
Context-Enhanced Directed Model Checking

Martin Wehrle and Sebastian Kupferschmid

University of Freiburg
Department of Computer Science

Freiburg, Germany
{mwehrle,kupfersc}@informatik.uni-freiburg.de

Abstract. Directed model checking is a well-established technique to efficiently
tackle the state explosion problem when the aim is to find error states in concur-
rent systems. Although directed model checking has proved to be very successful
in the past, additional search techniques provide much potential to efficiently
handle larger and larger systems. In this work, we propose a novel technique
for traversing the state space based on interference contexts. The basic idea is to
preferably explore transitions that interfere with previously applied transitions,
whereas other transitions are deferred accordingly. Our approach is orthogonal to
the model checking process and can be applied to a wide range of search meth-
ods. We have implemented our method and empirically evaluated its potential on
a range of non-trivial case studies. Compared to standard model checking tech-
niques, we are able to detect subtle bugs with shorter error traces, consuming less
memory and time.

1 Introduction

When model checking safety properties of large systems, the ultimate goal is to prove
the system correct. However, for practically relevant systems this is often not possible
because of the state explosion problem. Complementary to verify a system correct,
finding reachable error states is a potentially easier task in practice. An error state
can be found by only exploring a small fraction of the entire reachable state space.
Especially for this purpose, directed model checking has found much attention in recent
years [1–9]. Directed model checking is tailored to the fast detection of reachable error
states. This is achieved by focusing the state space traversal on those parts of the state
space that show promise to contain reachable error states. A heuristic function is used
to assign each state that is encountered during the traversal of the state space a heuristic
value. Typically, a heuristic function approximates a state’s distance to a nearest error
state. These values are used to determine which state to explore next. An advantage
of directed model checking is that the heuristic functions are usually abstraction based
and computed fully automatically based on the declarative description of the system.
Usually, distance heuristics are computed by solving a simplified problem, and then
using the length of the abstract error trace as an estimation for the actual error distance
in the concrete. They differ in the way of how the given problem is simplified. Overall,
the performance of directed model checking has proved to be often much better than
the performance of uninformed search methods like breadth-first or depth-first search.
However, for large systems, even error detection is very challenging.

2 Martin Wehrle and Sebastian Kupferschmid

To cope with larger and larger systems, additional techniques to tackle the state
explosion problem are needed. Among these, approaches that additionally evaluate the
relevance of transitions, rather than just states, are very promising. Such methods have
proved to further alleviate the state explosion problem as the additional information
improves the search guidance. As a consequence, the number of states that have to be
explored before an error state is encountered can be significantly reduced in practice.
Techniques following this approach have first been proposed in the areas of AI planning
and directed model checking. For instance, helpful actions [10], preferred operators
[11], and useless transitions [12, 13] are powerful instantiations of this paradigm. All
these techniques have in common that they label applicable transitions with a Boolean
flag. This flag indicates whether a transition is relevant or not. States that are reached
by a relevant transition are preferred during the traversal of the state space. Another
technique that exploits certain properties of transitions is iterative context-bounding
[14]. This algorithm was proposed in software model checking for error detection in
multithreaded programs. The algorithm searches for error traces that exhibit a minimal
number of context switches, i. e., execution points where the scheduler forces the active
thread to change. Transitions that do not induce a context switch are preferred. We will
detail these approaches in the section on related work.

In this paper, we introduce context-enhanced directed model checking. Roughly
speaking, the main idea of this approach is the following: If there is a transition t that
is part of a shortest error trace π, then there often is a subsequent transition in π that
profits from t. Therefore, we propose to preferably explore states that have been reached
by a transition that profits from the effect of the previously applied transition. As a con-
sequence, the search process avoids “jumping” while traversing the state space, i. e., it
prefers transitions that belong to the same part of the system. We use the notion of inter-
ference context to determine how much a transition profits from the execution of another
transition. With the above mentioned approaches, our technique shares the property that
it labels transitions and defers the expansion of states reached by less relevant transi-
tions. In contrast to these approaches, our method does not assign a Boolean flag to
a transition, but an integer value. Our approach is embedded in a multi-queue search
algorithm that is well-suited to respect the different levels of relevance. Another distin-
guishing property is that our approach can also be successfully applied to uninformed
search, which is not possible with the other approaches, except for iterative context
bounding. We have implemented our approach and applied it to uninformed search as
well as directed model checking with several distance heuristics from the literature. We
also compare our technique with the useless transitions approach as well as iterative
context bounding as outlined above. The experiments reveal that our approach scales
much better than the previous approaches in many challenging problems coming from
real-world case studies.

The remainder of this paper is organized as follows. Section 2 introduces the prelim-
inaries for this work. In the subsequent section, we introduce context-enhanced directed
model checking. Afterwards, in Sec. 4, we discuss related work. In the following sec-
tion, we empirically evaluate our approach on a number of benchmarks and compare
it with plain directed model checking as well as previously proposed techniques for
prioritizing transitions. Section 6 concludes the paper and discusses future work.

Context-Enhanced Directed Model Checking 3

2 Preliminaries

In this section, we give the preliminaries needed for this work. In Sec. 2.1, we introduce
our notation and computational model. This is followed by an introduction to directed
model checking in Sec. 2.2.

2.1 Notation

Our approach is applicable to a broad class of transition systems, including parallel
systems with interleaving, synchronization and linear arithmetic. We only require that
the transitions resemble guarded commands, i. e., a transition consists of a precondition
and an effect. Therefore, we define our computational model in a general way, consisting
of a finite set of bounded integer variables V and a finite set of transitions T . For the
sake of presentation, we restrict the form of transitions as stated in the next definition.

Definition 1 (System). A systemM is a tuple 〈V, T 〉, where V is a finite set of bounded
integer variables and T is a finite set of transitions. A transition t is a tuple 〈pre, eff 〉,
where

– pre is the precondition of t. It is a conjunction over constraints of the form v on c,
where v ∈ V , c ∈ Z and on ∈ {<,≤,=,≥, >}.

– eff is the effect of t. It is a set of assignments of the form v := c, where v ∈ V and
c ∈ Z.

For a transition t = 〈pre, eff 〉, we denote its precondition and effect with pre(t)
and eff(t), respectively. A system state is a function that assigns each variable v ∈ V
a value of v’s domain. A transition t is applicable in a state s if t’s precondition is
satisfied by s, i. e., if s |= pre(t). The successor state s′ = t(s) reached by applying t
in s is obtained by updating all variables according to the effect of t. Formally, the state
space of a system is defined as follows.

