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Abstract

Counterexample-guided abstraction refinement (CEGAR) al-
lows to gradually refine a problem until the required detail
for a solution is reached. We propose the use of CEGAR
to demonstrate unsolvability of partially observable nonde-
terministic planning tasks while avoiding search through the
entire state space.

Partially observable tasks are ubiquitous in planning and
robotics (Oliehoek 2010, p. 3). Sometimes, it is important
to show unsolvability of such a task fast. Examples include
algorithms minimizing necessary sensors, where unsolvabil-
ity proofs are needed to show that a certain sensor cannot
be left out (Mattmüller, Ortlieb, and Wacker 2014), and al-
gorithms for strong and strong cyclic planning (Cimatti et
al. 2003) that first try to find a strong plan, and if strong
plan non-existence has been established, resort to finding a
strong cyclic plan instead. The Counterexample-Guided Ab-
straction Refinement (CEGAR) technique originating from
model checking (Clarke et al. 2003) can be used to speed up
unsolvability proofs and has recently been used for classi-
cal planning (Seipp 2012), and, in a setting closely related
to ours, in the context of games with incomplete informa-
tion (Dimitrova and Finkbeiner 2008). CEGAR works as
follows: It starts with a small initial abstraction of the plan-
ning task and searches for an abstract plan. If no such plan
exists, it makes use of the fact that abstractions induce over-
approximations of reachability and concludes that no con-
crete plan can exist, either. Otherwise, CEGAR tries to con-
cretize the abstract plan found. Either, the solution is con-
cretizable. Then CEGAR terminates. Otherwise, the solu-
tion is spurious and the abstraction must be refined. In our
setting, instead of requiring abstractions where every single
transition is preserved, preserving goal reachability is suffi-
cient. A central question is how to define abstractions (guar-
anteeing over-approximations). A straightforward way for
POND planning is to define an abstract belief state B as a
set of concrete belief states B, where each such B consists
of the set of world states s considered possible in B. Then
the abstract initial state, goal states, and transitions can be
defined easily. E.g., an action precondition ϕ is satisfied in
B iff it is satisfied in some concrete belief state B repre-
sented by B (to ensure over-approximation), and ϕ is satis-
fied in B iff it is satisfied in all states s ∈ B (to account for

the uncertainty of the belief B). Unfortunately, representing
such a set of sets B compactly is hard. On the other hand,
representing a set B of states s compactly is, although expo-
nential in the worst case, often feasible using binary decision
diagrams (BDDs) (Bryant 1986). Therefore, in this work we
approximate abstract belief states B by BDD-encoded sets
of world states B. Furthermore, as abstractions we use sim-
ple projections to patterns P , i.e., sets of variables (Culber-
son and Schaeffer 1996). This raises several questions: (a)
How to define and compute an (approximate) abstraction to
a pattern P efficiently, (b) how to ensure that goal reach-
ability is preserved, and (c) how to refine an abstraction if
necessary. For (a), we use a simple syntactic projection to
P similar to the one used for PDB heuristics in classical
planning. However, when we use sets B of world states as
abstract states and thus let the layers “belief” and “abstrac-
tion” collapse into one, we introduce an error that violates
the over-approximation. We amend this as follows: We only
allow variables in P that can always and unconditionally be
observed, or that are known initially and can never become
unknown. In addition, we forbid observations of variables
outside of the pattern. This guarantees that we only ever pro-
duce singleton abstract belief states. Since we forbid some
observations, we have no longer an over-approximation, but
it can be proven that the goal reachability, possibly along
longer paths, is preserved with the chosen restrictions. Re-
garding (c), we refine an abstraction by collecting all ac-
tions in the abstract policy whose precondition is violated
in the concrete task and add the violated precondition vari-
ables to the refined pattern. If this violates the restriction of
patterns, we immediately move to a pattern consisting of all
variables in the planning task, i.e., to the identity abstrac-
tion. We implemented this variant of the CEGAR algorithm
on top of the MYND planner (Mattmüller et al. 2010). For
the benchmarked unsolvable problems, CEGAR leads to an
increase of 20 to 50 percent in successfully handled unsolv-
able problems. As a downside, solvable problems suffer a
slowdown which gradually widened in our benchmarks. For
future work, we plan to investigate the performance of CE-
GAR as part of the two motivating scenarios, sensor mini-
mization and strong/strong-cyclic planning. We also plan to
investigate alternative abstractions such as the doubly expo-
nential one mentioned above.
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