
Towards Effective Localization in Dynamic Environments

Dali Sun, Florian Geißer, Bernhard Nebel

Abstract— Localization in dynamic environments is still a
challenging problem in robotics – especially if rapid and
large changes occur irregularly. Inspired by SLAM algorithms,
our Bayesian approach to this so-called dynamic localization
problem divides it into a localization problem and a mapping
problem, respectively. To tackle the localization problem we
use a particle filter, coupled with a distance filter and a scan
matching method, which achieves a more robust localization
against dynamic obstacles. For the mapping problem we use
an extended sensor model which results in an effective and
precise map update effect. We compare our approach against
other localization methods and evaluate the impact the map
update effect has on the localization in dynamic environments.

I. INTRODUCTION
Localization is a fundamental problem for autonomous

mobile robot systems. For static environments, where the
map does not change, one can use existing solutions to the
so-called simultaneous localization and mapping (SLAM)
problem [7], [10], by building a map which is used for the
remainder of the localization. While common approaches to
SLAM are successfully applied in static environments, they
may not be well-suited for highly dynamic and complex
environments, such as intralogistic centers or production
halls. The challenge in these environments is that rapid and
large changes occur irregularly and change the map for a
longer period of time. Examples of such changes are people
moving storage boxes or the rearrangement of shelves.

In this work, we introduce an effective and robust dynamic
localization method, which separates localization from the
mapping process. Thus, the complexity of localization is
unaffected, while the map update is only required when
changes in the environment occur. Dynamic mapping results
in more accurate maps, which leads to a robust local-
ization. We extend the normal sensor model [9], so that
it takes dynamic influences into account, as well as the
state transition probability of the map. Our work integrates
several previously introduced concepts and state of the art
algorithms, to achieve an accurate localization in dynamic
real world environments.

The remainder of this paper is organized as follows: in
section II we present related work. Section III formally
defines the problem of dynamic localization, and gives
necessary background for localization with a particle filter
and scan matching. In section IV we describe how we
can use a distance filter [4] to detect dynamic changes in
the environment. Section V describes the dynamic mapping
process and the extended sensor model in detail. Finally, we
evaluate our method for multiple real world environments in
section VI.

D. Sun, F. Geißer and B. Nebel are with the Department of Computer
Science, University of Freiburg, Germany

II. RELATED WORK

A common approach to deal with dynamic obstacles
that only occur for short periods of time is to treat them
as outliers. Fox et al. [4] apply, among other things, a
distance filter to remove readings of a scan which are shorter
than the expected value and are therefore caused by an
unmodeled object. During localization we also filter outliers,
but additionally use the distance filter to detect changes in
the environment and update the map accordingly.

When changes occur irregularly and change the map for
a longer period of time a distance filter is not sufficient.
Tipaldi et al. [17] show that even if their SLAM algorithm
is applied permanently and loop closure techniques join the
different trajectories together, the generated map gets highly
inconsistent and the trajectory path is wrong. Instead, they
treat the lifelong localization problem as a multi-session
localization and mapping problem. Their map is based on a
dynamic occupancy grid [9], which consists of a collection
of individual cells, modeled using a hidden Markov model.
The grid requires a state transition probability, corresponding
to the (static) probability that a cell changes its state. Tipaldi
et al. separate the estimation of the robot trajectory from
the map estimation and use a particle filter to compute
the robot trajectory, where each particle is associated to
its own map. They reduce the size of these local maps by
exploiting properties of the hidden Markov model, but since
the number of particles required for global localization lies
in the thousands, memory management still plays a key role.

Another way to achieve global localization is to use
scan matching instead of a particle filter. Recently, Olson
[12] presented a multi-resolution scan matching method,
which generates the same result as brute-force full resolution
methods, but runs an order of magnitude faster than previous
approaches. This technique is well-suited if the initial map
of the environment is known.

