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Abstract

In the last years, pruning techniques based on partial order re-
duction have found increasing attention in the planning com-
munity. One recent result is that the expansion core method
is a special case of the strong stubborn sets method proposed
in model checking. However, it is still an open question if
there exist efficiently computable strong stubborn sets with
strictly higher pruning power than expansion core. In this
paper, we prove that the pruning power of strong stubborn
sets is strictly higher than the pruning power of expansion
core even for a straight-forward instantiation of strong stub-
born sets. This instantiation is as efficiently computable as
expansion core. Hence, our theoretical results suggest that
strong stubborn sets should be preferred to expansion core.
Our empirical evaluation on all optimal benchmarks from the
international planning competitions up to 2011 supports the
theoretical results.

Introduction
Planning as heuristic search is a leading approach for op-
timal domain-independent planning. However, despite the
success of heuristic search for optimal planning in practice,
recent results show that there are significant and fundamen-
tal restrictions of this approach (Helmert and Röger 2008).
Therefore, additional pruning techniques that work orthog-
onally to pure heuristic search are desirable for tackling the
state explosion problem more effectively.

A recently explored pruning technique for planning is
partial order reduction, which has been originally proposed
for computer-aided verification (Valmari 1991; Godefroid
1996). This technique attempts to reduce the size of the
generated state space by avoiding an unnecessary blow-up
that is induced by interleaving independent operators. Val-
mari proposed the notion of (strong and weak) stubborn sets
(1991), which select a subset of applicable transitions in ev-
ery state that is sufficient to preserve completeness of the
overall search algorithm. Recently, partial order reduction
has also found increasing attention in the planning commu-
nity. Chen and Yao (2009) proposed the expansion core
method that follows ideas similar to stubborn sets.

Last year, Wehrle and Helmert (2012) showed that the
strong stubborn sets method is a generalization of a cor-
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rected version of the expansion core method. More pre-
cisely, they proved that the pruning power of expansion core
is the same as the pruning power of a particular strong stub-
born set. However, although this result shows that there ex-
ists such a strong stubborn set, Wehrle and Helmert did not
provide an explicit algorithm to actually compute it. Fur-
thermore, as algorithms for the computation of strong stub-
born sets have several choice points that can be instantiated
in many different ways, the question remained open whether
there are (efficiently computable) strong stubborn sets with
higher pruning power than expansion core. Alkhazraji et
al. (2012) empirically answer this question by demonstrat-
ing that this is the case in standard planning domains.

In this paper, we prove that the pruning power of strong
stubborn sets is strictly higher than the pruning power of
(an optimized version of) expansion core even for a straight-
forward and efficiently computable instantiation of strong
stubborn sets. More precisely, we show that for every reach-
able state s in a given planning task, every operator that is
pruned in s by expansion core is also pruned by this instan-
tiation of strong stubborn sets. Furthermore, we show that
there are cases where the pruning power of strong stubborn
sets is exponentially higher than the pruning power of expan-
sion core. To obtain these insights, we first present a succinct
formulation of expansion core that allows for a deeper un-
derstanding of what is actually computed by the expansion
core method compared to strong stubborn sets. This formu-
lation in turn prepares the ground for a declarative descrip-
tion that shows why expansion core is less powerful than
strong stubborn sets. We have implemented the instantia-
tion of strong stubborn sets and expansion core in the Fast
Downward planning system (Helmert 2006) and evaluated
these techniques on all optimal IPC benchmarks until 2011.
Our empirical evaluation confirms our theoretical results and
shows that partial order reduction can significantly improve
the performance of state-of-the-art planning algorithms.

Preliminaries
We consider domain-independent SAS+ planning. In this
setting, we are given a finite set of finite-domain state vari-
ables V to describe the possible states of the world. More
formally, every variable v ∈ V has a finite domain D(v),
and a state of the world is defined as a total assignment of
the variables in V which maps each variable to a value in its



domain. A partial state is an assignment from a subset of V
to values in their domains. For a partial state s, we denote
the set of variables for which s is defined with vars(s).

Definition 1 (Planning task). A planning task is defined
as a tuple Π = 〈V,O, s0, s?〉 consisting of a finite set of
finite-domain state variables V , a finite set of operators O,
an initial state s0, and a partial goal state s?. An operator
o ∈ O consists of a precondition pre(o) and an effect eff (o),
where pre(o) and eff (o) are partial states.

We write s[v] for the value of variable v in state s.
Furthermore, we define the precondition and effect vari-
ables of an operator o as prevars(o) = vars(pre(o)) and
effvars(o) = vars(eff (o)). We say that an operator o
reads a variable v if v ∈ prevars(o) and that it modifies
v if v ∈ effvars(o). A variable v is called goal-related if
v ∈ vars(s?). For the rest of the paper, we assume without
loss of generality that operators have non-empty effects, i.e.,
effvars(o) 6= ∅ for all operators o ∈ O.

An operator o is applicable in state s if pre(o)[v] = s[v]
for all v ∈ prevars(o). In this case, the successor state
o(s) is defined as the state obtained from s by setting the
values of the effect variables in effvars(o) to their values
in eff (o) and keeping the values of the other variables.
Moreover, for a variable v and a state s, we say that an
operator o is v-applicable in s if o does not have a vio-
lated precondition on v in s, i.e., either v /∈ prevars(o),
or s[v] = pre(o)[v]. A solution for a planning task is
defined as a sequence of operators o1, . . . , on such that
on(. . . (o1(s0)) . . . ) is defined and leads to a state that in-
cludes the goal (i.e., on(. . . (o1(s0)) . . . )[v] = s?[v] for all
goal-relevant variables v).

