
Moral Planning:
Generating Do-No-Harm Permissible Plans

Milan Benninger

November 9th, 2018

Master project
Supervisors: Dr. Felix Lindner

Dr. Robert Mattmüller
Foundations of Artificial Intelligence
Department of Computer Science
University of Freiburg
Winter term 2018

1

Abstract

In order to make fully autonomous robots safe for humans, meth-
ods to judge the ethical consequences of their actions are needed. Eth-
ical principles like the do-no-harm principle can be used, but are gen-
erally limited to the consequence of one action at a time. To solve
most planning problems, the planning system of such a robot needs
to form plans consisting of many actions performed after each other.
This paper describes and evaluates several approaches based on the
do-no-harm principle, with which an entire morally permissible plan
can be constructed and validated.

CONTENTS 2

Contents

1 Introduction 3

2 Planning Formalism 4

3 Moral Planning Algorithm 5
3.1 Approximation . 6
3.2 Basic Algorithm . 7
3.3 Validation of Goal Candidates 9
3.4 Recursive Approach . 10
3.5 Properties . 12

3.5.1 Optimality . 13
3.5.2 Soundness . 13
3.5.3 Completeness . 14

3.6 Implementation in Fast Downward 14

4 Benchmark 15
4.1 Setup . 15
4.2 Domain . 16
4.3 Limitations . 17
4.4 Problems . 19
4.5 Results . 20

5 Conclusion 25

6 Appendix 28

1 INTRODUCTION 3

1 Introduction

It is likely that autonomous systems will soon be part of our everyday life.
The lack of moral decision-making in the vast majority of currently existing
autonomous software and robots is cause for concern. How to include some
form of moral judgement in the algorithms of these systems is part of the
emerging research area machine ethics (Allen et al., 2006; Anderson and
Anderson, 2007). There are several ethical principles (Driver, 2013) in moral
philosophy which could be used to judge the decisions of a machine.
In this paper, the focus lies on one particular moral philosophy, the do-no-
harm principle. According to this principle, a planning agent is forbidden
to execute an action which has any negative consequences, no matter the
intentions of the agent. Such an action is called morally impermissible. Do-
ing nothing is considered neutral and therefore always permitted. While it
is trivial to determine if a singular action has any immediate negative con-
sequences, validating an entire plan according to the do-no-harm principle
is known to be co-NP-complete (Lindner et al., 2018). This is partially due
to potentially delayed consequences of an action. One example of such an
action would be flipping a railway lever in the famous trolley problem (Foot,
1967). Flipping the lever does not have an immediate negative consequence,
but leads to the train killing five people later on, making the action of flipping
the lever morally impermissible according to the do-no-harm principle.
As the plans of most modern automated planning systems consist of long
action sequences, it is generally not computationally feasible to generate
morally permissible plans of higher length using plan validation only. This
paper proposes an algorithm, based on weighted A* (Hart et al., 1968) and
the definition of the do-no-harm principle by (Lindner et al., 2018), capable
of generating morally permissible plans using guided search.
In the next chapter, the planning formalism used to describe the algorithm
is specified. The main chapter outlines an iterative and recursive version of
the algorithm, and the algorithms main planning properties. In the bench-
mark section of the paper, the performance of an implementation of the two
algorithm versions in Fast Downward (Helmert, 2006) is shown. This is done
on a planning domain suitable for moral planning.

2 PLANNING FORMALISM 4

2 Planning Formalism

To formalize the planning problem, a modified form of SAS+ planning
(Bäckström and Nebel, 1993) is used.
A planning task is represented by a tuple Π = 〈V , A, s0, s∗〉 where V is the
set of finite state variables v with domain Dv. Facts are pairs 〈v, d〉 or simply
v = d with v ∈ V and d ∈ Dv. If a conjunction of facts v1 = d1 ∧ ...∧ vk = dk
is free of contradictions such as vi = di, vj = dj and vi = vj but di 6= dj, then
it is called consistent. A conjunction is complete if it contains a fact v = d
for every v ∈ V . Such complete conjunctions are called a state s. s0 ∈ S and
the partial state s∗ are the initial state and the goal condition, respectively.
Facts v of a state si are denoted as si(v).
A is the set of actions. Each action a = 〈pre, eff 〉 consists of a precondition
pre, which is a conjunction of facts. The effect eff is conditional and a
conjunction of sub-effects eff = effi ∧ ... ∧ effk of the form ϕi B vi := di
with ϕi as a conjunction of facts, and vi := di as an atomic effect (Rintanen,
2003).
The action set A is split into endogenous actions Aendo and exogenous actions
Aexo (Fox et al., 2005). While endogenous actions always contain the empty
action ε, exogenous actions are tied to discrete time steps t(a) at which they
get applied automatically if applicable (Cresswell and Coddington, 2003).
For an action a to be applicable in state s, its precondition pre needs to be
fulfilled: s |= pre. In order to be applicable, an exogenous action a with
a designated time step t ∈ t(a) additionally has to be in the t-th state in
the state sequence. When an applicable action a gets applied in state s,
a new state s′ with a conjunct v = d for each v = d in the change set
[eff]s =