Definition 2 (State space of a system). LetM = 〈V, T 〉 be a system. The state space
ofM is defined as a transition system T (M) = (S,∆), where S is a set of states and
∆ ⊆ S×T×S is a transition relation. There is a transition (s, t, s′) ∈ ∆ iff s |= pre(t)
and s′ = t(s).

For transitions (s, t, s′) ∈ ∆, we will also write s t−→ s′. We define a model checking
task as a system together with an initial state and a target formula describing the set of
error states.

Definition 3 (Model checking task). LetM be a system and T (M) = (S,∆) be its
state space. A model checking task is a tuple 〈M, s0, ϕ〉, consisting of a system M,
an initial state s0 ∈ S and a target formula ϕ. Target formulas have the same form as
preconditions of transitions. The task is to find a sequence π = t1, . . . , tn of transitions,
with si−1

ti−→ si ∈ ∆ for 1 ≤ i ≤ n and sn |= ϕ.

Informally speaking, the target formula describes a set of states with an undesirable
property, the so called error states. Therefore, we call a sequence π as defined in the
last definition an error trace.

4 Martin Wehrle and Sebastian Kupferschmid

2.2 Directed Model Checking

In a nutshell, directed model checking is the application of heuristic search [15] to
model checking. The main idea of directed model checking is to explore those parts
of the state space first that show promise to contain reachable error states. As a con-
sequence, it is possible to detect error states in systems whose entire state space is too
huge for brute force methods. In directed model checking, the state space traversal is
guided (“directed”) towards error states based on specific criteria. Ideally, these guid-
ance criteria are automatically extracted from the declarative description of the system
under consideration by taking an abstraction thereof. Based on such an abstraction, a
heuristic function h is computed that typically approximates a state’s distance to a near-
est error state. During the search process, h is used to assign each encountered state s
a heuristic value h(s). These values are used to influence the order in which states are
explored, hereby completeness is not affected. Figure 1 shows a basic directed model
checking algorithm.

1 function dmc(M, s0, ϕ, h):
2 open = empty priority queue
3 closed = ∅
4 priority = evaluate(s0, h)
5 open.insert(s0, priority)
6 while open 6= ∅ do:
7 s = open.getMinimum()
8 if s |= ϕ then:
9 return False

10 closed = closed ∪ {s}
11 for each transition t applicable in s do:
12 s′ = t(s)
13 if s′ 6∈ closed ∪ open then:
14 priority = evaluate(s′, h)
15 open.insert(s′, priority)
16 return True

Fig. 1. A basic directed model checking algorithm

The algorithm takes a model checking task 〈M, s0, ϕ〉 and a heuristic function h
as input. It returns False if there is a reachable error state, i. e., a state that satisfies ϕ,
otherwise it returns True. The state s0 is the initial state of M. The algorithm main-
tains a priority queue open which contains visited but not yet explored states. When
open.getMinimum is called, open returns a minimum element, i. e., one of its elements
with minimal priority value. States that have been expanded are stored in closed. Ev-
ery state encountered during search is first checked if it satisfies ϕ. If this is not the
case, its successors are computed. Every successor that has not been visited before is
inserted into open according to its priority value. The evaluate function depends on the
applied version of directed model checking, i. e., if applied with A∗ or greedy search
(cf. [15, 16]). For A∗, evaluate(s, h) returns h(s) + c(s), where c(s) is the length of the

Context-Enhanced Directed Model Checking 5

path on which s was reached for the first time. For greedy search, it simply evaluates to
h(s). When every successor has been computed and prioritized, the process continues
with the next state from open with lowest priority value.

To be able to report found error traces, every state stores a pointer to its immediate
predecessor state and transition. We finally remark that, depending on the implemen-
tation details of the used priority queue, depth-first search and breadth-first search are
instances of the algorithm from Fig. 1 when h is the constant zero function.

3 Context-Enhanced Directed Model Checking

In this section, we introduce context-enhanced directed model checking which is based
on interference contexts. To compactly describe the main idea of our approach, we
need the notion of innocence. A transition t is innocent if for each state s where t is
applicable, there is no constraint of the target formula ϕ that is satisfied by eff(t). This
means, if there is a conjunct c of ϕ so that t(s) |= c, then c was already satisfied by s.
Note that, if the initial state of a system is not an error state, then only applying innocent
transitions will never lead to error states.

The main idea of context-enhanced directed model checking is the following. Let
s be a state and let t be an innocent transition enabled at s. If t is the first transition
of a shortest error trace starting from s, then there must be applicable transitions at
s′ = t(s) that profit from the effect of t. Otherwise t cannot be part of a shortest error
trace. Hence, our algorithm focuses on transitions that belong to the same part of the
system. In this work, we use interference contexts to determine whether a transition
profits from a preceding transition.

3.1 Interference Contexts

Our notion of interference contexts is based on the well-known concept of interference.
Similar to other work (for example, in the area of partial order reduction [17]), we use
a definition that can be statically checked. Roughly speaking, two transitions interfere
if they work on a common set of system variables. For a transition t, we will use the
notation var(pre(t)) and var(eff(t)) to denote the set of variables occurring in the pre-
condition and the effect of t, respectively.

Definition 4 (Interference). Two transitions t1 and t2 interfere, iff at least one of the
following conditions holds:

1. var(eff(t1)) ∩ var(pre(t2)) 6= ∅,
2. var(eff(t2)) ∩ var(pre(t1)) 6= ∅,
3. var(eff(t1)) ∩ var(eff(t2)) 6= ∅.

Informally, this means that two transitions interfere if one writes a variable that the
other is reading, or both transitions write to a common variable. We next give a pruning
criterion based on interference. To formulate this, we first define the notion of interfer-
ence contexts. Roughly speaking, for a transition t and n ∈ N0, the interference context
Cn(t) contains all transitions for which there is a sequence of at most n transitions
where successive transitions interfere.

6 Martin Wehrle and Sebastian Kupferschmid

Definition 5 (Interference Context). Let 〈V, T 〉 be a system, t ∈ T be a transition and
n ∈ N0. The interference context Cn(t) is inductively defined as follows:

C0(t) = {t}
Cn(t) = Cn−1(t) ∪ {t′ ∈ T | ∃t′′ ∈ Cn−1(t) : t′′interferes with t′}

As we are dealing with finite transition systems, there exists a smallest N ≤ |T |, so
that CN (t) = CN+1(t) for all transitions t ∈ T . We will denote this context with C(t).
Note that this context induces an equivalence relation on the set of system transitions T .
It partitions T into subsets of transitions which operate on pairwise disjoint variables.
Based on this notion, we now give a pruning criterion which is guaranteed to preserve
completeness. Informally speaking, if a state is part of a shortest error trace and has
been reached via an innocent transition t, then it suffices to only apply transitions from
C(t) at s.