Furthermore, we need the notion of domain transition
graphs (DTGs). For a planning task 〈V,O, s0, s?〉 and a
variable v ∈ V , the domain transition graph DTG(v) for
v is defined as the directed graph whose vertices are the val-
ues D(v) in the domain of v and which has an edge from d
to d′ if there is an operator o ∈ O such that eff (o)[v] = d′,
and either pre(o)[v] = d or v /∈ prevars(o). Note that for
technical reasons (and in contrast to the standard definition),
we allow self-loops. We observe that o induces an edge in
DTG(v) if and only if v ∈ effvars(o).

We also need several notions of operator dependency. We
say that an operator o disables an operator o′ if there is a
variable v ∈ effvars(o)∩ prevars(o′) such that eff (o)[v] 6=
pre(o′)[v]. We say that o and o′ have conflicting effects if
there is a variable v ∈ effvars(o) ∩ effvars(o′) such that
eff (o)[v] 6= eff (o′)[v]. Moreover, we say that operators o
and o′ interfere if o disables o′, or o′ disables o, or o and o′

have conflicting effects.
Finally, we will use the notion of active operators. Oper-

ators that are not active in a state s are not needed to reach
a goal state from s and can be ignored in s without losing
completeness or optimality. Following the original work on
expansion core (Chen and Yao 2009), we use domain transi-
tion graphs to establish this property.

Definition 2 (Active operators). Let Π = 〈V,O, s0, s?〉 be
a planning task and let s be a state. Act(s) is the set of active
operators o ∈ O that satisfy the following conditions:

1. For every variable v ∈ prevars(o), there is a path in
DTG(v) from s[v] to pre(o)[v], and also from pre(o)[v]
to the goal value s?[v] if v is goal-related.

2. For every goal-related variable v ∈ effvars(o), there is a
path in DTG(v) from eff (o)[v] to the goal value s?[v].
We remark that Def. 2 strengthens the definition of oper-

ators that are DTGactive as defined by Wehrle and Helmert
(2012). The difference between Def. 2 and DTGactive op-
erators is the additional path criterion for goal-related vari-
ables in the first condition of Def. 2. For readers familiar
with the notion of projected problems, we observe that an
operator o is active in a state s iff for all v ∈ prevars(o) ∪
effvars(o), the projection of the problem onto v has a plan
from (the projection of) s that includes operator o. Clearly,
Act(s) can be identified efficiently for a given state s, and
operators that are not in Act(s) need not be considered in s
(i.e., can be treated as nonexistent when reasoning about s).

Stubborn Sets
Stubborn sets were introduced by Valmari (1991) and later
studied by Godefroid (1996). Recently, the definition of
strong stubborn sets has been adapted to the planning set-
ting (Wehrle and Helmert 2012; Alkhazraji et al. 2012).

To define strong stubborn sets, we need some more termi-
nology. A disjunctive action landmark in state s is a set of
operators such that all operator sequences that lead from s
to some goal state contain some operator in the set. A nec-
essary enabling set for o in state s is a set of operators such
that all operator sequences that lead from s to some goal
state and include o contain some operator in the set before
the first occurrence of o.
Definition 3 (Strong stubborn set). Let 〈V,O, s0, s?〉 be a
planning task, and let s be a state. A set of operators Ts ⊆ O
is a strong stubborn set in s if the following conditions hold:

1. For all operators o ∈ Ts not applicable in s, Ts contains a
necessary enabling set in s for o.

2. For all operators o ∈ Ts applicable in s, Ts contains all
operators o′ that are active in s and interfere with o.

3. Ts contains a disjunctive action landmark in s.

Strong stubborn sets can be used for pruning: in each state
s, it suffices to apply the applicable operators of a strong
stubborn set in s (instead of applying all applicable opera-
tors). Intuitively, this can be considered as a commitment
towards making progress on a certain subgoal in the next
step of the plan. This commitment is safe in the sense that
at least one permutation of each plan remains in the search
space. Therefore, pruning with strong stubborn sets main-
tains completeness and optimality of a search algorithm like
A∗ (Alkhazraji et al. 2012).

Alkhazraji et al. also present a simple fixed-point algo-
rithm for computing strong stubborn sets, adapting an ear-
lier algorithm presented by Godefroid (1996). The algo-
rithm leaves certain design choices, such as the choice of
necessary enabling sets, open. We will later show how these
design choices can be resolved in such a way that the result-
ing algorithm strictly dominates the expansion core method,
which we describe next.



Expansion Core
The expansion core method (EC) is a state-space pruning
technique introduced in the planning community (Chen and
Yao 2009; Xu et al. 2011). The original algorithm contained
an error and was recently corrected (Wehrle and Helmert
2012). In the following, we introduce this corrected version
of EC as a basis for our analysis.

Our presentation of the algorithm is significantly simpler
than the original presentation by Chen and Yao. This sim-
plification is obtained by only considering active operators.
Chen and Yao already use most of the concepts underlying
active operators, but their presentation exploits these con-
cepts only in certain contexts and only in limited ways. By
focusing on active operators everywhere, several complex
side conditions in the original definitions can be dropped.1

We first introduce the notion of potential preconditions.

Definition 4 (Potential precondition). Let Π =
〈V,O, s0, s?〉 be a planning task, let v, v′ ∈ V be
variables, let s be a state. Then v is a potential precondition
of v′ in s if there is o ∈ Act(s) such that o reads v, o is
v-applicable in s and o modifies v′.

In the original work on expansion core (Chen and Yao
2009; Xu et al. 2011), the definition of potential precondi-
tions contains a path criterion to rule out some (unnecessary)
operators. More precisely, using the notation of Def. 4, the
original definition of potential precondition additionally re-
quires the existence of a path in DTG(v′) (to the goal vertex
if v′ is goal-related) from s[v′] that includes an edge that is
induced by o. In Def. 4, this criterion is already captured
because we have restricted the problem to active operators.

