Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

Plan Relaxation via Action Debinding and Deordering

Bernhard Nebel

University of Freiburg
Freiburg, Germany

Max Waters
RMIT University
Melbourne, Australia

Abstract

While seminal work has studied the problem of relaxing the
ordering of a plan’s actions, less attention has been given to
the problem of relaxing and modifying a plan’s variable bind-
ings. This paper studies the problem of relaxing a plan into
a partial plan which specifies which operators must be exe-
cuted, but need not completely specify their order or variable
bindings. While partial plans can provide an agent with addi-
tional flexibility and robustness at execution time, many op-
erations over partial plans are intractable. This paper tackles
this problem by proposing and empirically evaluating a fixed-
parameter tractable algorithm which searches for tractable,
flexible partial plans.

1 Introduction

While seminal work has studied the problems of deordering
and reordering plans (Bickstrom 1998), the equally impor-
tant problems of deinstantiating and reinstantiating plans,
i.e., the relaxation of their variable bindings, has received
less attention. This paper studies the problem of generalising
a totally-ordered, ground plan by relaxing both the ordering
of its actions and the bindings of those actions’ parameters.

A partial plan is a generalised plan comprising a set
of actions to be executed, and a set of constraints defin-
ing the allowable action orderings and object values for
the actions’ parameters. The benefit of partial plans is that
they provide flexibility and robustness at execution time,
two desirable features under dynamic or partially-observable
environments. Robustness follows from the fact that par-
tial plans represent sets of different valid, totally-ordered,
ground plans, so goal achievability is guaranteed when one
such concrete plan is executed to completion. Flexibility
arises from a least-commitment execution strategy, under
which specific orderings of actions or variable bindings are
decided only when absolutely necessary.

This work investigates the problem of finding relaxations
of (partial) plans by “lifting” both their ordering and vari-
able binding constraints. The objective is to maintain the
partial plan’s validity while increasing its flexibility, i.e., to
ensure that any legal orderings and variable bindings pro-
duce a ground plan which achieves the intended goal, while

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

278

Sebastian Sardina
RMIT University
Melbourne, Australia

Lin Padgham
RMIT University
Melbourne, Australia

allowing the relaxed partial plan to represent as much of the
solution space as possible.

Interestingly (and surprisingly), finding a minimum relax-
ation of a partial plan, i.e., one with constraints that are as
relaxed as possible while keeping the plan valid, is a polyno-
mial time operation. However, this apparently encouraging
result is undermined by the fact that extracting a ground,
totally-ordered plan which respects the plan’s constraints is
computationally infeasible, clearly a serious drawback at ex-
ecution time. Because of this, the challenge is to maximise
a partial plan’s flexibility while keeping the cost of instan-
tiating it within the bounds of what is suitable for real-time
decision making.

Thus, this paper proposes and empirically evaluates an
algorithm of bounded complexity that searches for relaxed
partial plans. The algorithm first transforms the input plan
into a constraint formula, i.e., a formula of first-order logic
with models which represent possible orderings and variable
bindings. Then, a policy-based search process iteratively re-
laxes this formula while maintaining plan validity and keep-
ing its “complexity” (as measured by the treewidth of its
primal graph) below an input parameter.

Results show that in all test cases, the algorithm can pro-
duce a partial plan of quadratic “complexity” which repre-
sents all plans found by the standard PRF deordering al-
gorithm (Backstrom 1998). While certain planning domains
resist any kind of relaxation, in a majority of cases the al-
gorithm also finds significant numbers of additional plans
with different variable bindings, and in some cases finds re-
orderings not found by PRF, or rebindings where PRF was
unable to find any reorderings.

2 A Motivating Example

Consider a modified version of the well-known Barman do-
main!, in which a barman uses shot glasses and shakers
to prepare cocktails out of various ingredients. The objects
comprise two hands (LH and RH), one shot glass (SHOT),
one shaker (SHKR), and one cocktail (CT) that is created by
mixing two ingredients (ING; and INGy). Initially, the shot
glass and shaker are both clean, empty and on the table, and
both hands are empty. The goal is for the shot glass to con-

"Full description at http://www.plg.inf.uc3m.es/ipc2011-
deterministic/DomainsSequential.html

tain the cocktail. Shot glasses must be clean before use, and
hands must be empty to pick up glasses or shakers.

Plan P, in Figure 1ais an optimal solution to this planning
problem. The barman first picks up the shot glass with its
right hand. Then, in steps 2—4, ING; is poured into the glass,
and then from the glass into the shaker, and finally the glass
is cleaned. The same is done with ingredient ING5 over steps
5—7. The barman then puts down the shot glass, picks up the
shaker, and shakes it to create the cocktail. The cocktail is
then poured back into the glass, achieving the goal.

A common technique for providing flexibility at execu-
tion time is to reorder the plan. For example, relative to the
domain, it does not matter whether ING; or INGs is poured
first. Therefore if, at execution time, ING; is not available,
the barman could pour INGs first in the hope that ING; will
soon become available again. Unfortunately, P, does not al-
low for such a reordering of actions.

When reordering a plan, it is essential the plan remains
valid, i.e., that it is legally executable w.r.t. actions’ precon-
ditions and achieves the goal. As indicated by the action
name, step 6 requires that the shaker not be empty, a con-
dition which is only produced by step 3. Therefore step 3
must be executed before step 6, and as a result ING; must be
poured first. Indeed, the actions in P; are so tightly causally
linked that P; cannot be reordered at all.

However, the desired reordering of ingredients can be
achieved by modifying instead the parameters of some of the
actions, i.e., by reinstantiating the plan. As with reordering,
reinstantiations must preserve plan validity. In this example,
modifying the ingredient order while maintaining the plan’s
validity is trivial: swap occurrences of ING; and INGy in
steps 2—7, as done in plan P; in Figure 1b.

As well as reinstantiating Py, plan P now admits a new
reordering. In plan Py, the action drop(RH,SHOT) in step
8 empties hand RH, which is a precondition for the action
grasp(RH,SHKR) in step 9: step 8 must precede step 9.
However, in plan Ps, steps 8 and 9 can be executed in any
order, or in parallel, so long as they are both executed be-
tween steps 7 and 10. This shows that reinstantiations can
yield new reorderings.

The remainder will be as follows. Section 3 defines some
logical concepts, Section 4 introduces partial plans, and
Section 5 defines their desirable characteristics. Section 6
describes an algorithm that searches for tractable relaxed
plans, and Section 7 evaluates it experimentally.

3 Preliminaries

The logical structures in this paper are expressed in a
function-free first-order language £ with finitely many vari-
able, constant, and predicate symbols, and the usual logical
connectives, including equality and precedence. The nota-
tion £ is used to denote ordered lists of possibly non-unique
terms, with 4] indicating the i-th element of the list. The
notation ¢ = & is used as shorthand for |f] = |5] A #][1] =
8[1] A --- A t]|E]] = 5]|E]]. For any structure 7 expressed in
L, the notation vars(n) denotes the variables appearing in 7.