Proposition 1. Let 〈M, s0, ϕ〉 be a model checking task for a systemM = 〈V, T 〉 and
a target formula ϕ =

∧
(vi on ci), where on ∈ {<,≤,=,≥, >}, vi ∈ V and ci ∈ Z. Let

s be a state inM that is part of a shortest error trace from s0 and has been reached
by a transition sequence with last transition t. Further assume that t is innocent. Then
there is a shortest error trace from s that starts with a transition from C(t).

Proof. As s is part of a shortest path from the initial state, and t is innocent, there is a
shortest error trace π that starts in s which contains a transition t′π that needs the effects
of t, i. e., var(eff(t))∩var(pre(t′π)) 6= ∅. Otherwise, t would not have been needed and
swould not be part of a shortest error trace. We transform π into a shortest error trace π′

so that the first transition in π′ is contained in C(t). Let t1, . . . , tn be the prefix of π so
that tn is the first transition in π that interferes with t, i. e., t1, . . . , tn−1 do not interfere
with t. Then π′ is constructed by an inductive argument. If n = 1, i. e., t1 interferes
with t, then π′ = π as t1 ∈ C(t). For the induction step, let tn+1 be the first interfering
transition with t. If tn+1 and tn do not interfere, then they can be exchanged in π′ as
non-interfering transitions can be applied in any order, leading to the same state. If they
do interfere, then by definition tn ∈ C(t), which proves the claim.

From Prop. 1, we can derive the following pruning criterion: If there is a shortest
error trace from s that starts with a transition from C(t), then all transitions that are not
contained in C(t) can be pruned, without losing completeness. Note that the condition
for s to be on a shortest error trace can be assumed without loss of generality: If s is not
part of a shortest error trace, every successor can be pruned.

In practice, this pruning criterion does not seem to fire very often: Benefits are only
obtained if the system’s transitions can be partitioned into at least two sets of transitions
that operate on disjoint variables. In such cases, also compositional model checking
is applicable. These concepts are known and by no means new. In fact, the pruning
criterion can be seen as a version of compositional model checking, where completely
independent parts of the system are handled individually. However, the formulation of
Prop. 1 lends itself to a way of how to approximate the pruning criterion. This leads to
the heuristic approach to prioritize transitions that we are introducing next.

Context-Enhanced Directed Model Checking 7

3.2 The Context-Enhanced Search Algorithm

In this section, we describe how we approximate the pruning criterion. The basic idea
is actually quite simple: Instead of considering the exact closure C(t) of a transition
t, we substitute it with the interference context Cn(t) for some bound n < N , where
N is the smallest number such that CN (t) = C(t) for all transitions t ∈ T . Suppose
for a moment that we know how to choose a good value for n. Obviously, Prop. 1 does
not hold anymore if we replace C(t) with Cn(t). As a consequence thereof, states that
are reached via transitions that are not contained in Cn(t) cannot be pruned without
loosing completeness. The approximation therefore becomes a heuristic criterion for
the relevance of transitions. Instead of pruning these states, we suggest to defer their
expansion. This can be done by extending the search algorithm from Fig. 1 with a
second open queue. States whose expansions we want to defer are inserted in this queue.
All other states are inserted in the standard open queue. States from the second queue
are only expanded if the standard open queue is empty. The question remains which
value we should use for the parameter n. From Def. 5, we know that Ci(t) ⊆ Cj(t) for
all transitions t iff i ≤ j. On the one hand, the higher the parameter, the better C(t)
is approximated. However, as we already argued (and also describe in the experimental
section), the exact pruning criterion does not fire very often in practice. On the other
hand, the lower the parameter the more missclassifications may occur, which hampers
the overall performance of the model checking process.

Instead of choosing a constant parameter, we propose to use a multi-queue search
algorithm that maintains N + 1 different open queues, where N ∈ N is defined as
above. Overall, we obtain a family of open queues q0, . . . , qN , where qi is accessed
(according to the given distance heuristic) iff q0, . . . , qi−1 are empty, and qi is not.
The basic directed model checking algorithm from Fig. 1 can be converted into our
multi-queue search method by replacing the standard open queue with a multi-queue
and the corresponding accessing functions as given in Fig. 2. In these queues, states are
maintained as follows.

1 function insert(s′, priority):
2 if t is innocent then:
3 if t′ /∈ C(t) then:
4 prune s′

5 else:
6 determine smallest n ∈ N such that t′ ∈ Cn(t)
7 qn.insert(s′, priority)
8 else:
9 q0.insert(s′, priority)

1 function getMinimum():
2 determine smallest n such that qn 6= ∅
3 return qn.getMinimum()

Fig. 2. Multi-queue accessing functions for context-enhanced directed model checking

8 Martin Wehrle and Sebastian Kupferschmid

Let s be a state that was reached with transition t, and let s′ = t′(s) be the successor
state of s under the application of the transition t′. If t is innocent and t′ /∈ C(t),
then we can safely prune s′. If t is innocent and t′ ∈ C(t), then the successor state
s′ is maintained in queue q1 if t′ ∈ C1(t), and maintained in qi if t′ ∈ Ci(t) and
t′ 6∈ Ci−1(t). If t is not innocent, then s′ is stored in q0.

According to the given distance heuristic, getMinimum returns a state with best
priority from the queue qi with minimal index i that is not empty. The multi-queue is
empty iff all queues are empty. Obviously, our approach remains complete, as only the
order in which the states are explored is influenced. The advantage of this multi-queue
approach is that we do not have to find a good value for n, which strongly depends on
the system. By always expanding states from the lowest non-empty queue, the algorithm
also respects the quality of the estimated relevance.

4 Related Work

Directed model checking has recently found much attention, and various distance heuris-
tics to estimate a state’s distance to a nearest error state have been proposed in this con-
text [1–9]. Given a declarative description of the system under consideration, these dis-
tance heuristics are usually computed fully automatically based on abstractions. Over-
all, directed model checking has been demonstrated to significantly outperform unin-
formed search methods like breadth-first or depth-first search.

To efficiently handle larger and larger systems, additional search enhancements have
recently been proposed for directed model checking as well as for AI planning. In par-
ticular, techniques to additionally prioritize transitions (rather than only states) are very
promising. In the area of AI planning, helpful actions [10] and preferred operators [11]
have been proposed. Both approaches heuristically select transitions that should be pre-
ferred during search. However, these concepts are specifically designed for certain dis-
tance heuristics.