Our approach also separates mapping from localization.
We use a particle filter localization method and apply scan
matching afterwards, to improve the accuracy of the esti-
mated pose. However, we don’t associate a map to each
particle. Instead, we initiate a dynamic mapping process, to
update the map if uncertainty of the estimated robot pose is
low. This prevents map updates which are based on wrong
estimates. The updated map will then be used for upcoming
localization steps.

Other work on localization in dynamic environments rep-
resents dynamic objects as explicit object models in the
map. Anguelov et al. [1] extract dynamic object snapshots
in office-type environments from static occupancy grid maps
acquired at different times. They use an EM-algorithm [8]

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Daejeon Convention Center
October 9-14, 2016, Daejeon, Korea

978-1-5090-3762-9/16/$31.00 ©2016 IEEE 4517

to learn two-level hierarchical shape models, which link
these object snapshots to generic shape templates of several
object classes. Similarly, Biswas et al. [2] also apply static
occupancy grid maps to extract object snapshots and use
an EM-algorithm to learn object models represented as
local occupancy grid maps. Both of these methods have
shown significant accuracy at modeling dynamic objects in
environments. However, they suffer from disadvantages of
the off-line algorithms and the limited complexity of objects.

Wang et al. [19] present two approaches to solve local-
ization, mapping and moving object tracking (SLAMMOT)
simultaneously. In their first approach, all objects (including
robot pose) are modeled with a hybrid state model consisting
of a state and a motion mode. They compute a joint posterior
over all objects, similar to other SLAM methods [10]. But
due to the required motion modeling of all objects, this ap-
proach is computationally more complex and thus generally
not suited for real time applications. In their second approach
the estimation problem is decomposed into two separate
estimators, for stationary objects and moving objects, re-
spectively. They demonstrate that this satisfies navigation
and safety requirements in high speed autonomous driving
applications in urban areas.

Gallagher et al. [5] present an online approach to deal
with dynamic changes. Their map consists of two parts,
a static occupancy grid map and several lists of dynamic
objects. Dynamic objects will be detected and classified via
laser observations and recognized objects are saved in lists
with positions and orientations. These lists will be updated
whenever the map is changed. They have shown that their
resulting map improves both localization and navigation.

In contrast to these explicit modeling approaches we in-
tegrate dynamic object detection directly into the occupancy
grid mapping, which leads to independence from the shape
and type of dynamic objects.

III. DYNAMIC LOCALIZATION

The problem of dynamic localization is to calculate the
posterior distribution of map configurations m1:t and robot
poses x1:t up to time step t, given observations z1:t, odome-
tries u1:t, initial map configuration m0 and initial robot pose
x0, i.e. to estimate p(m1:t, x1:t | z1:t, u1:t,m0, x0). The
main difference to the SLAM problem is that m0 and x0
are prior distributions known in advance and that the map
configuration changes over time, since the environment is
dynamic. Similar to SLAM, we can separate the estimation of
the robot pose from the map configuration, by using Bayes’
rule and the Markov assumption:

p(m1:t, x1:t | z1:t, u1:t,m0, x0) =

p(m1:t | x1:t, z1:t,m0, x0)p(x1:t | z1:t, u1:t,m0, x0).
(1)

Figure 1 describes the Bayesian network that models the
factorization.

Afterwards, we have two separated problems, where
p(m1:t | x1:t, z1:t,m0, x0) corresponds to the problem of
mapping with known poses and p(x1:t | z1:t, u1:t,m0, x0)
corresponds to the localization problem. We will discuss

. . . ut−2 ut−1 ut . . .

x0 . . . xt−2 xt−1 xt . . .

. . . zt−2 zt−1 zt . . .

m0 . . . mt−2 mt−1 mt . . .

Fig. 1: Bayesian network of the dynamic localization prob-
lem.

the mapping problem in section V and first concentrate on
localization.