⋃k
i=1[ϕi B vi := di] | s |= ϕ and the conjuncts from s for all facts

v /∈ [eff]s gets generated.
Whenever exogenous actions are both applicable and at their assigned time
step, their application is enforced. Two exogenous actions may never interfere
or conflict with each other. The state s′ reached by applying all applicable
exogenous actions in state s is denoted by ∆exo(s). This state s′ is unique
and well defined, because all applied exogenous actions are not interfering
with each other (Lindner et al., 2018). The initial state s0 may not have any
applicable exogenous actions.
Let π be an action sequence π = 〈a0, ..., an−1〉 containing only endogenous ac-
tions. Should there be exogenous actions at time steps beyond sn generated
by an−1, then π gets extended with the empty action ε until the time step of
the last exogenous action is reached. Next states si+1 for i = 0, ..., n− 1 are
generated by first applying the endogenous action ai, followed by all appli-
cable exogenous actions: si+1 = ∆(si, ai) := ∆exo(si[ai]). If all endogenous

3 MORAL PLANNING ALGORITHM 5

action ai ∈ π are applicable in si and if sn |= s∗, then π is a valid solution
for Π.
To analyse if a given plan π is morally acceptable, partial plans generated
by pruning actions from π need to be simulated. It is expected that most
of these partial plans would contain at least one action that is inapplicable
in the current state, making the whole partial plan inapplicable. Let π′ =
〈a0, ..., an−1〉 be such a partial plan of π. Whenever an action ai ∈ π′ is
deemed inapplicable, it gets skipped, i.e. the action ai gets replaced by the
empty action ε (Lindner et al., 2018). This keeps π′ as a whole applicable.
To judge whether a state contains facts that are considered morally bad by
the do-no-harm principle, a utility function u is needed. This function maps
facts to utility values: u : (V × D) → R. Let v be a fact of a state s. v
is considered morally bad according to the do-no-harm principle if u(v) < 0
(Lindner et al., 2018).

3 Moral Planning Algorithm

A* (Hart et al., 1968) selects a path that minimizes

f(n) = g(n) + h(n) (1)

where n denotes the current node which also contains a state s, and g(n)
is the action cost needed to reach n. h(n) is the estimated cost to reach a
goal node n∗ from node n, calculated by the heuristic. A* utilizes f to rank
expansion candidates in an open list, where it then expands the node n with
the currently lowest f(n) first.
One way to incorporate moral principles into this equation is to add another
variable gmoral in the following way:

f(n) = g(n) + ωmoral ∗ gmoral(n) + h(n) (2)

With gmoral ≥ 0 and its weight ωmoral > 1, a node n that violates a moral
principle is punished by a higher f(n), delaying or even skipping its expan-
sion. This way, A* is guided away from these morally problematic nodes in
a similar fashion that heuristics are used to guide the search towards a goal
state.

The do-no-harm principle was defined by (Lindner et al., 2018) as follows:

Definition 1. A plan π = 〈a0, ..., an−1〉 is morally permissible according to
the do-no-harm principle if and only if for all facts v = d, if sn |= v = d and
u(v = d) < 0, then for all partial plans π′ obtained by replacing a subset of
actions with the empty action ε, v = d still holds in the final state of π′.

3 MORAL PLANNING ALGORITHM 6

A plan π is considered morally impermissible as soon as at least one partial
plan π′ does not cause a certain harm caused by π, i.e. the harm is avoidable
by performing less endogenous actions.
Note that, in the case of the do-no-harm principle, temporary avoidable harm
is not forbidden. Some avoidable harm in non-goal node ni with partial plan
πi will cause it to fail according to Definition 1, but not in goal state ni+1

with plan πi+1 = πi ∪ {ai}, due to action ai negating the avoidable harm.
This is why nodes like n which fail Definition 1 cannot be closed, but their
expansion is instead disincentivized by gmoral(n) > 0 increasing f(n).

Definition 2.

gmoral(n) = max
π′∈π
|∀v ∈ V : s(v) = d and u(v = d) < 0 and s(v) 6= s′(v)|

where s is the state of node n reached by π
and s′ is the state reached by π′

By computing gmoral using Definition 2, gmoral counts the number of moral
facts which have a negative utility in the current state, but where at least
one shorter, partial plan exists, where each of these facts has a different
outcome. Or in other words, facts with negative utility, which were directly
or indirectly caused by the plan leading to the current state.
In the following chapters, three methods of computing gmoral for the do-no-
harm principle are shown.

3.1 Approximation

Instead of computing gmoral using Definition 2, it can also be approximated
in the following way.

Definition 3.

gmoral(n) = |∀v ∈ V : s(v) = d and u(v = d) < 0|

where s is the state of node n reached by π

With this approach, the gmoral value of a node n counts the number of facts
with negative utility in the state s of n. It only approximates the true
gmoral(n) due to the fact that it does not consider whether the player has
caused the harm or not.

