
Transition-based Directed Model Checking

Martin Wehrle, Sebastian Kupferschmid, and Andreas Podelski

University of Freiburg
Department of Computer Science

Freiburg, Germany
{mwehrle,kupfersc,podelski}@informatik.uni-freiburg.de

Abstract. Directed model checking is a well-established technique that is tai-
lored to fast detection of system states that violate a given safety property. This
is achieved by influencing the order in which states are explored during the state
space traversal. The order is typically determined by an abstract distance function
that estimates a state’s distance to a nearest error state. In this paper, we propose a
general enhancement to directed model checking based on the evaluation of state
transitions. We present a schema, parametrized by an abstract distance function,
to evaluate transitions and propose a new method for the state space traversal.
Our framework can be applied automatically to a wide range of abstract distance
functions. The empirical evaluation impressively shows its practical potential.
Apparently, the new method identifies a sweet spot in the trade-off between scal-
ability (memory consumption) and short error traces.

1 Introduction

When model checking safety properties, the ultimate goal is to prove the absence of
error states. This can be done by exploring the entire reachable state space. However,
the state space of realistic applications is often too large to be enumerated exhaustively
because of the state explosion problem. Directed model checking is a well-established
technique to tackle this problem and has found its way in state-of-the-art tools such
as SPIN, PATHFINDER or UPPAAL [5, 6, 11]. In directed model checking, the state
space traversal is guided (“directed”) based on specific criteria towards error states.
Generally, these guidance criteria are automatically extracted from the model by taking
an abstraction of the model and computing an abstract distance function d#. For a state
s, the value d#(s) approximates the distance of s to a nearest error state. These values
are used during the state space traversal in order to determine which state is explored
next.

Each different version of directed model checking thus arises through the choice
of the abstraction that is used to compute the abstract distance function, and by the
choice of the basic (non-deterministic) algorithm for traversing the state space. Earlier
work on directed model checking was mainly focused on the first point, i. e., in defining
abstractions that lead to distance estimation functions d# to guide the state space traver-
sal efficiently towards an error state [3, 4, 5, 9, 12, 13, 17, 18]. Considering the second
point, there are two predominantly used algorithms of directed model checking, namely
A∗ and greedy search (cf. [16]). A∗ is guaranteed to find shortest possible error traces

2 Martin Wehrle, Sebastian Kupferschmid, and Andreas Podelski

for certain kinds of distance estimation functions, but is often too memory consuming
for large systems. Greedy search does not necessarily find shortest possible error traces,
but mostly scales much better than A∗ in practice.

In this paper, we present a new version of directed model checking that seems to
identify a sweet spot in the trade-off between scalability (memory consumption) and
short computed error traces. It is based on the concept of useless transitions which is
an adaptation of the useless actions approach that has been introduced in the context of
AI Planning [20]. As indicated by its name, the concept of useless transitions extends
directed model checking by additionally evaluating transitions, not just states. We will
see that this is a general concept in the sense that useless transitions can be computed
fully automatically with the given distance estimation function d#. That is, whatever
the choice of the underlying abstraction for computing the abstract distance function
has been, we can use the already computed abstract distance function in order to effec-
tively recognize useless transitions. We will characterize a class of distance estimation
functions for which our method is suited best. We define a new (non-deterministic)
strategy for state space traversal that takes these useless transitions into account. The
new strategy is an amalgam of the two strategies A∗ and greedy search. For the two
extreme cases of abstraction, it becomes the former or the latter, respectively.

We have implemented our method and have applied it to a number of academic and
industrial benchmarks. This allowed us to experimentally compare the new directed
model checking method with the two existing predominant methods A∗ and greedy
search. The empirical results impressively show the benefit of our approach: We obtain
almost shortest error traces, whereas the number of expanded states reduces signifi-
cantly compared to A∗ and also to greedy search in most cases.

We will next give an example that greatly oversimplifies the issues at hand but gives
an intuition about useless transitions and their potential usefulness.

Example. Figure 1 depicts a system consisting of n+ 1 parallel components A0 to An.
The initial state of the system is (s00, s

1
0, . . . , s

n
0) and the error state is (s01, s

1
1, . . . , s

n
1).

Suppose that we apply directed model checking to check if this error state is reachable.
Further suppose that we therefore use the maximum graph distance as the abstract dis-
tance function [4, 5]. This function is based on the local distance of each single automa-
ton Ai. More precisely, let d(i) denote the graph distance from Ai’s current location to
Ai’s error state, then the maximum graph distance is defined as maxi=0, ..., n d(i).

It turns out that, for this problem, the maximum graph distance is a rather unin-
formed distance function. It cannot distinguish states that are nearer to the error state
from others. If there is at least one local state of the form si0, then the abstract distance
value is 1. We may characterize the state space topology induced by this abstract dis-
tance function as follows. There is one single plateau (for all of the 2n+1 reachable
system states but for the error state the abstract distance is 1). This means that the guid-
ance based on this abstract distance function is very poor. In fact, for every abstract
distance function, the similar situation arises.

In the example, it is trivial to see that each state transition where a local state leaves
a local error state (depicted by a double circle) should be avoided as much as possible
during the state space traversal (it is a useless transition!). Without steps corresponding

Transition-based Directed Model Checking 3

to such transitions, the state space traversal stops after n + 1 steps and returns the
shortest possible error path.

s0
0 s1

0 sn
0

sn
1s1

1s0
1

. . .