In the context of directed model checking, a similar approach called useless tran-
sitions has been proposed [13]. A transition is considered as useless in a state s if it
does not start a shortest error trace from s. This criterion is approximated to identify
such transitions, which are less preferred during the search. In this approach, the dis-
tance heuristic itself is used to estimate whether a transition is useless or not. Hence, the
quality of this approach strongly depends on the informedness of the distance heuristic.
Furthermore, combining this approach with uninformed search methods is not possible
as no distance heuristic is applied there. Complementary to this, context-enhanced di-
rected model checking is independent of the distance heuristic. As we shall see in the
experimental section, our approach is successfully applicable to uninformed search.

Musuvathi and Qadeer work in the area of software model checking. They propose
a technique for bug detection based on context bounding [14]. For multithreaded pro-
grams, they propose an algorithm that limits the number of context switches, i. e., the
number of execution points where the scheduler forces the active thread to change. Their
algorithm is actually a kind of iterative deepening search, where the number of context
switches that may occur in each trace is increased in each iteration. They define a con-
text essentially as a thread, whereas in our work, a context switch would correspond to

Context-Enhanced Directed Model Checking 9

a state where a transition is executed which does not interfere with the preceding tran-
sition. In our setting, a context switch corresponds to exploring a state from a deferred
queue. However, our criterion is stricter than the context switch criterion proposed by
Musuvathi and Qadeer: Exploring a state from a deferred queue corresponds to a con-
text switch in the sense of Musuvathi and Qadeer, but not vice versa. Moreover, we
handle the different levels of interference with a fine-grained multi-queue search al-
gorithm. Musuvathi and Qadeer propose an algorithm that is guaranteed to minimize
the number of context switches. Contrarily, our search algorithm does not necessarily
minimize them, but performs better in systems with tight interaction of the processes.

Finally, partial order reduction techniques can also be considered as a technique for
prioritizing transitions to overcome the state explosion problem [17–19]. Partial order
reduction exploits the fact that independent transitions need not be considered in every
ordering. It reduces the branching factor of the system by computing a subset of the
applicable transitions that suffices to preserve completeness. Partial order reduction is
orthogonal to our approach of interference contexts, and it will be interesting to inves-
tigate the combination of these techniques in the future.

5 Evaluation

We have implemented our algorithm based on interference contexts and empirically
evaluate its potential on a range of problems, including academic benchmarks as well
as large and practical relevant systems from industrial case studies. We evaluate our
algorithm on a number of different search methods, including uninformed search as
well as various heuristic search methods as proposed in the literature and implemented
in our model checker MCTA [20].

5.1 Benchmark Set

All our benchmarks, including real-world problems from industrial case studies, stem
from the AVACS1 benchmark suite. Our benchmark systems consist of parallel au-
tomata with bounded integer variables, interleavings and binary synchronization. Some
of them also feature clock variables and actually represent timed automata [21]. Cur-
rently, clock variables are ignored by our implementation. Note that all these formalisms
are instantiations of our system definition.

TheM andN examples come from a case study called “Mutual Exclusion”. It mod-
els a real-time protocol to ensure mutual exclusion of a state in a distributed system via
asynchronous communication. The protocol is described in full detail by Dierks [22].
The S examples (“Single-tracked Line Segment”) stem from a case study from an in-
dustrial project partner of the UniForM-project [23] where the problem is to design a
distributed real-time controller for a segment of tracks where trams share a piece of
track. For the evaluation of our approach, we chose the property that both directions
are never given simultaneous permission to enter the shared segment. In both case stud-
ies, a subtle error has been inserted by manipulating a delay so that the asynchronous

1 http://www.avacs.org/

10 Martin Wehrle and Sebastian Kupferschmid

communication between these automata is faulty. The Fi examples are versions of the
Fischer protocol for mutual exclusion (cf. [24]). The index i gives the number of par-
allel automata. An error state is reached if two predefined automata are simultaneously
in a certain location. We made error states reachable by weakening one of the temporal
conditions in the automata. As a final set of benchmarks, the H examples model the
well-known Towers of Hanoi for a varying number of disks. The index of the examples
gives the number of involved disks. Initially, all n disks are on the first peg; the goal is
to move them all to the second peg, moving only one disk at a time and such that never
a larger disk is on top of a smaller one.

5.2 Experimental Setting

We implemented our context-enhanced search algorithm (denoted with CE in the fol-
lowing) into our model checker MCTA [20]. All experiments have been performed on
an AMD Opteron 2.3 GHz system with 4 GByte of memory. We set a timeout to 30
minutes. We apply CE to uninformed search as well as to directed model checking with
various distance heuristics.

We compare to the (rather coarse) distance heuristics dL and dU [6] as well as to
the (more informed) distance heuristics hL and hU [2]. All of them are implemented
in MCTA. The dL and dU heuristics are based on the graph distance of automata; syn-
chronization behavior and integer variables are ignored completely. The hL and hU

heuristics are based on the monotonicity abstraction. Under this abstraction, variables
can have multiple values simultaneously. The hL heuristic performs a fixpoint iteration
under this abstraction starting in the current state until an error state is reached, and
returns the number of iterations as heuristic value. Based on this fixpoint iteration, hU

additionally extracts an abstract error trace starting from the abstract error state, and
returns the number of abstract transitions as the estimate. Furthermore, we compare CE
to various related search algorithms, including iterative context bounding (ICB) and the
useless transitions approach (UT). As threads correspond to processes in our setting,
we have implemented ICB with process contexts as proposed by Musuvathi and Qadeer
[14], denoted with ICBP . This means that a context switch occurs if two consecutive
transitions belong to different processes. Moreover, we implemented ICB with our def-
inition of interference contexts, denoted with ICBI . Here, a context switch occurs if a
transition t′ does not belong to Cn(t), where t is the preceding transition. After some
limited experiments, we set the bound n to 2 because we achieved the best results in
terms of explored states for this value. For larger values, no context switches occurred,
and hence ICBI behaves like greedy search. Finally, we also compare CE with a multi-
queue version of the useless transitions approach [12]. In the tables, we denote this
approach with UT.

5.3 Experimental Results

We give detailed results for a coarse distance heuristic based on the graph distance (dU),
for a more informed heuristic based on the monotonicity abstraction (hL), as well as for
breadth-first search as uninformed search method. Moreover, we additionally provide

Context-Enhanced Directed Model Checking 11

average performance results for depth-first search as well as for the distance heuristics
dL and hU .