The concept of a substitution — a mapping from vari-
ables to terms — will be used throughout. The notation

279

0 = {z1\t1,...,2,\t,} describes a substitution mapping
each variable z; to term ¢;, for 1 < ¢ < n, and every other
variable to itself. The set of variables explicitly mapped by
substitution 6 is denoted domain(6). The notation is used
6(x) to denote the term corresponding to variable x under
substitution 6, and 6(Z) is its generalization to list of vari-
ables. The result of applying a substitution 6 to a formula
¢ is written ¢#, and means to simultaneously replace every
variable x in ¢ with 6(x). A substitution 6 is ground if every
variable in its domain is mapped to a ground term, and is
complete w.r.t. formula ¢ if vars(¢) C domain(0).

Planning formalism Planning tasks will be expressed in
a standard first-order STRIPS formalism. A planning task is
atuple IT = (D, A, s;, sq), where D is a set of constants,
A is a set of operators, and s; and s, are sets of ground
literals describing the initial state and goal, respectively.
An operator « is a tuple (vars(a), pre(a), post(«a)), where
vars(a) is a list of variables and pre(«) and post(a) are
finite sets of (ground or non-ground) literals with variables
taken from vars(a). When referring to an operator, the nota-
tion a(x1,...,xy,) is used, where vars(a) = (z1,...,T,).
An action a is a ground operator (pre(a), post(a)), where
pre(a) and post(a) are finite sets of ground literals. If «
is an operator and substitution 6 is ground and complete
w.r.t. vars(«), then (pre(a)d, post(«)f) is the action result-
ing from instantiating o with 6.

A classical plan @ is a finite sequence of actions. With
the above definitions of actions and operators in mind, and
assuming that no variable appears in more than one operator,
aplan can be represented as @/, where & is a list of operators
and 6 is a ground substitution that is complete w.r.t. every
operator in @. Representing a plan in this way separates the
abstract definition of the plan’s operators from the variable
bindings used to create a particular instantiation.

As plans are typically discussed with reference to some
planning task, it will be assumed every classical plan is
book-ended by the distinguished actions a;, which has no
parameters, no preconditions and postconditions that are the
plan’s initial state, and a4, which has no parameters, no post-
conditions and preconditions that are the plan’s goal. The
advantage of “embedding” a planning task into a classical
plan is that the plan is valid iff it is executable.

The producer-consumer-threat formalism It will be
helpful to describe the causal links between a partial plan’s
operators in the context of the producer-consumer-threat
SJormalism (PCT) (Bickstrom 1998). Typically, the PCT ap-
proach describes dependencies between a plan’s actions by
identifying which actions produce or consume which propo-
sitions. However, the approach used here will describe how
abstract, non-ground operators produce or consume (either
ground or non-ground) literals. An operator « is said to pro-
duce the literal ¢(f) iff q(t) € post(a), and a consumes
q(t) iff q(t) € pre(a). Similarly, a is a threat to literal
q(t) iff ~q(t) € post(a). These three conditions are writ-
ten cons(a, q(t)), prod(e, ¢(t)), and threat(a, q(#)), resp.

. grasp(RH,SHOT)

. fill(SHOT, INGy, RH, LH)

. pourToCleanShaker(SHOT, ING1, SHKR, RH, LH)
. clean(SHOT,INGy, RH, LH)

. fill(SHOT, ING2, RH, LH)

. pourToUsedShaker(SHOT, ING2, SHKR, RH, LH)
. clean(SHOT, ING2, RH, LH)

. drop(RH,SHOT)

. grasp(RH, SHKR)

. shake(CT,ING;,ING2,SHOT,SHKR, RH, LH)

. pourShakerToShot(CT,SHOT, RH, SHKR)

(a) Plan P;: ING; first, then ING..

— O N0 0NN A W=

—_—

grasp(LH, SHOT)

fill(SHOT, ING, LH, RH)
pourToCleanShaker(SHOT, ING2, SHKR, LH, RH)
clean(SHOT, INGz, LH, RH)

fill(SHOT,INGy, LH, RH)
pourToUsedShaker(SHOT, ING1, SHKR, LH, RH)
clean(SHOT,INGy, LH, RH)

drop(LH,SHOT)

grasp(RH, SHKR)

shake(CT,ING1,ING2, SHOT, SHKR, RH, LH)
pourShakerToShot(CT,SHOT, RH, SHKR)

(b) Plan Ps: ING. first, then ING1; hands are swapped.

mOVONAUN R W=

—_—

Figure 1: An optimal plan (P;) for the Barman problem and a reinstantiation of it (P,) which admits a reordering.

4 Partial Plans

A partial plan specifies which operator types must be exe-
cuted, but need not fully specify their order or even the bind-
ings for their parameters. Instead, a partial plan provides a
set of conditions that must be satisfied by the orderings and
parameter bindings. Such conditions take the form of a con-
straint formula, an unquantified boolean formula in which
each atom is either a codesignation between free variables
or between a free variable and a constant, or an ordering
constraint over two operators. Formally:

Definition 1. Let £ = (V,C, P) be a first-order language
with finitely many variable, constant, and predicate sym-
bols V, C, and P, resp.; let O be a set of operators con-
structed in L. The constraint language Lo is the language
generated using the following context-free grammar, where
t1,tg € Vu Candal,ag € O:

¢ = T|Lltr = t2|en X az|(=9)|(¢ A @)|(PV 9)|(& — @)

As customary, the ordering relation =< is transitive and re-
flexive, and ai; < «vp is shorthand for (1 < as Aas A ay).
Co-designation constraints restrict the allowable bindings
for variables. For variables x and y, * = y requires x and
9 to be bound to the same constant, and for variable x and
constant ¢, x = c requires that be bound to c.

A partial plan is a set of operators and a constraint for-
mula. As with classical plans, the assumption is made that
a partial plan has a planning task “embedded” within it
through the operators «; and «4, which simulate the initial
state and goal condition, resp. It is also assumed that no vari-
able appears in more than one operator.”

Definition 2. A partial plan is a ruple P = (A, ¢), where
A is a finite set of operators and ¢ is a constraint formula
such that:
e For all ay,ay € A such that aq # o, vars(ag) N
vars(az) = &.
o There exist oy, g € A, where vars(a;) = pre(q;) =
vars(ag) = post(ay) = @.
e vars(¢) C vars(A) U A.
For example, consider a small planning problem in the
barman domain. The constants are two hands, one shot glass

Instances of a 0-arity operator must be distinguished with sub-
scripts.