Fig. 1. An automata system with n + 1 components

The remainder of this paper is organized as follows. In the next section, we discuss
related work. In Section 3, we give the preliminaries needed for this work, including a
more detailed introduction to directed model checking. In Section 4, we introduce the
notion of useless transitions and present our directed model checking algorithm based
on this concept. In Section 5, we empirically evaluate our algorithm on a number of
benchmarks. Section 6 concludes the paper.

2 Related Work

Research on directed model checking so far mainly focused on finding abstractions
that lead to efficient distance estimation functions. It was pioneered by Edelkamp et al.
[4, 5] who proposed to base the distance estimation on the graph distance (see also the
example in the previous section). This is a rather coarse abstraction that leads to distance
estimation functions that are easy to compute on the one hand, but that are not very
informative on the other hand. Kupferschmid et al. [12] have introduced two abstract
distance functions based on the monotonicity abstraction. This abstraction technique is
an adaptation of the ignoring-delete-lists principle that has originally been introduced in
the area of AI Planning [1]. The basic idea is that every state variable, once it obtained
a value, keeps that value forever. Therefore, the value of a variable is no longer an
element, but a subset of its domain. The distance estimation values are then computed
by iteratively applying transitions under this abstraction until an error state is reached,
and then returning the abstract error length as estimation.

Furthermore, Dräger et al. [3] iteratively “merge” a pair of automata, i. e., compute
their product and then merge locations until there are at most n locations left, where n
is an input parameter. The distance estimation function is read off the overall merged
automaton. Moreover, several distance estimation functions based on pattern databases
have been proposed [9, 13, 17, 18]. A pattern database heuristic function abstracts a
problem by ignoring some of the relevant symbols, e. g., some of the state variables.
The state space of the abstracted problem is built completely as a pre-process to search,
and is used as a look-up table for the heuristic values during search.

4 Martin Wehrle, Sebastian Kupferschmid, and Andreas Podelski

The problem of evaluating state transitions has been studied mostly in the area of
AI Planning. In this context, an approach to avoid useless actions has been proposed
which has led to a significantly improved search behavior on a wide range of planning
instances [20]. In Section 4, we adapt this technique to the context of directed model
checking of concurrent systems with interleaving and binary synchronization. Comple-
mentary to useless actions, Hoffmann and Nebel [8] and Helmert [7] proposed what
they call helpful actions and preferred operators, respectively. These methods are used
to select a set of promising successors to a search state. The helpfulness of a transition is
determined during the computation of the distance estimation values. These values are
obtained by solving an abstract problem. Roughly speaking, a transition is considered
as helpful if it is contained in that abstract solution. However, this approach is specific
to the applied distance function.

3 Preliminaries

In this section, we give the basic notation as well as a formal definition of the considered
models. Section 3.2 introduces directed model checking, A∗ and greedy search.

3.1 Notation

In our setting, an automaton is a tuple A = (S, s0, T, Σ), where S is a finite set of
states, s0 ∈ S is the initial state, T ⊆ S × (Σ ∪ {τ})×S is a set of labeled transitions,
Σ a finite set of synchronization labels, and τ 6∈ Σ denotes a special internal label. A
transition (s, α, s′) ∈ T is also denoted by s α−→ s′.

Let N be the set {1, . . . , n}. For n automata Ai = (Si, s0i , Ti, Σi), i ∈ N , with
pairwise disjoint sets of states, the parallel compositionA1 || . . . || An is defined by the
product automaton (S×, (s01, . . . , s

0
n), T

×, Σ1∪· · ·∪Σn), where S× = S1×· · ·×Sn,
and the set of transitions T× ⊆ S××{τ}×S× is defined as follows. There is a transition
(s1, . . . , sn)

τ−→ (s′1, . . . , s
′
n) ∈ T× iff one of the following conditions holds.

1. There exists i ∈ N such that si
τ−→ s′i ∈ Ti, and sk = s′k for all k ∈ N \ {i}.

2. There exist i, j ∈ N with i 6= j, and there exists a label α ∈ (Σi ∩ Σj) such that
si

α−→ s′i ∈ Ti and sj
α−→ s′j ∈ Tj , and sk = s′k for all k ∈ N \ {i, j}.

A system S of n automata A1, . . . , An is the parallel composition A1 || . . . || An.
Note that in a parallel system only τ transitions occur; two synchronized transitions in
automata Ai and Aj also correspond to a τ transition in S. We address the falsification
of invariants; in CTL, these properties take the formAGϕ. In this paper, ϕ is a formula
of the form

∧
i ¬si, where si ∈ S1 × · · · × Sn are error states. We call a tuple T =

〈S, ϕ〉 a model checking task. A trace π = s0, t1, s1, . . . , tn, sn is an alternating
sequence of states and transitions where ti is an outgoing transition of si−1. We call a
trace that leads to a state that satisfies ¬ϕ an error trace. The length of a trace |π| is
defined as the number of transitions in π, i. e., |π| = n.

Transition-based Directed Model Checking 5

3.2 Directed Model Checking

Directed model checking describes the task of finding error states where the state space
traversal is guided (“directed”) by a distance estimation function d#. This function is
computed fully automatically based on the declarative description of the system and
an abstraction principle (e. g., the monotonicity abstraction [12]). In a nutshell, d# is a
function that maps states to integers, reflecting an estimate of the shortest error distance.
Typically, this estimate is the length of a corresponding abstract error trace. States are
evaluated with d#, states with lower values are preferred. Note that abstract distance
functions influence the order in which the states are explored, thereby completeness
is not affected. On the one hand, it is desirable to have distance functions that are as
informative as possible. On the other hand, the computation must not be too expensive.