Table 1. Experimental results for greedy search with the dU heuristic. Abbreviations: plain:
greedy search, CE: greedy search + interference contexts, ICBP : iterative context bound algo-
rithm with process contexts, ICBI : iterative context bound algorithm with interference contexts,
UT: useless transitions. Dashes indicate out of memory (> 4 GByte) or out of time (> 30 min).
Uniquely best results are given in bold fonts.

explored states runtime in s trace length
Exp. plain CE ICBP ICBI UT plain CE ICBP ICBI UT plain CE ICBP ICBI UT

F5 9 21 112 8 9 0.0 0.0 0.0 0.0 0.0 6 6 6 6 6
F10 9 36 447 8 9 0.0 0.0 0.0 0.0 0.0 6 6 6 6 6
F15 9 51 1007 8 9 0.0 0.0 0.0 0.0 0.0 6 6 6 6 6
S1 11449 10854 44208 14587 9796 0.0 0.1 0.2 0.2 0.1 823 192 59 1022 842
S2 33859 31986 163020 93047 31807 0.1 0.3 0.8 0.5 0.5 1229 223 59 134 1105
S3 51526 43846 199234 80730 52107 0.2 0.3 1.1 0.5 0.8 1032 184 59 1584 1144
S4 465542 402048 3.0e+6 1.8e+6 504749 2.0 2.1 18.0 8.6 7.5 3132 1508 60 783 5364
S5 4.6e+6 2.8e+6 3.8e+7 2.4e+7 4.6e+6 22.6 18.8 256.9 136.8 70.6 14034 886 65 1014 14000
S6 – – – – – – – – – – – – – – –
M1 185416 5360 100300 56712 7557 156.4 0.1 2.5 1.1 0.1 106224 246 65 94 923
M2 56240 15593 608115 82318 294877 1.1 0.2 22.5 1.7 67.1 13952 520 63 3378 51541
M3 869159 15519 623655 281213 26308 1729.5 0.2 23.8 7.2 0.5 337857 562 82 3863 1280
M4 726691 21970 3.4e+6 – 100073 428.0 0.4 221.3 – 1.8 290937 486 80 – 4436
N1 10215 5688 92416 68582 19698 0.3 0.1 5.6 3.3 0.7 2669 162 79 109 1855
N2 – 11939 645665 161800 96307 – 0.3 71.7 8.2 5.1 – 182 75 277 8986
N3 – 14496 616306 417181 29254 – 0.4 62.4 25.8 1.2 – 623 84 1586 784
N4 330753 25476 3.7e+6 889438 239877 23.0 0.8 760.8 91.6 17.8 51642 949 89 361 1969
H3 222 279 1000 479 244 0.0 0.0 0.0 0.0 0.1 44 32 52 82 60
H4 2276 2133 11726 7631 545 0.0 0.1 0.0 0.1 0.5 184 132 116 190 92
H5 20858 5056 142359 116200 15435 0.1 0.2 0.3 0.4 13.9 708 238 266 422 400
H6 184707 122473 1.5e+6 1.1e+6 130213 0.6 0.8 4.1 3.2 128.8 2734 1670 522 918 1242
H7 1.6e+6 876847 1.5e+7 1.4e+7 1.2e+6 5.7 5.4 52.0 42.0 1267.7 11202 4456 1136 2100 3922
H8 1.4e+7 2.3e+6 – – – 53.8 17.1 – – – 45280 5666 – – –
H9 – – – – – – – – – – – – – – –

Let us start to discuss the results for CE with the dU heuristic from Table 1. First,
we observe that for the hard problems, the number of explored states with CE is sig-
nificantly better than with plain directed model checking as well as the other, related
approaches. In the smaller instances (e. g., the F examples and the small S examples),
the performance is comparable. Compared to plain directed model checking, we could
also solve more problems when CE is applied. This mostly also pays off in better search
time. Finally, the length of the found error trace is comparable in the F and the small
H instances, but mostly much shorter than with plain directed model checking and the
UT approach. Overall, when using dU , we could significantly improve directed model
checking with CE, and also outperformed related approaches in terms of scalability and
error trace length.

The results for CE and the hL heuristic are given in Table 2. First, we observe that
UT performs much better with hL than with dU and often leads to the best configura-

12 Martin Wehrle and Sebastian Kupferschmid

Table 2. Experimental results for greedy search with the hL heuristic. Abbreviations as in Table 1.

explored states runtime in s trace length
Exp. plain CE ICBP ICBI UT plain CE ICBP ICBI UT plain CE ICBP ICBI UT

F5 179 21 112 216 7 0.0 0.0 0.0 0.0 0.0 12 6 6 12 6
F10 86378 36 447 95972 7 3.3 0.0 0.0 3.8 0.0 22 6 6 22 6
F15 – 51 1007 – 7 – 0.0 0.0 – 0.0 – 6 6 – 6
S1 1704 4903 24590 1971 1537 0.0 0.2 0.4 0.1 0.1 84 68 62 77 76
S2 3526 11594 81562 4646 1229 0.1 0.4 1.2 0.2 0.1 172 70 62 166 76
S3 4182 5508 89879 6118 1061 0.1 0.3 1.4 0.2 0.1 162 73 62 109 76
S4 29167 7728 1.2e+6 108394 879 0.7 0.5 14.1 1.2 0.2 378 198 60 653 77
S5 215525 2715 1.4e+7 870603 1116 5.2 0.4 142.7 7.4 0.3 1424 85 65 2815 78
S6 1.7e+6 9812 – 1.3e+7 1116 37.4 1.1 – 85.5 0.4 5041 130 – 8778 78
S7 1.6e+7 15464 – – 1114 332.5 2.0 – – 0.6 15085 130 – – 78
S8 7.1e+6 2695 – – 595 129.3 0.5 – – 0.3 5435 81 – – 76
S9 9.6e+6 4.0e+6 – – 2771 201.1 192.9 – – 1.3 5187 1818 – – 94
M1 4581 1098 102739 3230 4256 0.1 0.0 3.1 0.1 0.2 457 89 66 433 97
M2 15832 1904 605001 53206 7497 0.3 0.0 27.8 1.2 0.5 1124 123 61 113 104
M3 7655 8257 622426 141247 10733 0.1 0.2 26.1 2.8 0.7 748 180 86 100 91
M4 71033 18282 3.3e+6 525160 16287 1.6 0.7 239.8 14.5 1.7 3381 334 81 118 98
N1 50869 1512 93750 74307 5689 39.0 0.0 7.2 59.9 0.3 26053 93 79 26029 108
N2 30476 2604 634003 82158 22763 1.2 0.1 77.3 3.8 1.5 1679 127 75 97 259
N3 11576 10009 607137 177899 35468 0.4 0.4 77.1 9.6 2.7 799 224 86 106 204
N4 100336 20248 3.7e+6 971927 142946 5.3 1.1 755.6 103.2 14.9 2455 396 85 134 792
H3 127 256 1017 164 190 0.0 0.0 0.0 0.0 0.0 48 48 48 86 62
H4 2302 764 11830 7488 620 0.0 0.1 0.0 0.1 0.0 300 94 124 438 114
H5 20186 15999 144668 121027 31553 0.2 0.4 0.5 0.6 1.2 1458 478 252 878 890
H6 230878 85947 1.5e+6 1.5e+6 281014 2.2 2.0 5.8 5.8 13.4 7284 1350 558 2070 2766
H7 2.0e+6 622425 1.5e+7 1.6e+7 2.7e+6 21.4 17.9 69.0 67.1 155.3 18500 14314 1086 5164 7176
H8 1.8e+7 2.1e+6 – – – 206.8 78.3 – – – 70334 74594 – – –
H9 – – – – – – – – – – – – – – –