280

and one ingredient. In the initial state, both hands are empty
and the shot glass is clean and on the table. The goal is for
the shot to contain the ingredient. A solution to this problem
is the partial plan P = (A, ¢, A ¢q A dc), such that:

A = {a;(LH,RH,SHOT, ING), grasp(hi, s1)
ﬁll(SQ, il, hg, h3), Oég(SHOT, |NG)}
bo défai =< grasp < fill < ay.
¢4 = (/\ hi = LHV h; = RH) A s = SHOT A i = ING.
1<i<3
def
Gc =h1 =ho AN hy # hg A\ $1 = $o.

Here, constraint formula ¢, specifies a total order over
the operators, ¢, defines which constants can be bound to
which variables, and ¢, defines the causal links, e.g., h; =
ho ensures that the same hand is used to hold the shot glass
in fill as was used to pick it up in grasp.

Ground instantiations of partial plans A partial plan
compactly represents the set of classical plans that satisfy
its constraints, i.e., the partial plan’s ground instantiations.

Definition 3. Let P = (A, ¢) be a partial plan, &0 be a
classical plan of length n, and C(&0) be the constraint for-
mula defined as follows:

(Aw=0@) A (\alil < alj)’?

1<i<j<n

def

C(an) «

zEvars(a)

Then, df is a ground instantiation of P iff C(a0) = ¢
and A = {« : o € @}. Plan P is satisfiable iff there exists
some classical plan that is a ground instantiation of P.

Theorem 1. PARTIAL PLAN SATISFIABILITY. Determin-
ing the satisfiability of a partial plan is NP-complete.

Proof sketch. To prove membership in NP, let P = (A, ¢)
be a partial plan and guess a classical plan @6. Construct (in
polynomial time) the conjunction of positive constraint liter-
als C'(a@#), and then the formula p by replacing every literal
which appears in ¢ with frue if it appears in C'(a6), or false

>The expression © = 0(z) indicates a substitution where the
left and right sides are the values before and after substitution, resp.

if not. @6 is a ground instantiation of P iff p evaluates to
true and A = {« € @}. NP-hardness is proved by reduction
from SAT. From input propositional formula ¢, construct a
partial plan P = (A, ¢) such that ¢} is satisfiable iff ¢ is, and
no operators in A have any preconditions or postconditions.
P is valid iff ¢ is satisfiable. O

Validity of partial plans The concept of plan validity can
be generalised to cover partial plans. For a partial plan to
be valid, all of its ground instantiations must be valid (i.e.,
executable), and to prevent an unsatisfiable plan from being
trivially valid, it must admit at least one ground instantiation:

Definition 4. Let P = (A, ¢) be a partial plan. Then:

1. P is sound iff every ground instantiation of P is exe-
cutable.

2. P is valid iff it is satisfiable and sound.

Theorem 2. PARTIAL PLAN SOUNDNESS. Determining the
soundness of a partial plan is co-NP-complete.

Theorem 3. PARTIAL PLAN VALIDITY. Determining the
validity of a partial plan is DP-complete.

Proof sketch. As DP is the set of decision problems that are
the conjunction of an NP and a co-NP problem, it follows
trivially from Definition 4 and Theorems 1 and 2. OJ

5 Flexible and Tractable Partial Plans

This section will discuss two criteria to measure the degree
to which a given partial plan provides flexibility and robust-
ness. Each ground instantiation of a partial plan represents
a different sequence of actions for realizing the goal. There-
fore, the first criterion is simply how many different con-
crete “options” a partial plan provides, that is, the number of
ground instantiations of the plan in question. Obviously, no
matter how many ground instantiations a partial plan admits,
it cannot provide much flexibility if the executing agent can-
not determine in a reasonable amount of time which actions
are compatible with it. So, the second criterion measures a
partial plan’s tractability, i.e., the complexity of the prob-
lem of finding a ground instantiation of the plan. Theorem 1
shows that finding an instantiation of a partial plan is, in gen-
eral, intractable. However, this section shows that islands of
tractability do exist within the space of partial plans, and
that partial plans can be classified by the cost of instantiat-
ing them.

Minimally constrained partial plans

The relative “constrained-ness” of two partial plans can be
measured by comparing the relative strengths of their con-
straint formulae. If P = (A, ¢) and Q = (A4,1)) are two
valid partial plans, then () is a relaxation of P iff every
model of ¢ is also a model of ¥, and Q) is a minimum relax-
ation of P iff it has the weakest possible constraints while
remaining valid. Formally:

Definition 5. Let P = (A, ¢) be a valid partial plan and
Q = (A,) be a partial plan. Then:

1. Q is a relaxation of P iff Q is valid and ¢ |= .

281

2. Q is a proper relaxation of P iff it is a relaxation of P
and U £ .

3. @ is a minimum relaxation of P iff it is a relaxation of
P and there are no proper relaxations of Q.

The minimum relaxation of any valid partial plan can be
directly defined with reference to the Modal Truth Criterion
(MTC) (Chapman 1987). The MTC determines the validity
of a classical plan by requiring that it be necessarily true
that the preconditions of all actions in the plan hold at the
point when that action is executed. A precondition will nec-
essarily hold if there is some previous action with an effect
that produces the required condition, and no intermediate ac-
tion with an effect that undoes it. This can be generalised to
cover partial plans: a partial plan meets the MTC iff all of its
ground instantiations meet the MTC. This can be expressed
as a constraint formula as follows:

Definition 6. The modal truth criterion for a partial plan
P = (A, ¢) requires that ¢ = MTC(A), where:

MTC(A) dof /\MTCC(A, e, q(t)), where
{ae,q(t):cons(ae,q(t)),a. €A}

—

MTC.(A, ac, q(#)) déf\/ [[=1Aap < acA

{ap,@:prod(ay,q(@)),ap A}

/\(5#17VQ¢<04P\/045jat)].

{oue,Bithreat(a,q(9)),ar €A}

The definition MTC,. applies the MTC to a single con-
sumer, and requires that if cons(av, ¢(£)), then the list of
symbols (variables or constants) ¢ must be codesignated
with some @ such that prod(a,,q(@)) and o, < a.
Furthermore, it requires that any operator «y such that
threat(ay, g(¥)) applies not be ordered between «, and a,
or that ¥ not be codesignated with . The definition MTC
applies this to every consumer appearing in the plan. The
following two results follow from the above definition:

Theorem 4. MTC SOUNDNESS. A partial plan P = (A, ¢)
is sound iff ¢ = MTC(A).

Theorem 5. MINIMUM RELAXATION. A minimum relax-
ation of a valid partial plan can be found in polynomial time.

If P = (A, ¢) is a valid partial plan, then the partial plan
Q = (A,MTC(A)) is a minimum relaxation of P, and can
be constructed in polynomial time.

Comparison with plan ordering The complexity results
and definitions above are quite different to those found in
the partial plan de/reordering literature (Bickstrom 1998).
This difference stems from how partial plans and partial or-
der plans represent constraints — typically, partial order plans
define a partial order over a set of ground actions, while a
partial plan’s constraints are represented with the more ex-
pressive constraint language Lo (Definition 1), a fragment
of first-order logic.