Figure 2 shows a basic directed model checking algorithm. Given a model checking
task 〈S, ϕ〉 and an abstract distance function d#, the algorithm returns False if there is a
state that violates ϕ, otherwise it returns True. The initial state of S is s0. The algorithm
maintains a priority queue open which contains visited but not yet explored states. When
open.getMinimum is called open returns a minimum element, i. e., one of its elements
with minimal priority value. States that have been expanded are stored in close. Every
state encountered during search is first checked if it is an error state. If this is not the
case, its successors are computed. Every successor that has not been visited before is
inserted into open according to its priority value. The evaluate function depends on the
applied version of directed model checking, i. e., if applied with A∗ or greedy search.
For A∗, evaluate(s, d#) returns d#(s) + c(s), where c(s) is the length of the path on
which s was reached for the first time. For greedy search, it simply evaluates to d#(s).
When every successor has been computed and prioritized, the process continues with
the next state from open with lowest priority value. Every state stores information about
how it has been reached, i. e., its immediate predecessor state and transition. Therefore,
if an error state s is finally reached, the corresponding error trace is generated by back
tracing from s.

For distance estimation functions that are admissible, i. e., that never overestimate
the real error distance, A∗ is guaranteed to find shortest possible error traces [16].

4 Transition-based Directed Model Checking

Until now, directed model checking algorithms have roughly followed the scheme as
outlined in the last section by evaluating states, thereby suffering from the fact that A∗

is often not practical and the error traces of greedy search are often of poor quality.
In this section, we propose an extension based on transition evaluation. We will first
define the theoretical concept of useless transitions and then its practical counterpart,
the relatively useless transition. This notion can be directly used to combine A∗ and
greedy search to a new transition-based directed model checking algorithm.

4.1 Useless and Relatively Useless Transitions

In this section, we give the definition of useless transitions. We will first give an exact
notion that captures precisely our intuition on the one hand, but is computationally hard

6 Martin Wehrle, Sebastian Kupferschmid, and Andreas Podelski

1 function verify(S, ϕ, d#):
2 open = empty priority queue, closed = ∅
3 priority = evaluate(s0, d#)
4 open.insert(s0, priority)
5 while open is not empty:
6 s = open.getMinimum()
7 if s violates ϕ:
8 return False
9 if s 6∈ closed:

10 closed = closed ∪ {s}
11 for each outgoing transition t of s:
12 s′ = successor(s, t)
13 if s′ 6∈ closed ∪ open:
14 priority = evaluate(s′, d#)
15 open.insert(s′, priority)
16 return True

Fig. 2. A basic directed model checking algorithm

on the other hand. Therefore, we will investigate ways to approximate this definition,
leading to the concept of relatively useless transitions.

Intuitively, a transition is useless if it is not needed to reach the nearest error state
on a shortest path. This is formally stated in the next definition.

Definition 1 (Useless Transition). Let 〈S, ϕ〉 be a model checking task, where S =
(S, s0, T, Σ). A transition t ∈ T leading from a state s to state s′ is useless in s iff no
shortest trace from s to a nearest error state starts with this transition.

We use d(s) to denote the distance of a state s to a nearest error state. More precisely,
d(s) = n if there is a trace π from s to an error state with |π| = n and there is no trace
π′ from s to an error state with |π′| < n. When we want to stress that d is a function
also on the system S, we will write d(S, s).

By Definition 1, a transition t is useless in a state s if and only if the real er-
ror distance d does not decrease by one, i. e., a transition from s to s′ is useless iff
d(s) ≤ d(s′). To see this, recall that d(s) ≤ d(s′) + 1 for every transition. If a shortest
error trace starts from s with t, then d(s) = d(s′) + 1. Otherwise the error distance
increases, i. e., d(s) < d(s′) + 1. Since the distance values are all integers, this is
equivalent to d(s) ≤ d(s′). We will use the inequality d(s) ≤ d(s′) in connection
with the idea of removing a useless transition. Therefore, we will define the notion
of reduced systems. To do this, we first need some more terminology. For a system
S = A1 || . . . || An, say S = (S, s0, T, Σ), we define a function µS that maps tran-
sitions from S to the corresponding transitions in Ai = (Si, s0i , Ti, Σi). This function
µS : T → 2T1 ∪···∪Tn is defined as follows.

µS((s1, . . . , sn)
τ−→ (s′1, . . . , s

′
n))

=

{
{si

τ−→ s′i} ∃i ∈ {1, . . . , n}
{si

α−→ s′i, sj
α−→ s′j} ∃i, j ∈ {1, . . . , n}, i 6= j, ∃α ∈ (Σi ∩Σj)

Transition-based Directed Model Checking 7

Based on this definition, we now define reduced systems.

Definition 2 (Reduced system). Let S = A1 || . . . || An be a system, say S =
(S, s0, T, Σ), with Ai = (Si, s0i , Ti, Σi) for i ∈ {1, . . . , n}. Let t ∈ T be a tran-
sition. The reduced system with respect to t is defined as St = A′1 || . . . || A′n, where
A′i = (Si, s0i , Ti \ µS(t), Σi).

Note that, according to the definition of µS , at most two automata Ai are affected
by reducing the system (one in the case of interleaving, two in the case of binary syn-
chronization). Roughly speaking, a transition t of the system S corresponds to one or
two transitions of one or two automata of S. The reduced system St is obtained by
removing these transitions from the corresponding automata. Note that removing one
transition from an automaton A removes several transitions from the system S.