We use a particle filter approach to solve the basic
localization problem, and apply a scan matching method
to improve accuracy of the estimated position. For scan
matching, we apply the multi-layer searching technique by
Olson [12] to find the local maximum of the position within
a limited region. Since this method is extremely fast for
small regions, we can substantially increase the accuracy
of the localization with only requiring few computational
resources. Additionally, we also get a matching score, which
describes the degree of the matching. We can use this score
as a parameter to prevent updates of the map, based on wrong
estimates. Only if the score exceeds a specific threshold, the
map update step will be evoked. For our experiments, this
threshold was determined empirically; we will discuss other
ways to determine it in section VII.

To account for dynamic obstacles, a distance filter marks
observations that are shorter or longer than the expected
observation as outliers. Both types of outliers will be used
to update the map, but only shorter outliers will be rejected
during localization.

IV. DISTANCE FILTER
Originally, the distance filter by Fox et al. was used to

filter those readings of the laser scan, that are shorter than
the distance expected from the map. Let d1, . . . , dn be a
set of possible distances and pm(di|xl) the probability of
measuring distance di if the robot is at position xl. The
probability that distance di is shorter than expected is defined
by

pshort(di|xl) =
∑

dj>di

pm(dj |xl),

based on the fact that this is equivalent to the probability
that the expected measurement is longer than di. Since the
position xl is based on the current belief, we have to average
over all possible positions of the robot:

pshort(di) =
∑
l

pshort(di|xl) · p(xl),

where p(xl) is given by our particle filter. Given pshort(di)
we can now mark those measurements di, where pshort(di)

4518

exceeds some threshold γ. Similarly, we mark those mea-
surements that are longer than expected.

We should mention here that Fox et al. precompute the
distance to the closest obstacle in the map for each possible
robot location. However, since our environment is not static
we have to compute this distance on the fly. While this is
the main bottleneck of the distance filter, this approach still
works well in practice.

V. DYNAMIC MAPPING

Recall that the second problem to tackle was to compute
the full posterior distribution of p(m1:t | x1:t, z1:t,m0, x0).
This computation is not only intractable, but is also unnec-
essary in practice, because we are only interested in the
last configuration of the map. Therefore, we use a Bayesian
filter to recursively compute the marginal distribution p(mt |
x0:t, z1:t) for the current map mt. A common approach is to
decompose the problem into several one-dimensional estima-
tion problems (cf. [11], [15]), with the underlying assump-
tion that grid cells are conditionally independent from one
another. Therefore, we approximate p(mt | x0:t, z1:t) with∏N

i=0 P (cit|zi1:t), where zi ∈ {hit,miss}, c ∈ {occ, free}
and i = 1, . . . , N , N being the total number of cells. The
meaning of the observation and cell values will become clear
in a moment, when we introduce the sensor model.

To represent dynamic changes we use dynamic occupancy
grid maps, introduced by Meyer-Delius et al. [9], which
apply the theory of hidden Markov models (HMM) [14].
In the original work, the state transition model p(cit | cit−1)
is assumed to be stationary (i.e., the state transition probabil-
ities do not change over time) and can be learned offline or
online. We make the same assumption and learn it offline. We
also adopt the sensor model introduced along with dynamic
occupancy grids, which considers two cases: a measurement
ends up in a cell (hit) or goes through it (miss). However,
this sensor model does not consider dynamics in the environ-
ment. The probability for a measurement miss, given that
a cell is occupied (i.e. cell state occ), is usually very low,
due to the good accuracy of today’s laser range finders. But
this probability should increase when we know that some
objects may disappear in the environment. To achieve this,
we incorporate information about the transition dynamics
of each cell: sti is a boolean, time-independent flag that
specifies whether cell ci is a static cell, or whether objects
may appear or disappear. For example, in a production hall
we might flag walls and machinery equipment as static,
while hallways, movable shelves and stock in a storeroom are
flagged as being dynamic. We may learn such information
offline, but often we can also manually flag the map by
studying a layout plan of the facility. The second information
we incorporate are the results of the distance filter. We not
only consider whether a measurement hits a cell ci, but also
if this measurement is considered being an outlier: ẑit ∈
{hit,miss, hito,misso}. Figure 2 represents the underlying
HMM of our model.