tion. As already outlined, UT uses the distance heuristic itself to estimate the quality
of a transition. Hence, the performance of UT strongly depends on the quality of the
applied distance heuristic. This also shows up in our experiments: UT performs best
in the F and S examples. On the other hand, CE performs best in M , N and H , and
only marginally worse than UT in most of the F and S problems. Moreover, CE scales
significantly better than the iterative context bounding algorithm for both context def-
initions. Overall, we observe that CE performs similarly to directed model checking
with hL and useless transitions (also in terms of error trace length), and scales (often
significantly) better than the other approaches.

We also applied our context enhanced search algorithm to uninformed search. The
results for breadth-first are given in Table 3. First, we want to stress that breadth-first
search is optimal in the sense that it returns shortest possible counterexamples. This is
not the case for CE. However, the results in Table 3 show that the length of the found
error traces by CE is mostly only marginally longer than the optimal one (around a
factor of 2 in the worst case in S1 and S2, but mostly much better). Contrarily, the
scaling behavior of CE is much better than that of breadth-first search. This allows us to
solve two more problems on the one hand, and also allows us to solve almost all of the
harder problems much faster. In particular, this shows up in theM andN examples, that

Context-Enhanced Directed Model Checking 13

Table 3. Experimental results for breadth-first search. Abbreviations as in Table 1.

explored states runtime in s trace length
Exp. plain CE ICBP ICBI plain CE ICBP ICBI plain CE ICBP ICBI

F5 333 29 129 273 0.0 0.0 0.0 0.0 6 6 6 6
F10 5313 44 484 3868 0.0 0.0 0.0 0.0 6 6 6 6
F15 34068 59 1064 20538 0.4 0.0 0.0 0.3 6 6 6 6
S1 41517 19167 50361 58379 0.1 0.1 0.2 0.3 54 109 59 54
S2 118075 52433 181941 217712 0.4 0.3 0.8 0.9 54 109 59 54
S3 149478 33297 230173 264951 0.5 0.2 1.1 1.1 54 71 59 54
S4 1.3e+6 146094 3.5e+6 3.7e+6 5.4 0.7 18.7 16.2 55 67 60 55
S5 1.1e+7 569003 4.6e+7 4.4e+7 49.8 3.2 258.5 227.3 56 73 56 56
S6 – 2.5e+6 – – – 16.2 – – – 74 – –
S7 – – – – – – – – – – – –
M1 192773 32593 273074 116682 4.6 0.4 7.4 1.5 47 51 50 50
M2 680288 75159 1.7e+6 1.6e+6 19.1 1.1 95.2 56.6 50 52 53 50
M3 740278 94992 1.7e+6 1.7e+6 22.0 1.6 80.9 76.9 50 54 63 50
M4 2.6e+6 189888 9.7e+6 8.0e+6 87.6 3.5 893.7 506.7 53 55 66 53
N1 361564 34787 310157 157610 20.0 0.7 15.6 4.3 49 56 58 55
N2 2.2e+6 81859 2.4e+6 3.9e+6 399.0 1.8 357.6 622.2 52 57 72 52
N3 2.4e+6 92729 2.3e+6 4.2e+6 442.8 2.5 275.8 677.9 52 54 71 52
N4 – 201226 – – – 5.9 – – – 57 – –
H3 448 315 1062 954 0.0 0.0 0.0 0.0 22 22 30 24
H4 4040 2689 11702 7228 0.0 0.1 0.0 0.1 52 54 64 54
H5 42340 19158 146955 121807 0.1 0.2 0.3 0.4 114 116 148 148
H6 377394 161747 1.5e+6 1.2e+6 0.7 0.8 3.0 2.8 240 300 294 278
H7 3.4e+6 1.2e+6 1.5e+7 1.3e+7 7.2 5.3 36.8 33.7 494 520 634 636
H8 3.0e+7 9.2e+6 – – 67.2 44.0 – – 1004 1302 – –
H9 – – – – – – – – – – – –

could be solved within seconds with CE (compared to sometimes hundreds of seconds
otherwise). Finally, we remark that UT is not applicable with breadth-first search, as
no distance heuristic is applied. Overall, we conclude that if short, but not necessarily
shortest error traces are desired, breadth-first search should be applied with CE because
of the better scaling behavior of CE on the one hand, and the still reasonable short error
traces on the other hand.

To get a deeper insight into the performance of our context enhanced search algo-
rithm in practice, we report average results for our approach applied to various pre-
viously proposed heuristics in Table 4. For each heuristic as well as breadth-first and
depth-first search, we average the data on the instances that could be solved by all con-
figurations. Furthermore, we give the total number of solved instances.

First, we observe that also on average, CE compares favorably to plain directed
model checking. The average number of explored states could (sometimes by an or-
der of magnitude) be reduced, which mostly also pays off in overall runtime. Further-
more, except for breadth-first search which returns shortest possible counterexamples,
the length of the error traces could be reduced. Compared to the related approaches
ICBP , ICBI and UT, we still observe that the average number of explored states is
mostly lower with CE (except for the median with UT for hL and hU). In almost all
cases, the average runtime is still much shorter. Apart from breadth-first search, the

14 Martin Wehrle and Sebastian Kupferschmid

Table 4. Summary of experimental results. Abbreviations: DFS: depth-first search, BFS: breadth-
first search, average: arithmetic means, solved: number of solved instances (out of 27). Uniquely
best results in bold fonts for each configuration. Other abbreviations as in Table 1.

explored states runtime in s trace length solved
average median average median average median

BFS

plain 1266489.9 277168.5 53.0 2.7 78.3 52.0 21
CE 140644.4 43610.0 1.1 0.6 91.9 55.5 23
ICBP 4248527.1 291615.5 102.3 5.2 95.7 59.0 20
ICBI 4133416.8 241331.5 111.5 2.2 89.7 53.5 20