Based on the definition of reduced systems, we will give a proposition that leads to
a testing criterion for useless transitions.

Proposition 1. Let 〈S, ϕ〉 be a model checking task with S = (S, s0, T, Σ), s, s′ ∈
S, t ∈ T leading from s to s′. If d(St, s) ≤ d(S, s′), then t is useless in s.

Proof. If d(St, s) ≤ d(S, s′), then d(S, s) ≤ d(S, s′) because d(S, s) ≤ d(St, s)
(the error distance cannot decrease in reduced systems). As d(s) ≤ d(s′) iff t is useless
in s, the claim follows directly.

This characterization can be interpreted as follows. A transition t is useless in s if the
error state is still reachable from s on the same shortest trace when the corresponding
transitions to t are removed from the system. However, it is not practical as computing
exact distances is PSPACE-hard. A direct way to approximate this test is to use the given
distance estimation function d# instead of d. This is rational because d# is designed
for exactly the reason of approximating d. When we want to stress that d# is a function
also on the system S, we will write d#(S, s).

Definition 3 (Relatively Useless Transition). Let 〈S, ϕ〉 be a model checking task
with S = (S, s0, T, Σ), s, s′ ∈ S, t ∈ T leading from s to s′. Let d# be a distance
estimation function. Then t is relatively useless for d# in s if d#(St, s) ≤ d#(S, s′).

Note that this is exactly the testing criterion from Proposition 1 where d has been
replaced by d#. Obviously, the quality of this approximation strongly depends on d#’s
precision. A very uninformed function, e. g. a function that constantly returns zero,
recognizes every transition as relatively useless. However, the more sophisticated the
distance estimation, the more precise is the approximation. We will come back to this
point in the next section. Intuitively, taking a relatively useless transition t does not
seem to guide the state space traversal towards an error state as the stricter distance
estimate in St does not increase.

One would expect that transitions should not be relatively useless if they lead to
states nearer to an error state. Indeed, under the rational assumption that distance func-
tions d# never decrease their estimate in reduced systems, i. e., d#(S, s) ≤ d#(St, s)
for all systems S, transitions t and states s, transitions leading to better estimates are
never relatively useless in any system S.

8 Martin Wehrle, Sebastian Kupferschmid, and Andreas Podelski

Proposition 2. Let 〈S, ϕ〉 be a model checking task with S = (S, s0, T, Σ). Let d#

be a distance estimation function such that d#(S, s) ≤ d#(St, s) for all s ∈ S and
t ∈ T . Let s, s′ ∈ S be states and t ∈ T be a transition that leads from s to s′. If
d#(s′) < d#(s), then t is not relatively useless for d# in s.

Proof. Assume that t is relatively useless, i. e., d#(St, s) ≤ d#(S, s′). As d#(S, s) ≤
d#(St, s), we have d#(S, s) ≤ d#(S, s′), showing that the distance estimate does not
decrease when the relatively useless transition t is applied.

4.2 Directed Model Checking with Relatively Useless Transitions

In this section, we put the pieces together. So far, we have presented a notion of useless
transitions to identify transitions that should be less preferred during the state space
traversal. A direct way to integrate this information is to “penalize” states that result
from applying such a transition. This is rational because avoiding transitions that are
not likely to appear in shortest error traces is likely to improve the detection of (short)
error traces. States that are reached by applying such a useless transition should be less
preferred when traversing the state space.

As argued in the introduction and Section 3.2, there are two choices to be made
when the directed model checking approach is applied, namely choosing the underlying
abstraction for the distance estimation functions, and choosing the algorithm that is
essentially determined by the evaluate function that computes the priority values for
the states. Here, we assume that a distance estimation function d# is already given,
and d# is additionally used to determine relatively useless transitions. For the second
point, we give a simple extension of the evaluate function in Fig. 3. Recall that s and t
(lines 2 and 3) are stored in the successor state and can be accessed easily. As outlined
above, states that result from applying a relatively useless transition are “penalized”. As
penalty value for s, we chose c(s), the length of the trace on which s was reached for
the first time. This leads to a combination of A∗ and greedy search as discussed in more
detail below.

1 function evaluate(s′, d#):
2 s = predecessor of s′

3 t = transition from s to s′

4 if t is relatively useless for d# in s:
5 priority = d#(s′) + c(s′)
6 else:
7 priority = d#(s′)
8 return priority

Fig. 3. Evaluation function based on relatively useless transitions

Overall, this algorithm is an amalgam of the algorithms A∗ and greedy search based
on transition evaluation. Its behavior depends on the accuracy of the underlying distance
estimation function d#. As mentioned earlier, the more accurate d#, the more transi-
tions are classified correctly, and therefore, the more it tends towards greedy search. At

Transition-based Directed Model Checking 9

the extreme ends of the spectrum, it becomes greedy search (for the perfect distance
function that classifies every transition correctly) and breadth first search, respectively,
which is a degenerated version of A∗ for the distance function that constantly returns
zero. From this perspective, our algorithm can be considered as a combination of greedy
search and A∗.

4.3 Discussion

Although it is technically possible to apply our algorithm to every model checking
task, there are distance functions that are probably best suited for this concept. Let us
have a look at this class of functions. Roughly speaking, distance estimation functions
can be divided into two classes, namely those that compute the values on-the-fly by
solving an abstract problem in every search state, and those that do it in a preprocessing
step, typically by computing a lookup table (e. g., a pattern database). The concept of
useless transitions seems to be best suited for distance functions that are computed on-
the-fly because the time overhead to compute this information is comparatively low.
Contrarily, distance functions from the second class are less suited because for every
modified system, an additional pattern database has to be computed (recall that for the
computation of the useless-values, the system is modified and the distance value is
recomputed on this modified system). However, as we will see, for distance functions
computed on-the-fly, the overall performance can often be significantly improved.