As a result, we have to compute
∏N

i=0 P (cit|ẑi1:t, sti). By
applying the definition of conditional probability and the

sti

. . . ẑit−2 ẑit−1 ẑit . . .

. . . cit−2 cit−1 cit . . .

Fig. 2: Hidden Markov Model of the extended sensor model.

forward algorithm we get

P (cit|ẑi1:t, sti) = µ
∑
ct−1

·P (ẑit, c
i
t, c

i
t−1, ẑ

i
1:t−1, st

i),

where µ is a normalization constant. Applying the chain rule
results in

P (cit|ẑi1:t, sti) = µ
∑
ct−1

P (ẑit|cit, cit−1, ẑ
i
1:t−1, st

i)

·P (cit|cit−1, ẑ
i
1:t−1, st

i)

·P (cit−1|ẑi1:t−1, st
i) ·P (ẑi1:t−1, st

i).

Due to conditional independence we get

P (ẑit|cit, cit−1, ẑ
i
1:t−1, st

i) = P (ẑit|cit, cit−1, st
i),

P (cit|cit−1, ẑ
i
1:t−1, st

i) = P (cit|cit−1).

Furthermore, P (ẑi1:t−1, st
i) is independent of the state of the

cell so we can substitute it by another normalization constant
η, which leads to

P (cit|ẑi1:t, sti) =

µη
∑
ct−1

P (ẑit|cit, cit−1, st
i) ·P (cit|cit−1) ·P (cit−1|ẑi1:t−1, st

i).

This equation can be computed recursively:
P (ẑit|cit, cit−1, st

i) corresponds to the sensor model,
P (cit|cit−1) corresponds to the state transition model and
P (cit−1|ẑi1:t−1, st

i) is the recursive call, where the base case
is given by the initial map m0. Both the sensor model and
the state transition model can be learned offline beforehand,
as it is done in our experiments (cf. Table I). Note that
parameters of the extended sensor model influence the
rate at which a cell may switch its state. If the learned
parameters are therefore unreasonable, they may lead to
inconsistency of the map.

Another advantage of the extended sensor model is that
dynamics are not modeled as explicit object models (cf. [1],
[2], [7], [19]). Our model is independent of the shape and
type of the dynamic objects. This allows to apply the sensor
model learned for one environment to another environment,
as we will see in our experimental results.

4519

VI. EXPERIMENTAL RESULTS
To evaluate our approach, we conducted a series of

experiments in two real production halls (PH1: 104m x
52m, PH2: 47m x 26m) and an intralogistic center (LC:
137m x 99m) from three different companies. Changes in
the environments may be caused, for example, by forklifts
or people moving storage boxes. We also face more long-
term structural changes, like the rearrangement of shelves.
In each environment, we collected several data sets with a
mobile robot equipped with a SICK S300 laser range finder.
Each data set consists of raw odometry and laser data. Since
all environments are dynamic, we get different environment
settings for each experiment. We examine two data sets with
the most changes between the environment and use these to
test localization and mapping.

We apply a standard SLAM approach [6], to generate
the initial map m0, based on the first data set, and the
ground truth (i.e. x1:t and mt), based on the second. Note
that this approach is usually not well-suited for dynamic
environments (cf. [17]). However, during one recording of
a data set, only few dynamic changes occur. Therefore the
SLAM approach is a reasonable source for ground truth.
The state transition model for each map is based on the
structure of the environments. All three scenarios can be seen
in Figure 3, 4 and 5. We omit the odometry data for clarity;
it should be noted that it was generally very unreliable.