DFS

plain 445704.1 63712.5 3.6 0.5 37794.3 9624.5 21
CE 197295.0 15688.0 1.1 0.2 2308.8 795.5 22
ICBP 3397688.6 409480.0 34.8 2.4 148.7 71.0 21
ICBI 2371171.5 155694.0 12.9 1.5 16477.9 1819.5 21

dU

plain 469310.8 42692.5 107.9 0.3 30415.8 1949.0 20
CE 245070.9 13186.5 1.6 0.2 665.4 230.5 22
ICBP 3503904.9 152689.5 63.8 1.8 155.0 64.0 21
ICBI 2380880.4 81524.0 16.5 0.8 892.9 391.5 20
UT 394999.4 23003.0 87.6 0.6 4764.3 1124.5 21

dL

plain 701962.7 54742.0 14.9 0.5 16414.1 7725.0 21
CE 189144.3 12181.0 1.3 0.2 1391.6 562.0 22
ICBP 2783118.2 199548.0 72.7 3.7 100.6 67.0 21
ICBI 1918955.4 105246.0 17.5 0.9 2642.1 798.0 19
UT 344885.2 46509.0 23.8 1.4 13664.1 2521.0 20

hL

plain 143536.3 18009.0 4.1 0.4 3327.0 773.5 25
CE 41090.5 5205.5 1.2 0.3 917.8 108.5 26
ICBP 2075198.1 374834.5 72.5 6.5 150.5 70.5 21
ICBI 1052988.1 89065.0 14.1 2.0 1981.0 126.0 21
UT 164821.9 4972.5 9.7 0.3 657.8 97.5 25

hU

plain 138325.2 12938.0 3.1 0.3 419.6 112.0 26
CE 22956.1 6523.0 1.0 0.3 213.0 92.0 27
ICBP 1953710.5 145351.0 73.7 7.3 147.7 66.0 21
ICBI 965865.2 72437.0 12.7 1.6 302.1 116.0 21
UT 106837.0 2537.0 9.6 0.2 436.3 80.0 26

shortest error traces are obtained with iterative context bounding. However, CE scales
much better on average, and could solve the most problem instances in every configu-
ration. Furthermore, the only configuration that could solve all instances is CE with the
hU heuristic.

Finally, we also compared CE with the exact pruning criterion given by Prop. 1.
However, it turned out that this exact criterion is very strict in practice, and did not fire
in any case. This effectively means that the results for this criterion are the same as the
results for plain search, except for a slightly longer runtime due to the preprocessing.

Context-Enhanced Directed Model Checking 15

Overall, our evaluation impressively demonstrated the power of directed model
checking with interference contexts and multiple open queues. We have observed that
the overall model checking performance could (often significantly) be increased for
various search methods and distance heuristics on a range of heuristics and real world
problems. The question remains on which parameters the performance of the different
search algorithms depend, and in which cases they perform best. We will discuss these
points in the next section.

5.4 Discussion

Our context-enhanced search algorithm uses several open queues to handle the different
levels of interference. In Table 5, we provide additional results about the number of
queues and queue accesses for CE and UT, as well as the number of context switches
for iterative context bounding. The data is averaged over all instances of the specific
case study.

For our context enhanced search algorithm, we report the number of queues that are
needed for the different problems, as well as the number of pushed and popped states
of these queues. First, we observe that in the F examples, only one deferred queue
(q1) is needed, which is accessed very rarely. However, the situation changes in the
S, M and N examples, where three deferred queues are needed. Deferred states are
explored from up to two deferred queues (for dU and breadth-first search), whereas the
last (non-empty) deferred queue is never accessed. Most strikingly, in the H examples,
we need six deferred queues, from which most of them are never accessed. Overall, the
performance of CE also depends on the number of explored deferred states. If there are
deferred queues that never have to be accessed at all, the corresponding states do not
have to be explored, and the branching factor of the system is reduced.

We applied the useless transitions approach in a multi-queue setting, where useless
states, i. e., states reached by a useless transition, are maintained in a separate queue.
Table 5 shows the number of explored non-useless states (q0) as well as the number
of explored useless states (q1). We observe that for the well-informed hL heuristic, q1
is never accessed except for the H examples, which explains the good performance of
UT in this case. However, for the coarser dU heuristic, q1 is accessed very often, which
explains the favorable performance of CE over UT with dU .

Finally, let us give some explanations of the performance of the iterative context
bound algorithm ICB compared to CE. The ICB approach is guaranteed to minimize
the number of context switches, and obviously performs best in systems where not
many context switches are needed. Contrarily, if the context has to be switched n times,
the whole state space for all context switches smaller than n has to be traversed until an
error state is found, which could be problematic if n is high. Table 5 shows the average
number n of context switches needed to find an error state in our examples.2 We observe
that, except for the F examples, n is pretty high for ICBP . Contrarily, in the F examples
where the context has to switched only two times, iterative context bounding performs
very well. Overall, we conclude from our experiments that the method proposed by

2 As a side remark, the different number of context switches for hL, dU and BFS with ICBP and
ICBI are due to the different number of solved instances of these configurations.

16 Martin Wehrle and Sebastian Kupferschmid

Table 5. Average number of queue accesses (for queues q0, . . . , q6) for CE and UT, and average
number of context switches for ICB per case study. Number of pushed states at the top, number
of popped states at the bottom. Abbreviations as in Table 1.

Accesses with CE Accesses with UT Context Switches
q0 q1 q2 q3 q4 q5 q6 q0 q1 ICBP ICBI

hL heuristic

F 38 114 0 0 0 0 0 13 24 2 0
35 1 0 0 0 0 0 7 0

S 169161 742370 87766 136105 0 0 0 1702 2440 31.6 0
169144 277922 0 0 0 0 0 1268 0

M 5585 5687 8598 3455 0 0 0 12308 9137 21 3
5584 1801 0 0 0 0 0 9693 0

N 6654 6547 9384 4124 0 0 0 69534 4332 22.33 3
6652 1941 0 0 0 0 0 51716 0

H 377962 294737 230682 297175 345419 445245 612451 404205 308105 134.8 15.6
377935 93051 0 0 0 0 0 404186 204806

dU heuristic

F 38 114 0 0 0 0 0 14 24 2 0
35 1 0 0 0 0 0 9 0

S 287161 395163 65564 273596 0 0 0 12746 1042207 31.6 3
287149 379679 520 0 0 0 0 12746 1030510

M 9712 7734 11949 5043 0 0 0 23355 115058 21 4
9708 4902 0 0 0 0 0 23354 83849

N 10006 7943 11920 6614 0 0 0 16204 109769 21.5 4.75
10000 4399 0 0 0 0 0 16204 80079

H 379149 289671 222272 289380 323717 385445 498216 117141 220791 134.8 15.2
379100 164472 0 0 0 0 0 117141 143929

BFS

F 56 114 0 0 0 0 0 n/a n/a 2 0
43 1 0 0 0 0 0 n/a n/a

S 323745 607706 189050 447035 0 0 0 n/a n/a 31.6 0
323704 229784 1111 0 0 0 0 n/a n/a

M 50251 56932 86116 30730 0 0 0 n/a n/a 21 1.25
50249 47908 0 0 0 0 0 n/a n/a

N 55105 55314 92173 39908 0 0 0 n/a n/a 20.67 1.67
55103 47546 0 0 0 0 0 n/a n/a

H 894952 925034 649694 843886 861079 980240 1476125 n/a n/a 134.8 20.8
894927 874677 0 0 0 0 0 n/a n/a

Musuvathi and Qadeer works well for programs with rather loose interaction where not
many context switches are required. However, in protocols with tight interaction and
many required changes of the active threads, directed model checking with interference
contexts performs better.

