the playersweresearchingfor the ball
up to 10 % of the playing time. However analysisof the log-
files showed that the high numberscanbe eitherattributedto
communicationproblemsor to oneof few situationswhereno
playerwasseeingtheball. In thefinal gamestheball wasseen
by theteamin 95%of theplayingtime.

The statisticsshow that the goalkeeperwasmostof the time
minimizing theareaof attackbut not underdirect threatsince
theInterceptBallskill wasonly active in 11% of thetime. The
supportingandstrategic playerspentmostof their timeobserv-
ing the ball. This was intendedsincemoving more often or
moreaccuratelyto their target positionsresultsin a very ner-
vousbehavior aswe could observe in oneof our preliminary
games. It turnedout that for our ratherslow robotsstaying
at onespotwasmoreeffective thanmoving andturning con-
stantly. Becausethe strategic playerusuallyoccupieda good
defendingpositionweallowedit to moveevenless.

At a first glanceit seemssurprisingthat the active playerwas
mostof thetime (64%) occupiedwith gettinghold of theball.
However the fact that after kicking the ball the active player
usuallystartsto follow the ball againexplainsthe high num-
bersfor GoTo andGetBall. Neverthelessit madeuseof all the
skills availableto it. This demonstratesthat the active player
in factdistinguishedbetweena largenumberof differentgame
situations.

5.3 Action Selectionfor Field Players

Our action selectionmodule is basedon extendedbehavior
networks proposedby Dorer [4]. They area revisedandex-
tendedversionof the behavior networks introducedby Maes
[9] andcanbeviewedasaparticularform of decision-theoretic
planning. The main structuralelementsin extendedbehavior
networks arecompetencemoduleswhich consistof a certain
behavior to be executed,preconditionsand positive or nega-
tive effects. Goals can explicitly be specifiedand can have
a situation-dependentrelevance,reflectingthe agent’s current
motivations.Thestateof theenvironment,asit is perceivedby
theagent,is describedvia anumberof continuouspropositions
����� ��������� . Competencemodulesareconnectedwith goalsif
they areable to influencegoal conditionsandalsowith each
other, if a competencemodulehasan effect that is a precon-
dition of another. Along theresultingnetwork connectionsan
acitivation spreadingmechanismis defined,with goalsbeing
the sourceof activation. An actionis selectedby considering
eachcompetencemodule’s executabilityand received activa-
tion.
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Fig. 8. A partof CSFreiburg’sextendedbehavior network.

Figure8 shows a part of the extendedbehavior network that
wasusedatRoboCup2000. Theellipsesrepresentthecompe-
tencemoduleswith their preconditionsbelow andtheir effects
on top of them.Currentlyour playershave two goals:Shoota
soccergoalor cooperatewith teammates.Therelevancecondi-
tion role active(playerhasroleactive) ensuresthatonly oneof
thesegoalsis relevantat a time dependingon theplayer’s cur-
rent role. Thestrengthof theeffect connections(indicatedby
thenumbersnext to arrows) aresetmanuallysofar andreflect
prioritiesamongthecompetencemodules.

6 Conclusion
The gamesplayedby CS Freiburg at RoboCup2000 looked
muchmoredynamicthanthegamesin 1999and1998.So,the
cooperationmechanismandtheactionselection(with thenew
actionrepertoire)seemtohaveimprovedourplayconsiderably.

However, also the other teamshave improved their play. In
general,it seemsto be the casethat the performanceof all
F2000teamshave increasedover the yearsandthat thereare
morevery goodteamsnow – providedwe measuretheperfor-
manceby goals/minute.As canbeseenin Fig. 9, theaverage



Fig. 7. Time in percenta
skill was active in the final
gamesbroken down for the
differentroles.

goal ratehasalmostdoubledfrom 1997–2000,3 and the goal
rateof thetwo bestteamsbecamebetterover theyears.

Fig. 9. Goalratesat RoboCuptournamentsin goalsperminute.

Furthermore,at RoboCup2000 therewas a large numberof
teamswith a performancevery close to the performanceof
CS Freiburg. In fact, while in previous years,CS Freiburg
wasthe only teamwith an averagegoal rateof morethan ��� �
goals/minute,atRoboCup2000therewere5 teamswith asim-
ilar goal rate. Furthermore,it wasobvious to everybodythat
themechanicaldesignof CE SharifandGolemwasdefinitely
superiorto ours.Thatwe neverthelesswereableto stayahead
canat leastpartially be attributedto the carefuldesignof our
actions,theactionselectionmechanismaswell asthecoopera-
tion mechanisms.It shouldalsobenoted,however, thatsome
gameresultswerevery close. In particular, the final andthe
third/fourthplacegamesweredecidedby penaltykicks.

In the future, we intendto enhanceour robot baseto make it
faster, to uselearningtechniquesfor tuningskill parameters,to
refinethemethodof actionselection,andto enhanceteamplay.

Acknowledgments

This work has been partially supported by Deutsche
Forschungsgemeinschaft (DFG), by Medien- und Filmge-
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