In addition to potential preconditions, EC relies on the
notion of potential dependents.

Definition 5 (Potential dependent). Let Π =
〈V,O, s0, s?〉 be a planning task, let v, v′ ∈ V be
variables, let s be a state. Then v is a potential dependent of
v′ in s if there is o ∈ Act(s) such that o reads v′, o modifies
v, and o is v-applicable in s.

The original definition of potential dependents addition-
ally contains the constraint that there must exist a path in
DTG(v′) from s[v′] (to the goal vertex if v′ is goal-related)
that contains pre(o)[v′]. Again, in Def. 5 this constraint is
captured by the restriction to active operators in s. Further-
more, the original definition requires o to induce an edge in
DTG(v) with source vertex s[v]. In Def. 5, we formulated
this constraint equivalently via v-applicability of o, which
will be more convenient for the following investigations in
this paper.

The simplified formulation of EC highlights the similarity
between potential preconditions and potential dependents. It
shows that these two are almost dual notions, but with some
subtle difference regarding the exact conditions related to

1As a consequence of only considering active operators, the al-
gorithm we present here is slightly more powerful than the original
one, but in most cases (such as when all operators are active) they
behave identically. The purpose of the modification is to simplify
presentation, not to increase pruning power.

the applicability of o that are required in the two cases. To
complete the discussion of EC, we need one more definition.

Definition 6 (Potential dependency graph). Let Π =
〈V,O, s0, s?〉 be a planning task, let s be a state. The po-
tential dependency graph PDG(s) in s is defined as the di-
rected graph 〈V,E〉 with V = V and edge set E ⊆ V × V
with 〈v, v′〉 ∈ E iff v 6= v′ and v is a potential precon-
dition of v′, or v is a potential dependent of v′, or there is
o ∈ Act(s) with {v, v′} ⊆ effvars(o).

The EC pruning algorithm uses the potential dependency
graph to identify operators that need not be applied. Firstly,
for a given non-goal state s, EC selects a goal-related vari-
able v with s[v] 6= s?[v]. Secondly, based on v, EC com-
putes a dependency closure. The dependency closure is de-
fined as the minimal set dc(s) of variables that contains v
such that there is no edge in PDG(s) from a variable in
dc(s) to a variable not in dc(s). Thirdly, EC (s) is defined as
the set of operators that modify a variable in dc(s). Finally,
the EC pruning algorithm works by only applying the appli-
cable operators in EC (s), ignoring operators not in EC (s).

The Pruning Power of Strong Stubborn Sets
In this section, we investigate the relative pruning power of
strong stubborn sets and EC. For this purpose, we present
strong stubborn sets and EC in a declarative way as sets of
rules. In order to show the strict dominance of strong stub-
born sets over EC, we also present a third set of rules and
show that these rules are strictly more powerful than EC and
strictly less powerful than strong stubborn sets.

Expansion Core as Set of Rules
We reformulate the expansion core algorithm so that for ev-
ery state s, EC (s) is the result of applying a set of rules in
s until a fixed point is reached. This transformation makes
the algorithm easier to understand and reason about. Let v?
be a goal-related variable that is not set to its goal value in
s. (In goal states, there is nothing to do.) The sets dc(s)
and EC (s) are initially empty. In all rules, v and v′ denote
variables and o denotes an operator that is active in s.

Rule EC1 (initialization). Add v? to dc(s).

Rule EC2 (potential preconditions). If v ∈ dc(s), o reads
v, o is v-applicable in s and o modifies v′: add v′ to dc(s).

Rule EC3 (potential dependents). If v ∈ dc(s), o modifies
v, o reads v′ and o is v-applicable in s: add v′ to dc(s).

Rule EC4 (conjunctive effects). If v ∈ dc(s) and o modi-
fies v and v′: add v′ to dc(s).

Rule EC5 (expansion core). If v ∈ dc(s) and o modifies
v: add o to EC (s).

Due to the monotonicity of the rules, the order of rule
application does not matter and a unique fixed point is al-
ways reached. It is not hard to verify that the resulting set
EC (s) is equal to the result of the previous formulation of
the expansion core algorithm based on potential dependency
graphs if the same goal-related variable v? is chosen for the
initialization.



Operator-based Expansion Core
We now introduce operator-based expansion core (OBEC),
a variant of expansion core that directly computes the set of
operators OBEC (s) in the expansion core of state s with-
out explicitly computing a variable set dc(s). This EC vari-
ant provides a convenient intermediate step between EC and
strong stubborn sets, which are operator-based.

Again, v? is a goal-related variable that is not set to its
goal value in s. The set OBEC (s) is initially empty. In all
rules, v̄ and v̄′ denote variables and ō and ō′ denote operators
active in s.2

The OBEC rules are closely related to the EC rules, and
apart from one special case discussed below, EC (s) and
OBEC (s) are identical for all states s, assuming that the
same goal variable v? is chosen for initializing both variants.
Rule OBEC1 (initialization). If eff (ō)[v?] = s?[v?]: add
ō to OBEC (s).
Rule OBEC2 (potential preconditions). If ō ∈ OBEC (s),
ō modifies v̄, ō′ reads v̄ and ō′ is v̄-applicable in s: add ō′ to
OBEC (s).
Rule OBEC3 (potential dependents). If ō ∈ OBEC (s), ō
modifies v̄, ō is v̄-applicable in s, ō reads v̄′ and ō′ modifies
v̄′: add ō′ to OBEC (s).
Rule OBEC4 (common effects). If ō ∈ OBEC (s), ō mod-
ifies v̄ and ō′ modifies v̄: add ō′ to OBEC (s).