To learn the parameter set Θ of the extended sensor
model we use four separately recorded data sets. As we
know the state transition model st, the initial map m0

and the ground truth mt and x1:t, we can generate the
training set D = {di | di = (cit−1, c

i
t, st

i, zit),∀i ∈ [1, S]}
from each data set, S being the size of the data set. The
goal is to compute Θ, such that the probability P (D|Θ)
is maximized. This problem can be solved by applying a
maximum likelihood estimation (MLE) algorithm, given that
there is enough data available. Despite that our data sets
consist of millions of data points, we observed that some
combinations of measurements, cell states and state transition
dynamics occur only rarely. Therefore, we assume a prior
probability P (Θ) and utilize a posteriori probability (MAP)
estimation [3] to compute Θ. The resulting estimates are
denoted in Table I.

In the following, we report localization and mapping
results, based on 10 runs for each scenario. Global scan
matching [12] was used to provide the initial position of
the robot.

A. Localization results
To verify the quality of localization we consider maximal

translation error and maximal angle error. We consider a run
as success, if the translation error is kept below 1.0 meter
and the angle error is kept below 25 degree. Otherwise we
consider it as failed. First we compared our approach (DL)
with two static localization methods that do not update the
map at run time, AMCL and AMCLDF . AMCL is a
standard localization method in the ROS package [13] which
implements the popular Monte Carlo localization method
described by Fox et al. [16]. AMCLDF is the extension

m0

mt

Fig. 3: Ground truth maps of collected data sets of PH1.

m0

mt

Fig. 4: Ground truth maps of collected data sets of PH2.

of AMCL with a distance filter [4]. All methods use
the same set of parameters for the motion model and the
standard sensor model. For a fair comparison we increase
the number of particles for AMCL and AMCLDF , such
that computational time required by every method remains
at the same level in each iteration step (cf. Table II). The
threshold to allow map updates in our approach is set to
60% for all experiments.

All results are shown in table III. As expected, localization
with DL succeeds in all scenarios and all runs, whereas both
static methods fail in most cases. Of course, AMCL has
no way to incorporate dynamic influences. We can see that

4520

st ct−1 ct P (hit|ct−1, ct, st) P (hito|ct−1, ct, st) P (miss|ct−1, ct, st) P (misso|ct−1, ct, st)

1

occ
occ 86.365 1.289 7.126 5.220

free 7.955 8.721 71.494 11.830

free
occ 14.223 10.720 72.709 2.349

free 0.223 1.114 95.130 3.533

0

occ
occ 69.103 2.084 24.707 4.106

free 34.575 0.550 7.251 57.626

free
occ 7.190 43.211 48.979 0.619

free 15.208 14.684 57.694 12.413

TABLE I: Learned parameters of the extended sensor model, denoted in %.

m0

mt

Fig. 5: Ground truth maps of collected data sets of LC.

the distance filter helps, as AMCLDF can deal with the
dynamics in scenario PH1. However, as the scenarios get
more complex, the success rate also decreases. The reason
is the well-known particle deprivation problem [18], which
leads to divergence of the particles in the second and third
scenario. To the contrary, our approach responds very quickly
to changes and updates the map in time, so that the robot
stays localized with the updated map.

We also evaluated an implementation of our approach
which updates the map at run time, but has distance filter
and scan matching disabled (DLsimple). We double the
number of particles to achieve a fair comparison regarding

Method #Particles Distance Filter Scan Matching Map Update

AMCL 1000 no no no
AMCLDF 1000 yes no no
DLsimple 1000 no no yes
DL 500 yes yes yes

TABLE II: Description of static and dynamic methods

Scenarios Method
Error (m) Error (degree)

Success
Mean Var Mean Var

PH1

AMCL 1.791 3.868 10.212 21.245 0/10
AMCLDF 0.138 0.051 0.638 0.523 10/10
DLsimple 0.415 0.756 1.184 1.570 7/10
DL 0.126 0.059 0.687 0.629 10/10

PH2

AMCL 0.750 0.957 6.337 9.286 1/10
AMCLDF 0.691 0.857 5.018 6.288 1/10
DLsimple 0.160 0.080 1.381 1.307 10/10
DL 0.165 0.054 0.615 0.528 10/10