The performance of our approach strongly depends on the quality of d# that is used
to guide the search and to determine useless transitions. The higher the precision of d#,
the more transitions are evaluated correctly, and hence, the better the overall perfor-
mance as many unnecessary states need not be considered. In small examples, distance
functions like the graph distance could already lead to improvements. Pointing to our
motivating example in the introduction, we recognize that all transitions corresponding
to edges from down to up are relatively useless for the graph distance heuristic, whereas
all other transitions are not. In this example, applying our algorithm leads to a short-
est possible error trace with dramatically smaller explored state space than with greedy
search or A∗. For more complex examples, more sophisticated distance functions are
needed to benefit from our approach, as we will empirically show in the next section.

5 Evaluation

We have implemented our algorithm in the model checker MCTA [14] as part of a
tool development effort within the AVACS project1. The tool and its source code are
freely available at http://mcta.informatik.uni-freiburg.de/. We com-
pare our search method with A∗ and greedy search. In addition to the automaton model
as considered in this paper, many of them feature integer and clock variables and rep-
resent timed automata. Transitions can additionally be guarded by integer and clock
constraints. Moreover, a transition can change the value of integer variables and re-
set clock variables. Note that the concept of useless transitions is general and can be

1 http://www.avacs.org/

http://mcta.informatik.uni-freiburg.de/
http://www.avacs.org/

10 Martin Wehrle, Sebastian Kupferschmid, and Andreas Podelski

adapted to that class of automata in a straightforward way. To get a conservative ap-
proximation of useless transitions, we have implemented our concept in a stronger way
as described in the last section. When µS(t) is computed for a system S = A1|| . . . ||An
and a transition t in S, we additionally remove transitions in the automata Ai that read
variables that are set by some t′ ∈ µS(t), and transitions that lead to the same state as
some t′ ∈ µS(t).

5.1 The Distance Estimation Functions

We evaluated our algorithm for a number of distance estimation functions. We give
detailed results for the distance functions hL and hU introduced by Kupferschmid et
al. [12] and for the distance function based on the maximum graph distance hgd in-
troduced by Edelkamp et al. [4, 5]. As outlined in Section 2, hL and hU are based on
the monotonicity abstraction principle, where a state variable can have multiple values
simultaneously. hL performs a fixpoint iteration under this abstraction starting in the
current state until an error state is reached, and returns the number of iterations as dis-
tance estimate. Based on this fixpoint iteration, hU additionally extracts an abstract error
trace starting from the abstract error state, and returns the number of abstract transitions
as the estimate. Observe that computing hU is more expensive than hL. As we will see
in Section 5.3, this pays off in better search behavior. The maximum graph distance
function hgd uses the graph distance as indicated by its name.

5.2 The Benchmark Set

Our benchmarks stem from the AVACS benchmark suite.

Industrial benchmarks The M and N examples come from a case study that models
a real-time protocol to ensure mutual exclusion of a state in a distributed system via
asynchronous communication. The protocol is described in full detail in [2]. The C ex-
amples stem from a case study from an industrial project partner of the UniForM-project
[10] where the problem is to design a distributed real-time controller for a segment of
tracks where trams share a piece of track. For the evaluation of our approach we chose
the property that both directions are never given simultaneous permission to enter the
shared segment. In both case studies, a subtle error has been inserted by manipulating
a delay so that the asynchronous communication between these automata is faulty.

Academic benchmarks The FA and FB examples are flawed versions of the Fischer
protocol for mutual exclusion (cf. [15]). The variants differ in the way they encode the
error condition. As a second set of benchmarks, we use arbiter trees to establish mutual
exclusion between 2k client processes [19]. The benchmarks A2–A6 contain arbiter
trees of height 2–6, with an exponentially growing number of processes.

5.3 Experimental Results

The reported experimental results were obtained on a 2.66 GHz Intel Xeon computer
with memory out at 4 GB and a Linux operating system. We compare our new state

Transition-based Directed Model Checking 11

space traversal technique, denoted UT, with A∗ and greedy search (G) in three different
configurations. In the first configuration, hL is used as the abstract distance function,
the second uses hU and the third configuration uses hgd.

Table 1 shows the results of the first configuration. Here, the number of explored
states significantly decreases compared to A∗ and we are able to solve much larger prob-
lems. Compared to greedy search, the length of the found error traces are significantly
shorter. Moreover, due to better search guidance, we additionally often get significant
improvements in terms of the number of explored states and traversal time.