We now compare the behaviour of EC and OBEC. Before
we can state the main result, we need one more definition: a
state variable is trivial in s if it is not modified by any active
operator in s. Trivial variables cannot change their value in
any state reachable from s.
Theorem 1.

1. For all states s, we have OBEC (s) ⊆ EC (s). In other
words, the pruning power of OBEC is always at least as
large as the pruning power of EC.

2. If no variables are trivial in s, then EC (s) = OBEC (s).
In other words, EC and OBEC have the same pruning
power under this assumption.

Proof: We prove part 1 by induction over the application of
the OBEC rules. Let OBEC 0(s), . . . ,OBECn(s) denote
the value of OBEC (s) over a sequence of n applications of
rules OBEC1–4. We show that OBEC i(s) ⊆ EC (s) for all
0 ≤ i ≤ n, which implies OBEC (s) ⊆ EC (s).

Observation (*): because rule EC5 is the only one that
adds operators to EC (s), we know that for each operator o ∈
EC (s), one of the variables it modifies must be contained
in dc(s). With rule EC4, all variables it modifies must be
contained in dc(s).

To start the induction, we have OBEC 0(s) = ∅ ⊆
EC (s). Now we assume OBEC i(s) ⊆ EC (s) and show
that OBEC i+1(s) ⊆ EC (s) by distinguishing which of the
OBEC rules is applied in the (i + 1)-th step:

1. OBEC1 is applied. All operators added to OBEC i+1(s)
are in EC (s) due to EC1.

2The bars are used so that parameters of EC rules and OBEC
rules can be more easily distinguished in the proof of Theorem 1.

2. OBEC2 is applied with parameters v̄, ō, ō′. We must
show ō′ ∈ EC (s). From OBEC2’s conditions, ō modi-
fies v̄ and ō ∈ OBEC i(s). By induction, ō ∈ EC (s).
From (*) we get v̄ ∈ dc(s). Then EC2 is applicable with
v = v̄ and o = ō′: any variable modified by ō′ must be in
dc(s). From EC5, we get ō′ ∈ EC (s).

3. OBEC3 is applied with parameters v̄, v̄′, ō, ō′. We must
show ō′ ∈ EC (s). We get v̄ ∈ dc(s) by the same reason-
ing as in the previous case. Then EC3 is applicable with
v = v̄, v′ = v̄′ and o = ō, showing v̄′ ∈ dc(s). From
EC5, we get ō′ ∈ EC (s) because ō′ modifies v̄′.

4. OBEC4 is applied with parameters v̄, ō and ō′. We must
show ō′ ∈ EC (s). From OBEC4’s conditions, ō modifies
v̄ and ō ∈ OBEC i(s). By induction, ō ∈ EC (s). From
(*) we get v̄ ∈ dc(s). From EC5, we get ō′ ∈ EC (s)
because ō′ modifies v̄.

For part 2, we already know OBEC (s) ⊆ EC (s) from
part 1, so we need to show EC (s) ⊆ OBEC (s) if no vari-
ables are trivial in s. For a sequence dc0(s), . . . , dcn(s)
of values taken on by dc(s) while applying rules EC1–4,
we show by induction that OBEC (s) contains all operators
modifying a variable in dci(s) for all 0 ≤ i ≤ n. With rule
EC5, this establishes EC (s) ⊆ OBEC (s). The claim is
clearly true for i = 0, so we proceed with the inductive step:

1. EC1 is applied. We must show that all operators modi-
fying v? are contained in OBEC (s). By assumption, v?
is not trivial, so at least one active operator modifying v?
exists. The definition of active operators then implies that
at least one operator setting v? to its goal values exists.
Hence at least one operator modifying v? is in OBEC (s)
because of OBEC1, which implies that all other operators
modifying v? are also in OBEC (s) because of OBEC4.

2. EC2 is applied with parameters v, v′, o. We must
show that all operators modifying v′ are contained in
OBEC (s). From the conditions of EC2, we get v ∈
dci(s). Hence, inductively, ov ∈ OBEC (s) for some
arbitrary operator ov modifying v. (Such an operator ex-
ists because by assumption v is not trivial.) Then OBEC2
is applicable with ō = ov , v̄ = v and ō′ = o, which shows
o ∈ OBEC (s). Because o modifies v′, all other operators
that modify v′ are in OBEC (s) by rule OBEC4.

3. EC3 is applied with parameters v, v′, o. We must
show that all operators modifying v′ are contained in
OBEC (s). Let o′ be such an operator. From the condi-
tions of EC3, we get v ∈ dci(s) and o modifies v. Hence,
inductively, o ∈ OBEC (s). Then OBEC3 is applicable
with v̄ = v, v̄′ = v′, ō = o and ō′ = o′, which shows
o′ ∈ OBEC (s).

4. EC4 is applied with parameters v, v′, o. We must
show that all operators modifying v′ are contained in
OBEC (s). From the conditions of EC4, we get v ∈
dci(s) and o modifies v. Hence, inductively, o ∈
OBEC (s). From the conditions of EC4, o also modi-
fies v′, and thus all other operators modifying v′ are also
contained in OBEC (s) by rule OBEC4.



Given Theorem 1, a natural question is whether there exist
cases where OBEC offers strictly more pruning power than
EC. (Of course, the theorem implies that any such exam-
ple must include trivial variables.) The answer is that such
examples indeed exist: we can construct a family of plan-
ning tasks of size Θ(n) where Θ(4n) states are reachable
from the initial state when pruning based on EC, but only
Θ(2n) states are reachable when pruning based on OBEC.
For space reasons and because this result is not important to
the main contribution of this section, we refer to a technical
report for a proof (Wehrle et al. 2013).