Representing ordering constraints as a binary relation re-
sults a distinction between minimal and minimum orderings.
A partial plan is a ordering of another if it contains the same

actions, but its ordering relation is a subset of the other’s. A
ordering is minimal if its ordering relation cannot be reduced
while remaining valid, and is a minimum if it has the small-
est ordering relation of all possible orderings. However, the
expressiveness of £ means that there is no equivalent min-
imal/minimum distinction for partial plans. It follows from
Theorems 4 and 5 that for any two partial plans P and @),
the minimum relaxation of P is also the minimum relaxation
of @, i.e., any “minimal” relaxation of a partial plan would
also be a minimum relaxation. Additionally, while the prob-
lem of finding a minimum ordering of a partial order plan
is intractable, the expressivity of L renders the equivalent
problem in the context of partial plans trivial — L¢ is ex-
pressive enough to directly define a minimum relaxation of
a partial plan (Theorem 5).

This expressivity comes with a computational cost. In-
stantiating or validating a partial order plan takes polynomial
time, but are intractable problems for partial plans. There-
fore, the remainder of this section will focus on defining is-
lands of tractability within the space of partial plans.

Parameterised complexity of partial plans

The problem of finding tractable but structurally restricted
classes of partial plans can be examined in the context of pa-
rameterised complexity. A parameterised problem associates
a parameter with each input instance. This allows for more
fine-grained analysis of the problem’s complexity, and aids
the design of algorithms that are efficient when the parame-
ter is small, even if the size of the input is large. The param-
eterised hierarchy comprises the set of complexity classes
FPT C WJ[1] € W[2] C ... C XP. A problem is fixed-
parameter tractable, or in complexity class FPT, iff it can
be solved in time O(f (k) x n©(1)), where n is the size of
the input and f is a function depending solely on parame-
ter k. When f is exponential, then exponential time is re-
quired. However, if k is fixed, then the time required scales
polynomially with n, meaning that problems in FPT remain
feasible so long as k stays small.

Complexity class XP contains all parameterised problems
that can be solved in a running time of O(n/(*)). As with
FPT, if k is fixed, then XP problems scale polynomially
with the size of the input. However, as k is in the exponent,
large problems may become infeasible.

Interestingly, it has been observed that many compu-
tationally hard graph problems are tractable when pa-
rameterised with the treewidth of the graph. A graph’s
treewidth (Robertson and Seymour 1986) is a positive inte-
ger that, intuitively, measures its “cyclicity,” e.g., a tree has
a treewidth of 1 and a complete graph of n vertices has a
treewidth of n — 1. Consequently, a common approach in
parameterised complexity analysis is to demonstrate that an
otherwise intractable problem is solvable in polynomial time
when limited to instances with an underlying structure that
can be described as a graph with bounded treewidth.

The underlying structure of a partial plan is its so-called
primal graph, i.e., an undirected graph where the vertices —
the variables and operators appearing in the plan — are joined
by an edge iff they appear together in some clause of the

282

partial plan’s constraint formula. The treewidth of a partial
plan is simply the treewidth of its primal graph.

Definition 7. Let P = (A, ¢) be a partial plan where ¢ is
of the form ¢1 N\ - -+ N\ ¢y, where each ¢; is a disjunction of
constraint fomulae. Then:

1. The primal graph of P is a graph (V, E) where V. =
A Uvars(A) and (v1,v9) € E iff there exists 1 < i <n
such that both v and vy appear in ¢;.

2. The treewidth of P, denoted tw(P), is equal to the
treewidth of the primal graph of P.

The following result states that a partial plan with
bounded treewidth can be instantiated in polynomial time:

Theorem 6. PARAMETERISED PARTIAL PLAN SATISFIA-
BILITY. Determining the satisfiability of a partial plan P is
in XP and is W [1]-hard when parameterised with tw(P).

Proof sketch. Let P = (A, ¢1 A+ --A¢y,) such that tw(P) =
k. Astw(P) = k, no conjunct ¢; can contain more than k+1
variables. As all assignments of constants to variables that
satisfy each clause ¢; can be enumerated in time |P|**+1,
P can converted into an equivalent CSP S of treewidth
k in time |P|**1, and then solved in time |S|* (Freuder
1990). Therefore satisfiability of P can be determined in
time O(|P|/®)) and is in XP. Proof of 1¥[1]-hardness is by
fpt-reduction from K-CLIQUE. From the graph G = (V| F)
construct, in time k?|E|, a partial plan P = (A, ¢), such
that no operators in A contain any preconditions or postcon-
ditions, and ¢ is defined as follows:

¢=/\$i7§$j/\(\/xi:v/\xj:u).

i,j€L.. . k,i#£] (vyu)EE

P has a treewidth of k£ —1 and is satisfiable iff G has a clique
of k vertices. O

While computing a graph’s treewidth is intractable, de-
termining if it is bounded by some constant k is in FPT
with respect to k& (Bodlaender 1993). As the size of the
primal graph of a partial plan P = (A, ¢) is bounded by
(| vars(A)| + |A])?, the following holds:

Observation 1. Determining whether tw(P) < k for some
partial plan P and k > 0 is in FPT.

Tractable partial plans

The relative tractability of two partial plans can be deter-
mined by comparing their treewidths. Given two partial
plans P and @ such that @ is a relaxation of P, plan Q)
is a minimal k-treewidth relaxation of P if it cannot be re-
laxed any further without its treewidth exceeding k. In turn,
Q is a minimum k-treewidth relaxation of P if, amongst all
possible relaxations of P, () admits the most models while
keeping its treewidth bounded by k. Formally:

Definition 8. Let P and Q) be valid partial plans, let integer
k > 0 and let # P denote the number of ground instantia-
tions of partial plan P. Then:

1. Q is a k-treewidth relaxation of P iff Q) is a relaxation
of P and tw(Q) < k.

2. @ is a proper k-treewidth relaxation of P iff Q is a
proper relaxation of P and tw(Q) < k.

3. @ is a minimal k-treewidth relaxation of P iff it is
a k-treewidth relaxation of P and there is no proper k-
treewidth relaxation of Q.

4. @ is a minimum k-treewidth relaxation of P iff it is a
k-treewidth relaxation of P and there is no R such that R
is a k-treewidth relaxation of P and #P < #R.

The exact complexity of finding minimum and minimal
k-treewidth relaxations remains open. However, the decision
problem corresponding to the optimisation problem of find-
ing a minimal k-treewidth relaxation is intractable:

Theorem 7. MINIMAL K-TREEWIDTH RELAXATION. For
any partial plan P and integer k such that tw(P) < k, de-
ciding the existence of a proper k-treewidth relaxation of P
is NP-hard and in X% .