Table 1. Experimental results for hL with A∗, greedy search (G), and our combined approach
(UT). Abbreviations: #a: number of parallel automata, #v: number of variables, memory: peak
memory used in MB, y e+x: y · 10x, dashes indicate out of memory (> 4 GB).

explored states runtime in s memory trace length
Inst. #a #v A∗ G UT A∗ G UT A∗ G UT A∗ G UT

C1 5 15 22501 1928 1658 0.16 0.04 0.06 9 8 8 54 100 91
C2 6 17 66791 4566 1333 0.48 0.09 0.08 14 8 8 54 132 91
C3 6 18 76777 6002 1153 0.58 0.11 0.06 15 9 8 54 128 91
C4 7 20 726516 81131 1001 5.34 1.00 0.10 70 19 8 55 344 121
C5 8 22 6.00e+6 430494 833 44.64 5.32 0.12 484 63 8 56 1057 114
C6 9 24 – 4.56e+6 833 – 48.00 0.17 – 521 9 – 3217 114
C7 10 26 – – 829 – – 0.22 – – 9 – – 114
C8 10 27 – 1.19e+7 816 – 110.81 0.18 – 1158 9 – 5644 95
C9 10 28 – 2.77e+7 13423 – 252.66 2.27 – 2534 22 – 5803 90
M1 3 15 34680 4581 4256 0.17 0.02 0.02 9 8 8 47 457 97
M2 4 17 135073 15832 8186 0.75 0.08 0.06 15 10 9 50 1124 146
M3 4 17 155164 7655 10650 0.88 0.04 0.07 15 9 10 50 748 91
M4 5 19 584221 71033 22412 4.27 0.44 0.19 38 19 15 53 3381 136
N1 3 18 80541 50869 5689 0.97 1.26 0.06 17 45 9 49 26053 108
N2 4 20 332486 30476 22763 5.00 0.31 0.24 37 19 14 52 1679 259
N3 4 20 406908 11576 35468 6.66 0.12 0.42 38 12 15 52 799 204
N4 5 22 1.59e+6 100336 142946 33.78 1.14 1.86 117 40 39 55 2455 792
F A

5 6 6 71 9 9 0.00 0.00 0.00 7 7 7 8 8 8
F A

10 11 11 511 9 9 0.00 0.00 0.00 8 7 7 8 8 8
F A

15 16 16 1701 9 9 0.05 0.00 0.00 16 7 7 8 8 8
F B

5 5 6 54 179 7 0.00 0.00 0.00 7 7 7 6 12 6
F B

10 10 11 429 86378 7 0.01 1.29 0.00 8 109 7 6 22 6
F B

15 15 16 1504 – 7 0.04 – 0.00 17 – 7 6 – 6
A2 8 0 73 36 15 0.00 0.00 0.00 7 7 7 12 21 12
A3 16 0 5168 206 32 0.08 0.01 0.01 8 7 7 17 24 17
A4 32 0 4.44e+6 76811 95 95.95 7.53 0.06 1060 65 9 22 42 22
A5 64 0 – 263346 34 – 50.83 0.11 – 325 13 – 112 27
A6 128 0 – – 39 – – 0.49 – – 30 – – 32

The results for the second configuration are depicted in Table 2. Note that hU is
more informative than hL, and search behavior therefore is mostly better (in particu-

12 Martin Wehrle, Sebastian Kupferschmid, and Andreas Podelski

lar, the Fischer protocol examples are trivial for hU). This fact directly influences the
performance when applied with our algorithm: With UT and hU, we obtain even better
results than with UT and hL. Note that hU is not admissible, which means that there is
no guarantee to obtain a shortest possible error trace in this setting in theory. However,
in practice, we obtained shortest possible traces in our examples with A∗. The trace
length of UT is still mostly shorter than with greedy search. In particular, note that for
both hL and hU configurations without UT, the large C examples C7–C9 could only be
solved with an error trace of very poor quality compared to UT. Moreover, the largest
arbiter example A6 could not be solved at all without UT within 4 GB of memory.

Table 2. Experimental results for hU. Abbreviations as in Table 1

explored states runtime in s memory trace length
Inst. #a #v A∗ G UT A∗ G UT A∗ G UT A∗ G UT

C1 5 15 12480 715 277 0.22 0.02 0.02 9 7 7 54 73 59
C2 6 17 35047 1612 242 0.56 0.05 0.03 12 7 7 54 99 59
C3 6 18 39755 734 228 0.68 0.03 0.03 12 7 7 54 86 59
C4 7 20 359376 9120 566 5.46 0.15 0.12 50 9 8 55 139 55
C5 8 22 2.88e+6 83911 190 42.01 1.08 0.06 325 18 8 56 300 56
C6 9 24 2.89e+7 718015 190 374.72 6.39 0.08 3122 79 8 56 864 56
C7 10 26 – 2.55e+6 184 – 21.74 0.10 – 236 8 – 2412 56
C8 10 27 – 1.11e+7 570 – 145.24 0.28 – 1237 9 – 3733 94
C9 10 28 – – 1225 – – 0.67 – – 10 – – 153
M1 3 15 33999 7668 4366 0.16 0.04 0.03 9 8 8 47 71 73
M2 4 17 124237 18847 2036 0.71 0.11 0.02 14 10 8 50 119 81
M3 4 17 157173 19597 12829 0.93 0.11 0.11 16 10 11 50 124 89
M4 5 19 562527 46170 9873 4.30 0.28 0.11 40 16 12 53 160 97
N1 3 18 78798 9117 5191 0.96 0.08 0.05 17 9 9 49 99 80
N2 4 20 279853 23462 3260 4.17 0.24 0.04 35 15 9 52 154 136
N3 4 20 378963 43767 19271 6.16 0.47 0.22 39 20 14 52 147 149
N4 5 22 1.32e+6 152163 15102 26.91 1.97 0.20 110 54 18 55 314 377
F A