Strong Stubborn Sets as Set of Rules
In the following, we show that OBEC is still strictly less
powerful than a particular instantiation of strong stubborn
sets, which we call SSS-EC. This instantiation is presented
as a set of rules in the same fashion as the rules for EC and
OBEC. The rules are modelled closely along the require-
ments for strong stubborn sets in Def. 3, with the choices
for disjunctive action landmarks and necessary enabling
sets resolved in such a way that dominance over OBEC is
achieved.

As previously, v? is a goal-related variable that is not set
to its goal value in s. The rules iteratively compute a strong
stubborn set SSS (s), which is initially empty. In all rules, o
and o′ denote operators active in s.

Rule SSS1 (initialization). If eff (o)[v?] = s?[v?]: add o to
SSS (s).

Rule SSS2 (conflicting effects). If o ∈ SSS (s), o is appli-
cable in s and o and o′ have conflicting effects: add o′ to
SSS (s).

Rule SSS3 (disabling operators). If o ∈ SSS (s), o is ap-
plicable in s and o′ disables o: add o′ to SSS (s).

Rule SSS4 (disabled operators). If o ∈ SSS (s), o is appli-
cable in s and o disables o′: add o′ to SSS (s).

Rule SSS5 (inapplicable operators). If o ∈ SSS (s) and
o is not applicable in s, pick a variable v such that o is
not v-applicable and add all operators o′ with eff (o′)[v] =
pre(o)[v]. Variables for which o is not v-applicable are
called violated variables. Variable v is picked from the set
of violated variables according to the following rules:

• If there exists a violated variable such that an applicable
operator that modifies it (no matter which value it sets) is
already contained in SSS (s), then pick such a variable.

• Otherwise, if there exists a violated variable that is modi-
fied by o, then pick such a variable v.

• Otherwise, pick an arbitrary violated variable.

Unlike the previous rulesets, the SSS rules contain a his-
tory dependency because different cases can apply in rule
SSS5 depending on which operators are already contained in
SSS (s). This means that SSS (s) is not well-defined in the
sense that different orders of triggering the rules can lead
to different operator sets. This does not affect the results
we will prove, as these do not make any assumptions about
the order in which rules are triggered and hence apply to all

possible orders. In particular, we will prove that the pruning
power of SSS dominates that of OBEC irrespective of order.

Before we compare the OBEC and SSS rules, we observe
that the set SSS (s) computed by the SSS rules is a strong
stubborn set. Rule SSS1 ensures that SSS (s) contains a
disjunctive action landmark (condition 3 of Def. 3), rules
SSS2–4 add the required interfering operators (condition 2
of Def. 3), and rule SSS5 adds the required necessary en-
abling sets (condition 1 of Def. 3).

It would be nice if we could now show a result directly
analogous to Theorem 1, showing that SSS (s) ⊆ OBEC (s)
for all states s. Unfortunately, this is not generally the case.
In fact, we can give a much stronger kind of counterexam-
ple: there exist planning tasks for which neither OBEC (s)
nor any subset of it is a strong stubborn set, no matter how
the choices of disjunctive action landmarks and necessary
enabling sets in Def. 3 are resolved.3

However, we are still able to show that SSS dominates
OBEC in terms of pruning power: while the above discus-
sion implies that SSS (s) may contain operators that are not
contained in OBEC (s), we can show that all such operators
must be inapplicable in s. Therefore, the set of operators
considered when using SSS for pruning is always a subset
of the operators considered when using OBEC.

We prove this result in two steps. First, we introduce a
modified version of the SSS ruleset, called SSS’, and argue
that SSS and SSS’ compute the same set of applicable oper-
ators. Then, we show that the set of operators computed by
the SSS’ ruleset is always a subset of OBEC (s).

The SSS’ rules are identical to the SSS rules except that
SSS4 is replaced by the following rule:
Rule SSS4’ (disabled operators, modified version). If o ∈
SSS (s), o is applicable in s and o disables o′, let the disabled
variables be all variables v such that o modifies v, o′ reads
v, and eff (o)[v] 6= pre(o′)[v]. Consider two cases:

1. If o′ is v-applicable for at least one disabled variable v:
add o′ to SSS (s).

2. Otherwise, apply rule SSS5 to o′ (i.e., execute SSS5 with
o′ as the parameter as if o′ were contained in SSS (s)).
We now show that the original and modified ruleset have

the same pruning behaviour.
Proposition 1. For all states s, the set of applicable opera-
tors in SSS (s) is the same for the SSS ruleset (SSS1–5) and
modified SSS ruleset (SSS1–3, SSS4’, SSS5).
Proof: We need to compare rule SSS4 to rule SSS4’ in the
context of the other rules. The two rules are very similar.
They have the same precondition, and in cases where case 1.
of rule SSS4’ applies, they also have the same effect. This
leaves situations where case 2. applies. In such situations,
o′ is not v-applicable in s for any disabled variable. There
must be at least one disabled variable (since o disables o′),
which implies that o′ is inapplicable in s.

Therefore, an execution of SSS4’ in the modified ruleset
can be simulated by an execution of SSS4 followed by SSS5

3The counterexample is somewhat technical and not necessary
for the main results of this paper. Therefore, we again refer to a
technical report for its presentation (Wehrle et al. 2013).



(applied to o′) in the original ruleset. The only difference
between the two scenarios is that in one case o′ is added to
SSS (s) and in the other case it is not. However, this has
no further consequences: adding inapplicable operators like
o′ to SSS (s) cannot trigger any rule other than SSS5, and
SSS5 is triggered in both cases.

We can now prove the dominance result for SSS and
OBEC.

Theorem 2.