LC

AMCL 10.107 23.054 22.442 48.222 0/10
AMCLDF 6.891 18.160 10.966 29.145 0/10
DLsimple 3.144 4.282 3.356 7.112 0/10
DL 0.110 0.096 0.602 0.883 10/10

TABLE III: Comparison results of static and dynamic meth-
ods

computational time (cf. Table II). Note that without post-
processing of scan matching, the map will be updated in
every iteration step. This can lead to a divergence of the
map. To overcome this problem, each particle should update
and maintain its own map [17]. However, this will increase
the load and usage of CPU and memory. As we can see from
the results in Table III, this is not necessary if we activate
distance filter and scan matching.

B. Mapping results

To evaluate the mapping results we saved the updated
map mt at the end of each run. Accurate mapping should
lead to accurate trajectories, especially in highly dynamic
parts of the environment. Figures 6, 7 and 8 show the
resulting maps with corresponding trajectories over all 10
runs for all approaches. As can be seen, the updated maps
and trajectories have both converged to the ground truth
in our approach, whereas other methods diverged in most

4521

runs (recall that AMCL does not update the map). The
results of scenario PH2 also show that the resulting maps
and trajectories of DL are more consistent and robust than
the results of DLsimple, despite that it also succeeds. This
is also the case for the other scenarios. Altogether, these
results suggest that our approach is very robust and consistent
for different dynamic environments. Note that if we would
use separated map updates for each particle, as described
by Tipaldi et al. [17], we could expect similar robust and
consistent results for DLsimple. However, as this requires
more resources, it may be more suitable to apply DL.

We attached a video to illustrate our approach. Laser
readings are colored according to the results of the distance
filter. Red readings refer to outliers that are too short, blue
readings to outliers that are too long and green readings refer
to regular readings.

VII. CONCLUSION

In this work we presented a dynamic localization ap-
proach, which incorporates several previously introduced
concepts. As others, we separate the problem and treat lo-
calization and mapping individually. By incorporating recent
advancements on scan matching we can give precise local-
ization updates without consuming too many computational
resources. Furthermore, we use a distance filter to incorporate
dynamics of the environment into the sensor model, which
leads to quicker convergence of the map update.

The empirical evaluation shows the advantages of our
approach. We learn the parameters of the sensor model and
achieve a robust localization in several different real-world
environments, all including dynamic influences. At the same
time the mapping stays consistent with the ground truth.

An important parameter for our approach is the threshold
for map updates, which we determined empirically. Setting
that threshold too high prevents an accurate representation of
the real map and influences localization; setting it too low
can lead to distorted maps, due to localization inaccuracies.
It seems reasonable to aim for a threshold that results in
a good average matching score. Therefore we could also
learn the threshold parameter from data, with the average
matching score as an evaluation function. Furthermore, all
of our scenarios consisted of environments with a clearly
defined static structure, like machinery and walls. While we
exploit this information, there may be production halls which
are completely dynamic, i.e. a very basic wall structure, no
hallways and dynamic machinery equipment. The amount
of static objects this approach requires remains an open
question.

For further future work it would be interesting to perform
a direct comparison with the approach of Tipaldi et al. in
several more environments. However, currently their algo-
rithm is not openly available. An interesting consideration is
to merge their approach with ours. When the matching score
drops below a certain threshold, we could associate each
particle to its own map, until the matching score improves
again. Another topic is dynamic localization for multi-robot
scenarios. By sharing information about the environment
between multiple robots we may be able to further improve

stability of localization and consistency of the mapping. We
also plan to publish our data sets so that they can be used
by other researchers concerned with long-term autonomy.

ACKNOWLEDGMENT

This work has been funded by BMBF grant 02PJ2667 as
part of the KARIS PRO project.