6 Restricted Cases

Since finding a tractable relaxation of a plan is an intractable
problem, this section will investigate a specialised class of
partial plans that express constraints as a causal structure.
A causal structure defines which producers can be used to
bring about the conditions required by each consumer in a
partial plan, and turns out to be a convenient representation
for manipulating sets of constraints. While causal structures
are less expressive than constraint formulae, finding a mini-
mal k-treewidth relaxation is a tractable task.

As discussed above, the Modal Truth Criterion (MTC,
Definition 6) requires that when a partial plan is instanti-
ated, each consumer in the plan, i.e., each precondition q(f)
of each operator ., be causally linked with some producer,
i.e., a postcondition ¢(5) of some operator c,. This implies
that a, must precede a.., 5 must be codesignated with t_: and
any threats to this link, i.e., postconditions —¢ (%) of some
operator ay, cannot be both codesignated with the consumer
and ordered between the producer and consumer. Generally
speaking, a causal structure strengthens the MTC by requir-
ing that a consumer be causally linked to one of a specified
set of potential producers.

Definition 9. A producer-consumer option (PC option)
is a tuple (v, q(3),ac,q(t)) such that prod(a,,q(3)),
cons(a, q(t)) and a, # a. A causal structure C' is a set
of PC options.

For example, consider the operators «; and
grasp(h, s), where post(«;) = {empty(LH), empty(RH),
onTable(SHOT), onTable(SHOT)}, pre(grasp(h,s))
= {empty(h), onTable(s)}, and C is a simple causal
structure defined below:

C = {{au, empty(LH), grasp(h, s), empty(h)),
(ci, empty(RH), grasp(h, s), empty(h)),

(avi, onTable(SHOTY), grasp(h, s), onTable(s))}.

This causal structure requires that 4 be bound to either LH

or RH, that s be bound to SHOT; and that o; < grasp. Ex-
panding this structure can relax the constraints, e.g., adding

283

(av;, onTable(SHOT,), grasp(h, s), onTable(s)) would al-
low s to be bound to SHOT5.

A useful special case of causal structures is the one con-
taining all PC options that are implicit in an operator set:

Definition 10. 7he minimally constrained causal struc-
ture for operator set A is the set C4 such that for any pc
option L = (o, q(3), e, q(t), L € Cy iff ap, o € A

Producer-Consumer Plans

A producer-consumer plan (PC plan) is a partial plan that
represents constraints as a causal structure, with the condi-
tion that every consumer has at least one producer option:

Definition 11. A producer-consumer plan is a tuple P =
(A, C), where A is a finite set of operators and C'is a causal
structure such that:

e For all an,as € A such that ap # «a, vars(ag) N
vars(ag) = .

o There exist a;, 0y € A, where vars(c;) = pre(a;) =
vars(ay) = post(ay) = @.

o U C (U4

o Ifcons(ae, q(t)) and a. € A, then there exists an o, and

q(§) such that <aP7 Q(g)v Qc, Q({» eC.

A PC plan P = (A,C) can be converted into a stan-
dard partial plan by translating its causal structure into a
constraint formula. The translation, denoted ®(A, C'), en-
codes the MTC as in Definition 6, but with the additional
requirement that a consumer be causally linked with a pro-
ducer with which it is connected by a PC option in C"

Definition 12. For any PC plan P = (A, C), ®(A,C) en-
codes A and C into a constraint formula:

B(A,0) E N\ (A, C,ac, q(F), where
{ae,q(f):cons(ac,q(f)),ac€A}

—

D.(A,C, o, q(1)) déf\/ (=8N ap < ach
{O‘paQ(g):(O(p7Q(§‘)aO¢CvQ(ﬂ>eC}

/\(f%ﬂ'\/at < ap Vae = at)].
{aesq(@)sthreat(a,q(@)),ar €A}

The above encoding can be used to apply any property of
partial plans to PC plans. If P = (A, C) is a PC plan and
Q = (A, ®(A,()) is a partial plan, then P is satisfiable,
sound or valid iff @ is, respectively, and tw(P) = tw(Q).

A key property of Definition 12 is that for any partial plan
P = (A,C), the formula ®(A, C) is at least as strong as the
modal truth criterion for 4, i.e., ®(A,C) = MTC(A). As
a partial plan is sound #ff its constraint formula entails the
MTC (Observation 4), and is valid iff it is satisifiable and
sound, the following observation follows:

Observation 2. A PC plan is valid iff it is satisfiable.

It follows from Definition 12 that if P = (A, C) and Q =
(A, C"y are two PC plans such that C' C C’, then ®(A4,C) =
®(A,C"). From Observation 2 it follows that if P is valid,
®(A,C) is satisfiable, and thus so is (A, C”). Therefore,
any valid PC plan can be relaxed by expanding its causal
structure while remaining valid:

Algorithm 1 Minimal k-Treewidth Relaxation (MKTR)
Input: Valid PC plan P = (A, C), integer k.
Result: A minimal k-treewidth relaxation of P.

1. if tw(P) > k then

2 return |

3. end if

4: Construct C'4.
5: while 3L € C4\C's.t. tw({A,CU{L})) < k do
6.
7
8

: AddLtoC
: end while
: return P

Observation 3. If P = (A,C) and Q = (A,C") are PC
plans such that C C C', then if P is valid so is Q.

From Definition 12, P’s primal graph is a subgraph of ()’s
primal graph, meaning that P’s treewidth is bounded by that
of) (Bodlaender 1998):

Observation 4. If P = (A,C) and Q
PC plans such that C C C’, then tw(P)

(4,C7)
tw(Q).

<

Minimal k-treewidth PC relaxation

The MKTR algorithm (Algorithm 1) finds a minimal k-
treewidth PC plan in fixed-parameter tractable time.

Definition 13. Ler P = (A, ¢) and Q = (A,) be two valid
PC plans. QQ is a minimal k-treewidth PC relaxation of P
iff it is a k-treewidth relaxation of P and there is no PC plan
R such that R is a proper k-treewidth relaxation of Q.

Theorem 8. Finding a minimal k-treewidth PC relaxation
of a PC plan is FPT for parameter k.

Proof sketch. Consider MKTR. From Observations 1 — 4,
MKTR computes a k-treewidth PC relaxation of its input.
As the loop is executed a polynomial number of times, inde-
pendent of k, and computing tw(P) < k is in FPT w.r.t. k,
it follows that MKTR is also in FPT w.r.t k. O

The MKTR algorithm can be applied to a valid classical
plan @6 by first converting it into the PC plan P = (4, C)
where A = {a : a € @} and {(ay, q(3), ac, q(t)) € C iff
q(5) is the last producer in & to be causally linked to ¢(#).

7 Implementation and Evaluation

MKTR has been implemented* and compared with the PRF
deordering algorithm (Béckstrom 1998) over 80 problems
from six IPC domains. Initial tests indicated that the encod-
ing in Definition 12 produces constraint formulae with ex-
cessively high treewidths. Thus, MKTR has been optimised
by (i) using encodings that produce constraint formulae with
lower treewidths at the expense of fewer models, and (ii)
simplifying the resulting formula with a specialised AC-3
algorithm. Neither modification affects Theorem 8.