5 6 6 9 9 9 0.00 0.00 0.00 7 7 7 8 8 8
F A

10 11 11 9 9 9 0.00 0.00 0.00 7 7 7 8 8 8
F A

15 16 16 9 9 9 0.00 0.00 0.00 7 7 7 8 8 8
F B

5 5 6 7 7 7 0.00 0.00 0.00 7 7 7 6 6 6
F B

10 10 11 7 7 7 0.00 0.00 0.00 7 7 7 6 6 6
F B

15 15 16 7 7 7 0.00 0.00 0.00 7 7 7 6 6 6
A2 8 0 20 25 20 0.00 0.01 0.00 7 7 7 12 21 18
A3 16 0 25 82 27 0.00 0.01 0.01 7 7 7 17 18 17
A4 32 0 213 39 34 0.06 0.02 0.05 9 8 9 22 28 22
A5 64 0 187148 4027 42 42.68 1.22 0.23 414 17 13 27 47 27
A6 128 0 – – 50 – – 1.10 – – 31 – – 32

Table 3 gives the results for the third configuration (hgd). Here, we observe that the
results with UT are less significant than with the first two configurations. This is be-
cause, having a closer look at the distance estimation values in many of the instances,

Transition-based Directed Model Checking 13

the estimation values are often constant. This is due to the very coarse abstraction (i. e.,
the graph distance) used by hgd. Therefore, too many transitions are relatively useless
for this distance function, causing the search process to degenerate towards A∗. How-
ever, UT mostly still explores less states than A∗, thereby producing significant shorter
error traces than greedy search.

Table 3. Experimental results for hgd. Abbreviations as in Table 1

explored states runtime in s memory trace length
Inst. #a #v A∗ G UT A∗ G UT A∗ G UT A∗ G UT

C1 5 15 56496 18796 32583 0.12 0.06 0.12 11 9 10 54 1167 61
C2 6 17 185109 66389 107175 0.49 0.22 0.42 20 14 17 54 1847 69
C3 6 18 240090 94536 133529 0.68 0.33 0.55 24 17 20 54 2153 68
C4 7 20 2.45e+6 1.11e+6 1.27e+6 8.00 3.80 5.84 160 100 124 55 6805 71
C5 8 22 2.28e+7 1.27e+7 1.07e+7 82.79 43.50 56.38 1319 877 976 56 35067 67
C6 9 24 – – – – – – – – – – – –
M1 3 15 44611 12277 19333 0.21 0.07 0.10 9 9 8 47 2779 95
M2 4 17 176429 43784 67184 0.96 0.28 0.33 16 14 11 50 11739 105
M3 4 17 188472 54742 84020 1.05 0.37 0.46 15 15 12 50 12701 113
M4 5 19 706127 202924 319485 5.02 1.69 1.98 41 43 26 53 51402 218
N1 3 18 94908 15732 29276 1.10 0.18 0.28 17 11 11 49 3565 113
N2 4 20 391813 102909 149431 5.49 1.42 1.71 36 27 22 52 18180 130
N3 4 20 428812 131202 166041 6.34 2.04 1.94 35 30 21 52 20021 160
N4 5 22 1.76e+6 551091 734171 34.13 11.73 10.89 111 115 74 55 90467 147
F A

5 6 6 658 271 658 0.00 0.00 0.00 7 7 7 8 218 8
F A

10 11 11 13623 271 13623 0.12 0.00 0.13 24 8 24 8 218 8
F A

15 16 16 109773 271 109773 1.61 0.00 1.78 309 9 309 8 218 8
F B

5 5 6 78 496 9 0.00 0.00 0.00 7 7 7 6 79 6
F B

10 10 11 523 6.73e+6 9 0.00 94.81 0.00 8 3254 7 6 27107 6
F B

15 15 16 1718 – 9 0.03 – 0.00 17 – 7 6 – 6
A2 8 0 359 27 334 0.00 0.01 0.00 7 7 7 12 22 12
A3 16 0 61633 344 49652 0.13 0.01 0.18 13 7 14 17 169 17
A4 32 0 – 38209 – – 0.30 – – 18 – – 867 –
A5 64 0 – – – – – – – – – – – –

Overall, the concept of useless transitions has shown its potential in an impressive
way. The results show a significant improvement of the error traces in comparison to
greedy search as well as a significant reduction of the explored state space compared
to A∗. On many problems, the size of the explored state space is even lower than with
greedy search. Our experimental evaluation has shown this effect on a large number of
benchmarks, ranging from academic to industrial examples with instances of different
difficulties, ranging from very easy to very hard. Some problems represent timed sys-
tems. We have seen that the overall performance of UT depends on the precision of
the underlying distance estimation function. With UT, a sophisticated distance function
like hL already often leads to significant better guidance of the state space traversal than
with greedy search and A∗. More informative distance functions (like hU) also lead to

14 Martin Wehrle, Sebastian Kupferschmid, and Andreas Podelski

better search guidance when applied with UT, and hence, the number of explored states
further decreases. With less informative distance functions (like hgd), the impact of UT
decreases and the whole search process degenerates towards A∗.

6 Conclusion

We have introduced the concept of useless transitions to directed model checking as an
adaptation of the useless actions approach that has successfully been proposed in the
area of AI Planning. Based on useless transitions, we have proposed a hybrid algorithm
between A∗ and greedy search that seems to identify the sweet spot of the trade-off
between scalability and short computed error traces. We have implemented this algo-
rithm and evaluated it empirically on a number of benchmarks for a number of distance
estimation functions. Our empirical evaluation shows a substantial performance gain
in terms of explored states when compared with A∗, and a significant solution qual-
ity improvement when compared with greedy search. Due to better guidance abilities,
we often even explore less states than greedy search, being able to solve much larger
problems than A∗ and greedy search.