1. For all states s, we have SSS (s) ⊆ OBEC (s) when using
the modified ruleset for SSS.

2. For all states s, the set of applicable operators in SSS (s)
under the modified or original ruleset is a subset of the
set of applicable operators in OBEC (s).
In other words, the pruning power of SSS is always at
least as large as the pruning power of OBEC.

Proof: We prove part 1 by induction over the application of
the modified SSS rules. In several cases, we will say that
a certain SSS rule is “equivalent to” or “a special case” of
some OBEC rules. By this we mean that the OBEC rule can
(at least) add the same operators to OBEC (s) that the SSS
rules adds to SSS (s) under the same (or weaker) conditions.

Let SSS 0(s), . . . ,SSSn(s) denote the value of SSS (s)
over a sequence of n applications of the modified SSS rules.
We show that SSS i(s) ⊆ OBEC (s) for all 0 ≤ i ≤ n,
which implies SSS (s) ⊆ OBEC (s).

To start the induction, we have SSS 0(s) = ∅ ⊆
OBEC (s). Now we assume SSS i(s) ⊆ OBEC (s) and
show that SSS i+1(s) ⊆ OBEC (s) by distinguishing which
of the modified SSS rules is applied in the (i + 1)-th step:

1. SSS1 is applied. This rule is identical to OBEC1.

2. SSS2 is applied with parameters o and o′. This rule is a
special case of OBEC4 with ō = o, ō′ = o′ and v̄ any
variable on which o and o′ conflict.

3. SSS3 is applied with parameters o and o′. This rule is a
special case of OBEC3 with ō = o, ō′ = o′, v̄′ any vari-
able on which o′ disables o and v̄ any variable modified
by o. (Such a variable must exist because we require op-
erators to have non-empty effects.)

4. SSS4’ is applied with parameters o and o′. If the first case
of the rule applies and v is the selected disabled variable,
this is a special case of OBEC2 with ō = o, ō′ = o′ and
v̄ = v. If the second case of the rule applies, then SSS4’
behaves like SSS5 with parameter o′.
Because we are in the second case of SSS4’, o′ is not
v-applicable for any disabled variable, and hence all dis-
abled variables are violated variables in SSS5. Moreover,
an applicable operator that modifies these variables is al-
ready contained in SSS (s): namely o. Therefore, the
first case of SSS5 applies. This means that SSS5 adds to
SSS i(s) only operators that modify some variable v that
is also modified by o. With o ∈ SSS i(s) and the induc-
tion hypothesis, we have o ∈ OBEC (s), and hence with
OBEC5 all other variables modifying v are also contained
in OBEC (s).

5. SSS5 is applied with parameter o. We distinguish the
three cases of SSS5:
• In the first case, SSS i(s) and hence (by induction hy-

pothesis) OBEC (s) contain an operator that modifies
v. Because of OBEC4, OBEC (s) then contains all op-
erators that modify v, including the necessary enabling
set that SSS5 adds.
• In the second case, SSS5 only adds operators that share

an effect variable (v) with o. Because o ∈ SSS i(s), by
induction hypothesis o ∈ OBEC (s). Then all opera-
tors that share an affect variable with o are contained in
OBEC (s) by rule OBEC4.

• In the third case, o is v-applicable for all variables v it
modifies (otherwise the second case would trigger). Let
v be a variable modified by o (one must exist because
operators have non-empty effects). Let v′ be the vio-
lated variables picked by SSS5 (so o reads v′), and let
o′ be an operator added by SSS5 (so o′ modifies v′). We
must show o′ ∈ OBEC (s). Because o ∈ SSS i(s), by
induction hypothesis o ∈ OBEC (s), and OBEC3 ap-
plies with ō = o, ō′ = o′, v̄ = v and v̄′ = v′. OBEC3
adds o′, concluding the proof.

Part 2 follows directly from part 1 and Proposition 1.
We have now almost completed the comparison of the ex-

pansion core and strong stubborn set methods. We know
that EC is dominated by OBEC (even with exponential dif-
ferences in pruning power in some cases involving trivial
variables), and we know that OBEC is dominated by SSS.
To complete the discussion, we show an exponential separa-
tion between OBEC and SSS.
Example 1. For n > 0, let Πn = 〈V,O, s0, s?〉 be a plan-
ning task with the following components:

• V = {a1, . . . , an, g}
• O = {o1, . . . , on, o1, . . . , on, og}
• pre(oi) = {ai 7→ 0}, eff (oi) = {ai 7→ 1} for 1 ≤ i ≤ n

• pre(oi) = {ai 7→ 1}, eff (oi) = {ai 7→ 0} for 1 ≤ i ≤ n

• pre(og) = {a1 7→ 1, . . . , an 7→ 1}, eff (og) = {g 7→ 1}
• s0 = {a1 7→ 0, . . . , an 7→ 0, g 7→ 0}
• s? = {g 7→ 1}

The number of reachable states of Πn is 2n + 1.4
Expansion core, in either the EC or OBEC variants, per-

forms no pruning on this task, so the number of reachable
states remains 2n + 1.

When pruning based on strong stubborn sets using the
SSS rules, the number of reachable states is reduced to
2n + 1.

Proof: It is easy to see that there are 2n +1 reachable states:
if s[g] = 0, the other variables can take on arbitrary values,
which gives 2n states. The additional state is the state where
s[v] = 1 for all state variables, which is the state reached
after applying sg.

4We assume that no successor states are generated for goal
states. Without this assumption, the number of reachable states
is 2n+1 because all states s with s[g] = 1 can be reached once a
goal state has been reached.



Expansion core. We show that OBEC (s) contains all
operators for all states s. We have og ∈ OBEC (s) by rule
OBEC1. All other operators are then added by rule OBEC3
with ō = og and v̄ = g. (Note that all other operators modify
some variable read by og.)