6 Conclusion

In this paper, we have introduced context-enhanced directed model checking. This
multi-queue search algorithm makes use of interference contexts to determine the de-

Context-Enhanced Directed Model Checking 17

gree of relevance of transitions. Our approach is orthogonal to the directed model check-
ing process and can hence be combined with arbitrary heuristics and blind search. Our
empirical evaluation impressively shows the potential for various heuristics on large and
realistic case studies. We obtain considerable performance improvements compared to
plain directed model checking as well as compared to related search algorithms like
iterative context bounding or useless transitions.

For the future, it will be interesting to extend and refine our concept of interference
contexts. This includes, for example, to take into account the structure of our automa-
ton model more explicitly. In particular, we plan to better adapt our approach to timed
automata. Although we are able to handle such systems, our technique is not yet opti-
mized for them as clocks are currently ignored. We expect that taking them into account
will further improve our method for that class of systems.

Acknowledgments

This work was partly supported by the German Research Foundation (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

References

1. Edelkamp, S., Schuppan, V., Bosnacki, D., Wijs, A., Fehnker, A., Aljazzar, H.: Survey on
directed model checking. In Peled, D., Wooldridge, M., eds.: Proceedings of the 5th Interna-
tional Workshop on Model Checking and Artificial Intelligence (MOCHART 2008). Volume
5348 of LNAI., Springer-Verlag (2009) 65–89

2. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI planning heuris-
tic for directed model checking. In Valmari, A., ed.: Proceedings of the 13th International
SPIN Workshop (SPIN 2006). Volume 3925 of LNCS., Springer-Verlag (2006) 35–52

3. Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-preserving
abstractions. International Journal on Software Tools for Technology Transfer 11(1) (2009)
27–37

4. Hoffmann, J., Smaus, J.G., Rybalchenko, A., Kupferschmid, S., Podelski, A.: Using pred-
icate abstraction to generate heuristic functions in Uppaal. In Edelkamp, S., Lomuscio,
A., eds.: Proceedings of the 4th Workshop on Model Checking and Artificial Intelligence
(MOCHART 2006). Volume 4428 of LNAI., Springer-Verlag (2007) 51–66

5. Smaus, J.G., Hoffmann, J.: Relaxation refinement: A new method to generate heuristic func-
tions. In Peled, D., Wooldridge, M., eds.: Proceedings of the 5th International Workshop
on Model Checking and Artificial Intelligence (MOCHART 2008). Volume 5348 of LNAI.,
Springer-Verlag (2009) 146–164

6. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the
validation of communication protocols. International Journal on Software Tools for Tech-
nology Transfer 5(2) (2004) 247–267

7. Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction and symbolic
pattern databases. In Jensen, K., Podelski, A., eds.: Proceedings of the 10th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2004). Volume 2988 of LNCS., Springer-Verlag (2004) 497–511

18 Martin Wehrle and Sebastian Kupferschmid

8. Kupferschmid, S., Hoffmann, J., Larsen, K.G.: Fast directed model checking via russian doll
abstraction. In Ramakrishnan, C.R., Rehof, J., eds.: Proceedings of the 14th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2008). Volume 4963 of LNCS., Springer-Verlag (2008)

9. Wehrle, M., Helmert, M.: The causal graph revisited for directed model checking. In Pals-
berg, J., Su, Z., eds.: Proceedings of the 16th International Symposium on Static Analysis
(SAS 2009). Volume 5673 of LNCS., Springer-Verlag (2009) 86–101

10. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research 14 (2001) 253–302

11. Helmert, M.: The Fast Downward planning system. Journal of Artificial Intelligence Re-
search 26 (2006) 191–246

12. Wehrle, M., Kupferschmid, S., Podelski, A.: Useless actions are useful. In Rintanen, J.,
Nebel, B., Beck, J.C., Hansen, E., eds.: Proceedings of the 18th International Conference on
Automated Planning and Scheduling (ICAPS 2008), AAAI Press (2008) 388–395

13. Wehrle, M., Kupferschmid, S., Podelski, A.: Transition-based directed model checking. In
Kowalewski, S., Philippou, A., eds.: Proceedings of the 15th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2009). Volume
5505 of LNCS., Springer-Verlag (2009) 186–200

14. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of multithreaded
programs. In Ferrante, J., McKinley, K.S., eds.: Proceedings of the ACM SIGPLAN 2007
Conference on Programming Language Design and Implementation (PLDI 2007), ACM
Press (2007) 446–455

15. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley (1984)

16. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2) (1968)
100–107

17. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems — An
Approach to the State-Explosion Problem. Volume 1032 of LNCS. Springer-Verlag (1996)

18. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (2000)
19. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Partial-order reduction and trail improvement in

directed model checking. International Journal on Software Tools for Technology Transfer
6(4) (2004) 277–301

20. Kupferschmid, S., Wehrle, M., Nebel, B., Podelski, A.: Faster than Uppaal? In Gupta,
A., Malik, S., eds.: Proceedings of the 20th International Conference on Computer Aided
Verification (CAV 2008). Volume 5123 of LNCS., Springer-Verlag (2008)

21. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2)
(1994) 183–235

22. Dierks, H.: Comparing model-checking and logical reasoning for real-time systems. Formal
Aspects of Computing 16(2) (2004) 104–120

23. Krieg-Brückner, B., Peleska, J., Olderog, E.R., Baer, A.: The UniForM workbench, a univer-
sal development environment for formal methods. In Wing, J.M., Woodcock, J., Davies, J.,
eds.: Proceedings of the World Congress on Formal Methods in the Development of Com-
puting Systems (FM 1999). Volume 1709 of LNCS., Springer-Verlag (1999) 1186–1205

24. Lamport, L.: A fast mutual exclusion algorithm. ACM Transactions on Computer Systems
5(1) (1987) 1–11