As outlined in the discussion section, our approach seems to be currently best suited
for distance estimation functions that are computed on-the-fly, and less suited for dis-
tance functions based on pattern databases. This is because the time overhead seems
to be too large when adapting it for such functions in a straight forward way. To in-
vestigate how to adapt our concept efficiently to distance functions based on pattern
databases will be an important topic for future research. Furthermore, it will be inter-
esting to refine our concept to more than two degrees of uselessness. We expect that
algorithms exploiting that knowledge further improve the state space traversal.

Acknowledgments

We thank the anonymous reviewers for their helpful comments. This work was partly
supported by the German Research Foundation (DFG) as part of the Transregional Col-
laborative Research Center “Automatic Verification and Analysis of Complex Systems”
(SFB/TR 14 AVACS, http://www.avacs.org/).

References

[1] Blai Bonet and Hector Geffner. Planning as heuristic search. Artificial Intelli-
gence, 129(1–2):5–33, 2001.

[2] Henning Dierks. Comparing model-checking and logical reasoning for real-time
systems. Formal Aspects of Computing, 16(2):104–120, 2004.

[3] Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. Directed model checking
with distance-preserving abstractions. In Proceedings of the 13th International
SPIN Workshop (SPIN 2006), volume 3925 of LNCS, pages 19–34. Springer-
Verlag, 2006.

http://www.avacs.org/

Transition-based Directed Model Checking 15

[4] Stefan Edelkamp, Stefan Leue, and Alberto Lluch-Lafuente. Directed explicit-
state model checking in the validation of communication protocols. International
Journal on Software Tools for Technology Transfer, 5(2):247–267, 2004.

[5] Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Directed explicit
model checking with HSF-SPIN. In Proceedings of the 8th International SPIN
Workshop (SPIN 2001), volume 2057 of LNCS, pages 57–79. Springer-Verlag,
2001.

[6] Alex Groce and Willem Visser. Heuristics for model checking Java programs.
International Journal on Software Tools for Technology Transfer, 6(4):260–276,
2004.

[7] Malte Helmert. The Fast Downward planning system. Journal of Artificial Intel-
ligence Research, 26:191–246, 2006.

[8] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

[9] Jörg Hoffmann, Jan-Georg Smaus, Andrey Rybalchenko, Sebastian Kupfer-
schmid, and Andreas Podelski. Using predicate abstraction to generate heuris-
tic functions in Uppaal. In Proceedings of the 4th Workshop on Model Checking
and Artificial Intelligence (MoChArt 2006), volume 4428 of LNCS, pages 51–66.
Springer-Verlag, 2007.

[10] Bernd Krieg-Brückner, Jan Peleska, Ernst-Rüdiger Olderog, and Alexander Baer.
The UniForM workbench, a universal development environment for formal meth-
ods. In Proceedings of the World Congress on Formal Methods in the Develop-
ment of Computing Systems (FM 1999), volume 1709 of LNCS, pages 1186–1205.
Springer-Verlag, 1999.

[11] Sebastian Kupferschmid, Klaus Dräger, Jörg Hoffmann, Bernd Finkbeiner,
Henning Dierks, Andreas Podelski, and Gerd Behrmann. UPPAAL/DMC –
Abstraction-based heuristics for directed model checking. In Proceedings of
the 13th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2007), volume 4424 of LNCS, pages 679–682.
Springer-Verlag, 2007.

[12] Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann.
Adapting an AI planning heuristic for directed model checking. In Proceedings of
the 13th International SPIN Workshop (SPIN 2006), volume 3925 of LNCS, pages
35–52. Springer-Verlag, 2006.

[13] Sebastian Kupferschmid, Jörg Hoffmann, and Kim G. Larsen. Fast directed model
checking via russian doll abstraction. In Proceedings of the 14th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2008), volume 4963 of LNCS, pages 203–217. Springer-Verlag, 2008.

[14] Sebastian Kupferschmid, Martin Wehrle, Bernhard Nebel, and Andreas Podelski.
Faster than UPPAAL? In Proceedings of the 20th International Conference on
Computer Aided Verification (CAV 2008), volume 5123 of LNCS, pages 552–555.
Springer-Verlag, 2008.

[15] Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on Com-
puter Systems, 5(1):1–11, 1987.

16 Martin Wehrle, Sebastian Kupferschmid, and Andreas Podelski

[16] Judea Pearl. Heuristics: Intelligent search strategies for computer problem solv-
ing. Addison-Wesley, 1984.

[17] Kairong Qian and Albert Nymeyer. Guided invariant model checking based on
abstraction and symbolic pattern databases. In Proceedings of the 10th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2004), volume 2988 of LNCS, pages 497–511. Springer-Verlag,
2004.

[18] Kairong Qian, Albert Nymeyer, and Steven Susanto. Abstraction-guided model
checking using symbolic IDA* and heuristic synthesis. In Proceedings of the 25th
International Conference on Formal Techniques for Networked and Distributed
Systems (FORTE 2005), volume 3731 of LNCS, pages 275–289. Springer-Verlag,
2005.

[19] Charles L. Seitz. Ideas about arbiters. Lambda, 1:10–14, 1980.
[20] Martin Wehrle, Sebastian Kupferschmid, and Andreas Podelski. Useless actions

are useful. In Proceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS 2008), pages 388–395. AAAI Press, 2008.

	Introduction
	Related Work
	Preliminaries
	Notation
	Directed Model Checking

	Transition-based Directed Model Checking
	Useless and Relatively Useless Transitions
	Directed Model Checking with Relatively Useless Transitions
	Discussion

	Evaluation
	The Distance Estimation Functions
	The Benchmark Set
	Experimental Results

	Conclusion