Strong stubborn sets. We first consider states s where
s[ai] = 0 for at least one variable ai. In such states SSS (s)
only contains the operators oi, oi, og for exactly one such ai:
SSS (s) is equal to {og} after the initialization (rule SSS1),
then oi is added to SSS (s) as a necessary enabling set (rule
SSS5, third case, violated variable ai), and finally, oi is
added to SSS (s) because it has a conflicting effect with oi
(rule SSS2).

Of these operators, only oi is applicable, so only one suc-
cessor is generated for state s. In particular, SSS (s) never
contains an applicable operator oi that sets a variable back
from 1 to 0 in this case.

This leaves the case of states s where s[ai] = 1 for all
variables ai. There are two such states, of which one is a
goal state and does not generate successors. The other state
is s̃ = {a1 7→ 1, . . . , an 7→ 1, g 7→ 0}. SSS (s̃) contains all
operators: the stubborn set is again initialized to {og}, but
this time og is applicable. By rule SSS3, we add all operators
oi because they disable og. These in turn bring the operators
oi into the set by rule SSS3 because oi disables oi.

Therefore, all n + 1 successors of s̃ are generated. How-
ever, for the successor state si reached via oi, the previous
case applies again, and hence the only transition from si that
is not pruned is the one that takes us back to s̃.

In summary, there are 2n+1 reachable states: n+1 states
on the generated path from s0 to s̃ (including s0 and s̃), the
goal state reached from s̃, and n−1 additional states reached
from s̃ via operators of the form ai. (Note that one of these
operators takes s̃ back to the state from which it was gener-
ated, so we do not count that state again.)

With this example, we can conclude our theoretical com-
parison of expansion core and strong stubborn sets by stating
the main result.

Theorem 3. The instantiation of the strong stubborn set
method using rules SSS1–5 strictly dominates the expansion
core method in terms of pruning power.

Moreover, there exist families of planning tasks where the
number of explored states under the expansion core method
is exponential in the number of explored states under the
strong stubborn set method.

Proof: Follows directly from Theorem 1, Theorem 2 and
Example 1.

The theoretical results suggest that the strong stubborn set
method should be preferred over the expansion core method
if it can be implemented with comparable or lower overhead.

In the next section, we experimentally compare the two
approaches and evaluate their usefulness compared to search
algorithms that do not perform partial order reduction.

Experiments
So far, our comparison of strong stubborn sets and expansion
core has been purely theoretical. To provide an experimen-
tal comparison, we implemented both algorithms in the Fast

Coverage Nodes generated
Domain (problems) A∗ +EC +SSS-EC A∗ +EC +SSS-EC

PARCPRINTER-08 (30) 18 ± 0 +12 2431852 100% <1%
PARCPRINTER-OPT11 (20) 13 ± 0 +7 2431225 100% <1%
WOODWK-OPT08 (30) 16 +6 +12 5444225 18% <1%
WOODWK-OPT11 (20) 11 +4 +8 5443428 18% <1%
SATELLITE (36) 7 ± 0 +3 1744479 64% 5%
AIRPORT (50) 26 ± 0 +2 897061 100% 29%
OPENSTACKS-OPT08 (30) 18 −2 +2 34336295 100% 53%
OPENSTACKS-OPT11 (20) 13 −2 +2 34209201 100% 53%
ROVERS (40) 7 ± 0 +1 1278006 99% 57%
ELEVATORS-OPT11 (20) 17 −1 −1 15882032 100% 66%
ELEVATORS-OPT08 (30) 20 −1 +1 16431397 100% 67%
PIPESWORLD-TK (50) 9 −1 ±0 594317 100% 97%
SCANALYZER-08 (30) 14 ±0 −1 7879172 100% 100%
SCANALYZER-OPT11 (20) 11 ±0 −1 7879044 100% 100%
FREECELL (80) 15 −2 −1 9472652 100% 100%
GRIPPER (20) 7 −1 ±0 10807891 100% 100%
MPRIME (35) 22 −1 ±0 953737 100% 100%
TRUCKS (30) 10 ±0 −1 11678937 100% 100%

REMAINING DOMAINS (805) 488 ±0 ±0 189005201 100% 87%

OVERALL (1396) 742 −1 +45 358800152 97% 76%

Table 1: Comparison of plain A∗, A∗ with EC, and A∗ with
SSS-EC, all guided by the landmark-cut heuristic. Coverage
and nodes +EC, +SSS-EC are expressed relative to plain A∗.

Downward planning system (Helmert 2006) and combined
them with an A∗ search based on the landmark-cut heuris-
tic (Helmert and Domshlak 2009). Throughout this section,
we refer to the strong stubborn set implementation as SSS-
EC, to highlight the fact that other variations of strong stub-
born sets are conceivable and that this particular variation
was designed in such as way that it achieves dominance over
expansion core (EC). Considerable care was taken to make
sure that SSS-EC and EC were efficiently implemented. As
a baseline, we used A∗ search with the landmark-cut heuris-
tic and no partial order reduction.

We evaluated our implementation on all optimal plan-
ning instances from the international planning competitions
(IPCs) up to 2011 that are supported by the landmark-cut
heuristic, which does not support conditional effects or ax-
ioms. All experiments were conducted on AMD Opteron
CPUs model 2384 (2.7 GHz) with a time limit of 30 min-
utes and a memory limit of 2 GB per instance.

The overall results are given in Table 1, with those do-
mains aggregated under “remaining domains” where all
three configurations solve the same set of instances. The
first and striking result is the disparity in performance be-
tween EC and SSS-EC. EC does not solve more benchmarks
than the baseline – in fact, overall coverage reduces by 1,
from 742 tasks to 741 solved tasks. In contrast to this, SSS-
EC solves 45 additional tasks compared to the baseline, a
very noticeable improvement considering the typically ex-
ponential runtime growth rate of optimal planning systems
on benchmarks of scaling size.