*bitbucket.org/max_waters/mktr

284

Relaxation policies Because the success of MKTR will
be influenced by which PC option is selected at each step,
two selection policies have been tested.

Keeping a partial plan’s treewidth as low as possible
allows more PC options to be added. It can be seen in
Definition 12 that the more threats there are to a PC op-
tion, the more variables will appear in the clause encod-
ing it. Therefore, the Minimise Threats policy (MT) se-
lects the PC option with the fewest threats, i.e., the link
(a0, q(5), e, q(£)) € C'\ Ca with the fewest producers oy
and ¢ (), such that threat (o, ¢()).

Because relaxing a producer’s variable bindings can in
turn relax those of its consumers, the Relax Producers pol-
icy (RP) relaxes the bindings of producers with the most
consumers. The possible bindings for operator o can be
increased by adding more producer options for either a’s
preconditions, or the preconditions of other operators that
are threatened by «’s postconditions. The policy uses two
measures. If « is an operator and @ is the input plan, then
n.(a, @) denotes the number of operators with precondi-
tions that are causally linked to a postcondition of a.. And
nt(c, @) is equal to the highest n.(ay, @) for any «; that
threatens any causal link to any precondition of a. RP
selects the PC option (a, q(3), a., q(f)) that maximises
max(ng(ae, @), ne(ae, @)).

Test set-up All problem instances were taken from either
the deterministic track of IPC 2011 or the satisficing or opt-
mising tracks of IPC 2014. For each instance, a satisficing
solution was found using the LAMA planner (Richter and
Westphal 2010). Ten plans were selected from each domain,
with lengths ranging (where possible) from 25 to 150.

Some instances were tested in both their original and a
“relaxed” form. In the barman and parking domains, the
planner must make careful use of limited resources, i.e.,
hands, glasses, and shakers in barman, and parking spaces
in parking. To test if resource constraints influence the effec-
tiveness of MKTR, relaxed versions of instances from these
domains were created. For example, barman p435-1-2 is the
standard instance with two hands, and p435-1-4 is a relaxed
version with four. Similarly, parking p-12-7 has 12 cars and
seven spaces, and p-12-9 is a relaxed version with nine.

Each satisficing plan was relaxed using the above two
policies, maximum treewidths of 2 and 5, and a time limit of
one hour. It was also deordered using PRF, and the resulting
partial order plan was translated into an equivalent partial
plan. The ground instantiations of the partial plans produced
by MKTR and PRF were counted using the gecode (Gecode
Team 2018) constraint solver with a time limit of one hour.
In some cases an hour was insufficient, and a lower bound
was recorded. However, comparing the constraint formulae
of two partial plans can reveal a set-wise comparison of their
instantiations. For example, if P = (A4, ¢) and Q = (A,)
are partial plans, then P’s instantiations are a strict super-
set of Q’s iff ¥ = ¢ and ¢ [~ 1. The results of PRF and
MKTR were compared in this way with gecode (although
some cases again timed out).

Domain: barman D in: parking

Problem | |d| PRF MT,tw=2| RP,tw=2 | MT,tw=5| RP,tw=5 ||Problem | |d| PRF MT,tw=2| RP,tw=2 | MT,tw=5| RP,tw=5
p435-1-2 | 60 1296 2592 5184 1296 3888 p-12-07 | 40 1 1 1 1 1
p435-1-4 | 50 | >1.84x107|>3.35x107 | >3.16x 107 | >1.62x 107 | >1.5x 107 ||p-12-09 | 21 41 82 82 82 82
p536-1-2 | 76 7776 7776 23328 7776 62208 ||p-14-08 | 32 1 1 1 1 1
p536-1-4 | 57 |>1.64x107|>1.02x 107 | >2.8x 107 | >1.2x107 |>1.17x107||p-14-10 | 28 721 1442 1442 1442 1442
p637-1-2 | 89 | 18432 18432 36864 18432 36864 |[|p-16-09 | 37 1 1 1 1 1
p637-1-4 | 64 |>1.41x 107 | >2.63x 107 | >2.42x 107 | >1.15x 107 | >1.26 x 107 | [p-16-11 | 27 | 4160 8320 8320 8320 8320
p638-1-2 | 99 | 124416 124416 124416 124416 435456 ||p-18-10 | 58 1 1 1 1 1
p638-1-4 | 63 | 1.4x107 |>2.05x107|>2.14x 107 |>1.19x 107 |>1.13x 107 ||p-18-12 | 35 | 91800 91800 91800 183600 183600
p839-1-2 |126]>9.45x 10°| >2.91x 107 | >2.46 x 107 | >9.24 x 10° | >9.02x 10°|[p-20-11 | 71 1 1 1 1 1
p839-1-4 | 85 | >8.73x 10°| >2.11x 107 | >2.07x 107 | >8.53x 10° | >1.12x 107 ||p-20-13 | 41 5600 11200 11200 11200 11200
p435-2-2 | 55 648 1296 1296 3456 1296 p-28-15 | 54 1 1 1 1 1
p435-2-4 | 42| 41580 2x10° 2x10° | 7.98x10° | 887040 ||p-28-17 | 48 5460 5460 10920 5460 10920
p536-2-2 | 80 | 55296 55296 110592 172800 221184 ||p-30-16 | 64 1 1 1 1 1
P536-2-4 | 52 | >1.69x 107 | >1.07x 107 | >1.66x 107 | >1.36 x 107 | >1.48 x 107 | |p-30-18 | 48 1820 1820 3640 1820 3640
p637-2-2 | 89| 18432 18432 36864 18432 36864 ||p-32-17 | 60 1 1 1 1 1
p637-2-4 | 68 |>1.43x107 | >1.41x 107 | >1.41x 107 | >9.66 x 10° | >1.19x 107 ||p-32-19 | 51 | 63112 63112 63112 63112 63112
p638-2-2 |103|>1.07x 107 | >1.09x 107 | >1.03x 107 | >1.09x 107 | >9.62x 10°||p-34-18 | 62 1 1 1 1 1
p638-2-4 | 62 |>1.53x 107 | >1.34x 107 | >1.22x 107 [>1.24x 107 | >1.26 x 107 | |p-34-20 | 63 |>1.11x 107 |>1.21x 107 |>1.21x107 | >1.17x 107 | >1.13x 107
p839-2-2 |123| 442368 442368 884736 442368 884736 ||p-40-21 |106 1 1 1 1 1
p839-2-4 | 83 | >1.23x 107 | >1.17x 107 | >1.18 x 107 | >1.08 x 107 | >1.09x 107 || p-40-23 | 61 3654 3654 7308 3654 7308
Domain: child-snack Domain: floor-tile