REFERENCES

[1] Dragomir Anguelov, Rahul Biswas, Daphne Koller, Benson Limketkai,
Scott Sanner, and Sebastian Thrun. Learning hierarchical object maps
of non-stationary environments with mobile robots. In In Proc. of the
Conf. on Uncertainty in Artificial Intelligence (UAI), 2002.

[2] R. Biswas, B. Limketkai, S. Sanner, and S. Thrun. Towards object
mapping in non-stationary environments with mobile robots. In Intel-
ligent Robots and Systems, 2002. IEEE/RSJ International Conference
on, volume 1, pages 1014–1019 vol.1, 2002.

[3] Morris H DeGroot. Optimal statistical decisions, volume 82. John
Wiley & Sons, 2005.

[4] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Markov localiza-
tion for mobile robots in dynamic environments. Journal of Artificial
Intelligence Research, 11:391–427, 1999.

[5] G. Gallagher, S.S. Srinivasa, J.A. Bagnell, and Dave Ferguson. Gatmo:
A generalized approach to tracking movable objects. In Robotics and
Automation, 2009. ICRA ’09. IEEE International Conference on, pages
2043–2048, May 2009.

[6] G. Grisetti, C. Stachniss, and W. Burgard. GMapping –
OpenSLAM.org. http://www.openslam.org/gmapping.html.

[7] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved
techniques for grid mapping with Rao-Blackwellized particle filters.
IEEE Transactions on Robotics, 23(1):34–46, 2007.

[8] Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM algo-
rithm and extensions. Wiley series in probability and statistics. Wiley,
Hoboken, NJ, 2. ed edition, 2008.

[9] D. Meyer-Delius, M. Beinhofer, and W. Burgard. Occupancy grid
models for robot mapping in changing environments. In Proc. of the
AAAI Conf. on Artificial Intelligence (AAAI), Toronto, Canada, July
2012.

[10] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Weg-
breit. FastSlam: A factored solution to the simultaneous localization
and mapping problem. In In Proceedings of the AAAI National
Conference on Artificial Intelligence, pages 593–598. AAAI, 2002.

[11] H.P. Moravec and A. Elfes. High resolution maps from wide
angle sonar. In Robotics and Automation. Proceedings. 1985 IEEE
International Conference on, volume 2, pages 116–121, Mar 1985.

[12] Edwin Olson. M3RSM: Many-to-many multi-resolution scan match-
ing. In IEEE International Conference on Robotics and Automation,
ICRA 2015, Seattle, WA, USA, 26-30 May, 2015, pages 5815–5821,
2015.

[13] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-source
robot operating system. In ICRA Workshop on Open Source Software,
2009.

[14] Lawrence R Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. Proceedings of the IEEE,
77(2):257–286, 1989.

[15] S. Thrun. Learning occupancy grids with forward models. In
Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ
International Conference on, volume 3, pages 1676–1681 vol.3, 2001.

[16] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents). The MIT
Press, 2005.

[17] Gian Diego Tipaldi, Daniel Meyer-Delius, and Wolfram Burgard.
Lifelong localization in changing environments. The International
Journal of Robotics Research, 2013.

[18] Rudolph van der Merwe, Arnaud Doucet, Nando de Freitas, and
Eric A. Wan. The unscented particle filter. In Advances in Neural
Information Processing Systems 13, Papers from Neural Information
Processing Systems (NIPS) 2000, Denver, CO, USA, pages 584–590,
2000.

[19] Chieh-Chih Wang, Charles Thorpe, Sebastian Thrun, Martial Hebert,
and Hugh Durrant-Whyte. Simultaneous localization, mapping and
moving object tracking. Int. J. Rob. Res., 26(9):889–916, September
2007.

4522

(a) Ground truth (b) AMCL

(c) DLsimple (d) DL

Fig. 6: Mapping and localization results for PH1

(a) Ground truth (b) AMCL

(c) DLsimple (d) DL

Fig. 7: Mapping and localization results for PH2

(a) Ground truth (b) AMCL

(c) DLsimple (d) DL

Fig. 8: Mapping and localization results for LC

4523