SSS-EC solves more tasks than the baseline in 10 domains
and generates fewer nodes in 26 out of 44 domains (most of
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Figure 1: Comparison of search times (in seconds) of EC
and SSS-EC across all domains.

which are subsumed in the “remaining domains” row of Ta-
ble 1). However, there are also five domains where SSS-EC
solves one less task than the baseline due to the overhead
of computing the stubborn sets. In two of these five cases,
SSS-EC runs out memory precomputing the interference re-
lation. In the other three cases, no pruning is possible and
the overhead for computing the stubborn sets (a factor of
1.01, 1.5 and 2 in these three cases) pushes runtime beyond
the timeout when using SSS-EC.

The reduction in the total number of generated nodes
(computed per domain as the sum of node generations over
all commonly solved instances) when using SSS-EC can
be substantial, with more than 99% of the node genera-
tions eliminated in the PARCPRINTER and WOODWORK-
ING domains, 95% of the node generations eliminated in the
SATELLITE domain, and several other domains where the
number of node generations is almost or more than cut in
half. By contrast, EC only substantially reduces the number
of node generations in WOODWORKING and SATELLITE.

To provide a quantitative overview of the runtime of the
two partial order reduction approaches, Figure 1 shows a
scatter plot comparing SSS-EC to EC on all instances in the
benchmark set. Clearly, the lower numbers of node genera-
tions with SSS-EC lead to faster search on average.

Finally, Table 2 shows details for some of the hardest
solved IPC 2011 instances in domains where EC and SSS-
EC differ in coverage. This includes OPENSTACKS, PAR-
CPRINTER and WOODWORKING, where SSS-EC performed
considerably better than EC, and SCANALYZER, one of the
few domains where EC performed better. Focusing on the
runtime results in the rightmost columns, SSS-EC is typ-
ically 5–6 times as fast as EC in OPENSTACKS, 10–100
times as fast in WOODWORKING and more than 1000 times
as fast in PARCPRINTER. Speed is comparable in SCANA-
LYZER, yet SSS-EC solves one task less, presumably due to
unfavourable tie-breaking in the last search layer.

Nodes generated Search time
Problem A∗+EC A∗+SSS-EC A∗+EC A∗+SSS-EC

OPENSTACKS-OPT11-P03 276461 153030 52.44 9.57
OPENSTACKS-OPT11-P06 351555 197041 195.67 33.96
OPENSTACKS-OPT11-P07 15433 11437 127.18 28.24
OPENSTACKS-OPT11-P08 1474905 953425 1111.89 208.73
OPENSTACKS-OPT11-P09 489990 257104 541.24 85.04
OPENSTACKS-OPT11-P10 319768 204616 1239.98 278.08
OPENSTACKS-OPT11-P11 — 1326093 — 880.19
OPENSTACKS-OPT11-P12 — 700053 — 540.7
OPENSTACKS-OPT11-P13 — 615457 — 661.42
OPENSTACKS-OPT11-P14 26981 17785 542.51 99.36
OPENSTACKS-OPT11-P15 — 1182321 — 1715.75

PARCPRINTER-OPT11-P10 257153 27 41.48 0.1
PARCPRINTER-OPT11-P12 1630974 159 324.05 0.1
PARCPRINTER-OPT11-P16 — 88 — 0.12
PARCPRINTER-OPT11-P17 — 575 — 0.26
PARCPRINTER-OPT11-P18 — 1435 — 0.93
PARCPRINTER-OPT11-P19 — 3798 — 3.16

SCANALYZER-OPT11-P06 7446600 7446600 1587.66 1407.81
SCANALYZER-OPT11-P07 0 0 139.0 221.45
SCANALYZER-OPT11-P09 0 0 15.55 17.45
SCANALYZER-OPT11-P10 0 0 50.0 55.6
SCANALYZER-OPT11-P11 3800 — 160.68 —

WOODWK-OPT11-P03 135627 1250 17.39 0.17
WOODWK-OPT11-P07 326266 1709 44.91 0.21
WOODWK-OPT11-P11 — 60571 — 12.34
WOODWK-OPT11-P12 6094668 43836 1527.22 10.55
WOODWK-OPT11-P14 — 80326 — 23.98
WOODWK-OPT11-P15 322557 9657 250.77 7.65
WOODWK-OPT11-P16 69752 3577 45.36 2.41
WOODWK-OPT11-P18 — 113825 — 58.97
WOODWK-OPT11-P19 107266 11418 90.81 8.01
WOODWK-OPT11-P20 — 43227 — 39.59

Table 2: Detailed results on some hard benchmarks. The
“nodes generated” columns do not count nodes in the last f
layer to eliminate the effect of tie-breaking in the search.

Conclusion
We provided a theoretical and experimental comparison of
strong stubborn sets, a partial order reduction method pro-
posed in the model checking community, to the expansion
core algorithm, a partial order reduction method proposed
for classical planning.

Extending previous work (Wehrle and Helmert 2012) that
non-constructively showed that the expansion core approach
is a special case of strong stubborn sets without establish-
ing strict dominance, we provided a constructive description
of a stubborn-set method that strictly dominates the expan-
sion core algorithm, leading to exponentially smaller search
spaces in some cases. The core of our result is a novel, con-
siderably simpler formulation of EC and an operator-based
variant of EC in terms of derivation rules.

We also showed that the dominance relationship between
stubborn sets and EC is not limited to the theoretical realm:
experimentally, the stubborn-set approach offers substantial
performance improvements over a state-of-the-art baseline
planner, while the expansion core algorithm does not.
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