Problem | || PRF |MT,tw=2]| RP,tw=2 | MT,tw=>5| RP,tw=5 ||Problem | || PRF [MT,tw=2] RP,tw=2 | MT,tw=5| RP,tw=5
pO1 32| 1x10° [>1.69x107[>1.58x 107 [>1.38x 10" [>1.93x 10" |[p01-4-3-2] 41 | 5.39x10° | 1.08 X107 | 1.08x 10" | 1.08x10" | 1.08x 10"
p04 53 | >1.35%x107| >1.1x107 |>1.27x 107 | >9.16x 10| >1.2x 107 ||p01-4-4-2 | 50 2268 2268 2268 2268 2268
p06 54 | >9.15x10%| >7.37x10% | >1.23x 107 | >2.22x 10° | >1.08 x 107 || p02-4-4-2 | 57 | >1.34x 107 | >1.62x 107 | >1.67x 107 | >1.56 x 107 | >1.75x 107
p07 59 | >6.43x10%| >5.15x10%| >9.98 x 10° | >6.56 x 10° | >1.12x 107 ||p01-5-3-2| 46 | 12096 12096 12096 12096 12096
po8 67 | >9.68x10%|>9.93x10° | >1.03x 107 - >9.56x 10°||p02-5-3-2 | 48 | 15120 15120 15120 15120 15120
p09 72 | >6.64x10°| >7.04x10° [>9.53 x 10° — >7.93x10° ||p02-5-4-2 | 69 | >1.37x107 [>1.29% 107 [>1.14x 107 | >1.3x 107 |>1.39x 10"
p09-2 77 | >8.92x10° | >6.96 x 10° | >7.74 x 10° - >3.48x10°||p01-5-5-2 | 92 - >4.88x 10° - >1.03x 107 | >9.77 x 10°
pl0 88 | >8.47x 10°]>8.09x 10°| >7.79x 10° | >5.55 x 10° | >8.56 x 10° || p02-5-5-2 | 92 | >2.39x 10° | >9.25 x 10° — >1.1x107 | >3.12x10°
pl2 85 | >4.12x10° - >5.72x10° - >6.96 x 10°||p01-6-5-2 | 112 - - >2.06x 10° - -
p19-2 129 - — - — >4.99x 10°||p02-6-5-2 | 122 - — — >1.66x 10° -
Domain: grid-visit-all Domain: scanalyzer

Problem | || PRF |MT,tw=2]|RP,tw=2 |MT,tw=>5| RP,tw=5 ||Problem | || PRF [MT,tw=2] RP,tw=2 | MT,tw=5| RP,tw=5
p-1-3 12 1 16 3 68 6 pl0 40 13 13 13 13 13
p-1-4 22 1 140 2 4 6 pll 64 1 1 1 1 1
p-1-5 38 1 4140 3 - 9 pl2 34 1 1 1 1 1
p-1-6 88 1 2 4 2 40 pl3 28 1 1 1 1 1
p-1-7 54 1 3 3 3 3 pl4 46 1 1 1 1 1
p-1-8 78 1 1 1 1 1 pls 74 1 1 1 1 1
p-05-5 50 1 >1.41x107| 2640 [>1.34x107| 2640 pl6 52 1 1 1 1 1
p-05-6 | 66 1 210 4 210 15120 ||p17 84 1 1 1 1 1
p-05-7 | 57 1 17280 4 17280 60 pl8 21 4 576 4 576 4
p-05-8 |154 1 3 3 3 3 p19 61 5 7 5 7 5

Table 1: Relaxation results for PRF and MKTR configured with the MinimiseThreats (MT) and Relax Producers (RP) policies,
and treewidths of 2 and 5. The input plan length is shown by ||, and results indicate the number of instantiations of the final
partial plan as counted by gecode in one hour, with “—" indicating that none were found within the time limit.

Results Table 1 shows the results of the empirical evalu-
ations. Set-wise comparisons of the outputs of MKTR and
PRF reveal that regardless of the input plan, treewidth or
policy, the instantiations found by MKTR always include
those found by PRF. Depending on the domain, MKTR
can improve on the flexibility provided by PRF by finding
additional instantiations with different variable bindings. In
69.6% of barman test cases, MKTR found a strict superset
of PRF’s results. Supersets were also found in child-snack
(93.1%), floor-tile (28.9%), grid-visit-all (80.0%) and the
relaxed parking problems (57.5%). Interestingly, in six such
cases (e.g., barman p536-1-4 with MT and tw = 2) MKTR
found reorderings not found by PRF. This demonstrates that,
as described in Section 2, changing variable bindings can
yield more reorderings. When exact instantiation counts are
available (Table 1), they show that when MKTR improves

on PREF, it typically finds twice as many instantiations, and
in some cases can find significantly more. For example, in
barman p435-2-4, MKTR finds 48 times as many instanti-
ations as PRF, and in grid-visit-all MKTR finds rebindings
of plans which PRF cannot deorder at all.

MKTR did not improve on PRF in any scanalyzer or
standard parking problems. However, both algorithms strug-
gle on these instances, suggesting that they are too tightly
constrained to allow many relaxations. Indeed, comparing
results from the original and relaxed barman and parking
problems confirms that both MKTR and PRF perform bet-
ter when resources are less constrained.

Set-wise comparisons of the MKTR results under differ-
ent treewidths demonstrate that allowing MKTR to search
for high-treewidth, structurally complex constraints can
yield partial plans with more instantiations. The benefit

285

gained is dependent on the domain. In 44.7% of the bar-
man test cases, MKTR with tw = 5 found a strict superset
of the instantiations found when tw = 2. Although in some
cases, the higher treewidth sends MKTR into a dead-end,
e.g., barman p-435-1-2. Similar results occur in the child-
snack (40.0%) and grid-visit-all (42.1%) domains, although
increasing the treewidth has little effect on the other, more
tightly constrainted domains such as scanalyzer.

Interestingly, the flexibility benefit of increasing the
treewidth comes at little computational cost. When tw = 2,
80.6% of the final partial plans can be instantiated by gecode
in under 200ms, and with tw = 5 this reduces just slightly,
to 77.5% (although in both cases some outliers timed out
after an hour).

The choice of relaxation policy is also significant. RP is
more effective in barman and parking, and M'T is more ef-
fective in grid-visit-all, child-snack and, when relaxations
are feasable, scanalyzer.

8 Discussion

Much of the literature on plan flexibility is on plan
de/reordering with the aim to find minimum orderings. It
thus differs from this work in two ways. Firstly, this work
is concerned with modifying both variable bindings and ac-
tion orderings. Secondly, while the problems of finding min-
imum de/reorderings are intractable, the equivalent problem
for partial plans — finding a minimum relaxation — is triv-
ial (Theorem 5). Thus, this paper aimed to find minimal
but tractable relaxations. More concretely, it extended the
de/reordering works to also cover the optimisation of vari-
able bindings, and used parameterised complexity analysis
to study the problem of finding tractable partial plans.

The seminal work on action ordering for plan flexibility
is that of Biackstrom (1998), which studies the complex-
ity of deordering and reordering partial order plans. Re-
cently, Aghighi and Bickstrom (2017) studied the problem
from a parameterised complexity perspective.

Muise, Beck, and Mcllraith (2016) find optimal
de/reorderings of a partial order plan by encoding it as a
MAXSAT problem. The propositional formula and clause
weights are constructed such that the optimal solution cor-
responds to, depending on the encoding, either a minimum
de- or reordering of the input plan. Plan validity is preserved
by encoding minimal causal requirements (the MTC for par-
tial order plans) as “hard” clauses that must be present in any
solution. This is the equivalent of the MTC-based soundness
requirement for partial plans (Theorem 4), that is the basis
for the process for encoding a PC plan into a partial plan
(Definition 12). Interestingly, a variation in the MAXSAT
encoding allows the number of actions appearing in the fi-
nal partial order plan to be minimised. While the approach
in this paper can in principle be extended to also reduce the
number of actions, this is left for later work.

Siddiqui and Haslum (2012) propose the notion of block
deordering. A block is partially ordered set of actions that
cannot be interleaved with steps outside the block. Blocks
behave like macro-operators, i.e., they produce and consume
propositions, and are themselves partially ordered. Because
producer/consumer dependencies between actions in the

286

same block can be ignored when reordering blocks, block
deordering is sometimes able to deorder plans that cannot
be deordered by standard methods. Future work could gen-
eralise this to cover variable debinding, i.e., by considering
a block as set of non-ground operators that produce and con-
sume non-ground literals, and then using an algorithm (akin
to Siddiqui and Haslum’s RESOLVE) to relax the ordering
and binding constraints between operators within the same
block, and between the blocks themselves.

One work that does address the problem of relaxing both
action orderings and variable bindings is that of Kambham-
pati and Kedar (1994). There, a polynomial time algorithm
is presented, that uses an MTC-based explanation of the in-
put plan’s correctness as a guide for relaxing its ordering
and variable bindings. Unlike MK TR, though, no guarantees
are given for either the optimality of the resulting relaxation
or the computational cost of instantiating it. Interesting fur-
ther work could compare the two approaches, and examine
the feasibility of Kambhampati and Kedar’s algorithm even
without those guarantees.

In many planning instances, flexibility can be achieved
by modelling constants (e.g., hands) as a numeric resource
(e.g., n_hands), and delaying its selection until runtime.
This works, however, only when the resources are freely
substitutable, such as fuel or energy. If, for instance, the re-
sources are trucks in a logistic domain, then they are not
freely substitutable as each truck may be at a different place
and reasoning about their locations is required.

While it is assumed here that a partial plan’s flexibilty is
due to the number of classical plans that it represents, a more
sophisticated approach could measure the diversity within
those plans. Unfortunately, existing flexibility measures are
unsuitable for sets of plans that differ in both their ordering
and variable bindings. The so-called flex value (Nguyen and
Kambhampati 2001) is commonly used to measure the flexi-
bility of a partial order plan. However, as it is computed from
the number of unordered actions, it cannot account for any
additional flexibility provided by relaxed variable bindings.

Typically, the diversity of a set of plans is derived from the
“distance” between each pair of plans in the set. Measures
based on a comparison of the plans’ ground actions, e.g.,
edit distance or stability (i.e., the proportion of shared ac-
tions (Fox et al. 2006; Coman and Mufioz-Avila 2011)), can
obscure degrees of difference between variable bindings.
For example, the three one-step plans (grasp(LH,SHOT,)),
(grasp(LH,SHOT32)) and (grasp(RH,SHOT3)) would be
considered equally different from each other despite the
common resource in the first two. Distances derived from a
set difference of the plans’ state space transitions (Srivastava
et al. 2007) suffer the same problem. Comparisons of plans’
causal structures (Srivastava et al. 2007) can distinguish be-
tween variable bindings, but not reorderings of plans with
the same causal links. Thus, better diversity measures for
partial plans, and MKTR relaxion policies that aim to max-
imise their diversity are worth investigating.

References

Aghighi, M., and Bickstrom, C. 2017. Plan reordering and
parallel execution - A parameterized complexity view. In

Proceedings of the Thirty-First AAAI Conference on Artifi-
cial Intelligence, February 4-9, 2017, San Francisco, Cali-
fornia, USA., 3540-3546.

Béckstrom, C. 1998. Computational aspects of reordering
plans. Journal of Artificial Intelligence Research 9:99—137.

Bodlaender, H. L. 1993. A linear time algorithm for find-
ing tree-decompositions of small treewidth. In Proc. of the
Twenty-fifth Annual ACM Symposium on Theory of Comput-
ing, 226-234.

Bodlaender, H. L. 1998. A partial k-arboretum of graphs
with bounded treewidth. Theoretical Computer Science
209(1-2):1-45.

Chapman, D. 1987. Planning for conjunctive goals. Artifi-
cial Intelligence 32(3):333 — 377.

Coman, A., and Mufioz-Avila, H. 2011. Generating diverse
plans using quantitative and qualitative plan distance met-
rics. In Proc. of the Twenty-Fifth AAAI Conference on Arti-
ficial Intelligence.

Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: replanning versus plan repair. In Proc. of the Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS).

Freuder, E. C. 1990. Complexity of k-tree structured con-
straint satisfaction problems. In Proc. of the Eighth National
Conference on Artificial Intelligence - Volume 1, 4-9.

Gecode Team. 2018. Gecode: Generic constraint develop-
ment environment. http://www.gecode.org.

Kambhampati, S., and Kedar, S. 1994. A unified framework
for explanation-based generalization of partially ordered and
partially instantiated plans. Artificial Intelligence 67(1):29—
70.

Muise, C.; Beck, J. C.; and Mcllraith, S. A. 2016. Opti-
mal partial-order plan relaxation via MaxSAT. Journal of
Artificial Intelligence Research 57:113 — 149.

Nguyen, X., and Kambhampati, S. 2001. Reviving partial
order planning. In Proc. of the 17th International Joint Con-
ference on Artificial Intelligence - Volume 1 (IJCAI), 459—
464.

Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39(1):127-1717.

Robertson, N., and Seymour, P. D. 1986. Graph minors.
II. Algorithmic aspects of tree-width. Journal of Algorithms
7(3):309-322.

Siddiqui, S. H., and Haslum, P. 2012. Block-structured plan
deordering. In Proc. of the 25th Australasian Joint Confer-
ence on Advances in Artificial Intelligence, 803—-814.

Srivastava, B.; Nguyen, T. A.; Gerevini, A.; Kambhampati,
S.; Do, M. B.; and Serina, I. 2007. Domain independent
approaches for finding diverse plans. In Proceedings of
the 20th International Joint Conference on Artificial Intel-
ligence (IJCAI), 2016-2022.

287