3 MORAL PLANNING ALGORITHM 7

3.2 Basic Algorithm

All possible partial plans π′ of Definition 1 can be generated by constructing
the power set of π and removing π from this set:

π′ ∈ (P(π) \ π) with P(π) = {π′|π′ ⊆ π} (3)

To calculate gmoral for a new expansion candidate ni+1, containing si+1, Al-
gorithm 1 constructs this power set Ti+1 = P(πi+1) \ πi+1. For every action
a ∈ π that is missing in every π′ ∈ P(π), an empty action ε gets inserted in
its place.

Algorithm 1 Calculate gmoral for node ni+1

1: function calcDoNoHarm(πi+1, ni+1, s0, early abort)
2: Ti+1 ← P(πi+1) \ πi+1 | removed actions replaced by ε
3: gmoral(ni+1)← calcGmoral(Ti+1,ni+1, s0, early abort)
4: return gmoral

Algorithm 2 starts off by fully simulating the input state si+1. To do this, Line
2 applies any applicable exogenous actions , until a state with no applicable
exogenous actions is reached. The resulting state scurr then gets expanded
with ε actions by Algorithm 3 in Line 3 until all exogenous actions a ∈ Aexo
have been applied or attempted. Should scurr at this point contain no fact
scurr(v) with negative utility, the algorithm can be aborted early, as there
is no possibility of a moral violation according to the do-no-harm principle
without at least one negative utility.
Should there be at least one negative utility, Algorithm 2 then loops over
every partial plan π′ contained in Ti+1. Each plan π′ gets applied by applying
all actions a in π′, starting with the first action a0 on the initial state s0 of n0.
Should an action not be applicable, it gets replaced by the skip action ε, as
specified by the modified semantics.After each applied or skipped endogenous
action, any applicable exogenous actions get applied, until a state with no
applicable exogenous actions is reached.
When all actions in π′ are applied, scurrent gets expanded with ε actions
by Algorithm 3 until all exogenous actions a ∈ Aexo have been applied or
attempted. This ensures that no partial plan is considered best just because
it is so short that it terminates before exogenous actions with potentially
direct or indirect harm get applied.
Algorithm 4 computes the sum of Equation 2 of Definition 2. It compares the
facts s′(v) of the now reached state s′ to the facts si+1(v) of the expansion
candidate ni+1. For each fact si+1(v) of si+1 with negative utility, find the

3 MORAL PLANNING ALGORITHM 8

Algorithm 2 Calculate gmoral for given state si+1 and Ti+1

1: function calcGmoral(Ti+1, ni+1, s0, early abort)
2: scurr ← ∆exo(si+1)
3: attemptAllExoActions(scurr)
4: if @scurr(v) | scurr |= scurr(v)=d and u(scurr(v)=d)<0 then
5: return 0
6: max gmoral ← 0
7: for all π′ ∈ Ti+1 do
8: scurrent ← s0
9: for all a ∈ π′ do

10: if a is applicable in scurrent then
11: scurrent ← ∆(scurrent, a)
12: else
13: scurrent ← ∆(scurrent, ε)

14: scurrent ← ∆exo(scurrent)

15: attemptAllExoActions(scurrent)
16: gmoral ← checkFacts(scurrent, si+1, early abort)
17: if early abort and gmoral > 0 then
18: return gmoral

19: if gmoral > max gmoral then
20: max gmoral ← gmoral

21: return max gmoral

matching fact s′(v). If the values of both facts don’t match, the harm done
is preventable and gmoral gets increased by one. In the end, Algorithm 4
returns the number of facts which have been found preventable by instead
executing the current partial plan leading to s′.
Over all partial plans tested by Algorithm 4, max gmoral of Algorithm 2 then
tracks the highest value of gmoral found. It is assumed that it is generally the
case that, the higher gmoral of a state, the less likely it is that this expansion
path leads to a morally permissible goal state.

Algorithm 3

1: function attemptAllExoActions(scurrent)
2: while not all a ∈ Aexo attempted do
3: scurrent ← ∆(scurrent, ε)
4: scurrent ← ∆exo(scurrent)

3 MORAL PLANNING ALGORITHM 9

Algorithm 4

1: function checkFacts(s′, si+1, early abort)
2: gmoral ← 0
3: for all si+1(v) | si+1 |= si+1(v)=d and u(si+1(v)=d)<0 do
4: if s′(v) 6= si+1(v) then
5: gmoral ← gmoral + 1
6: if early abort = TRUE then
7: return gmoral

8: return gmoral

3.3 Validation of Goal Candidates

Although the modified f()-function including gmoral generally guides the
search away from morally impermissible goal nodes, A* itself is unaware of
this moral impermissibility and identifies these nodes as goal nodes. When-
ever such a node ni+1 is identified as a goal node by A*, it also has to
be validated for moral permissibility by Algorithm 5. For the purpose of
validation, it does not matter how large gmoral of the goal node is. With
early abort = TRUE, Algorithm 2 returns 1 in line 14 as soon as any pre-
ventable harm is found, or 0 in which case node ni+1 and its plan πi+1 are
morally permissible according to Definition 1, and therefore a valid solution
to the moral planning problem is found. This validation step is especially
important for the approximation approach of Chapter 3.1.
Should preventable harm be found, node ni+1 cannot be closed, as πi+1 might
still be a partial plan of a morally permissible solution with a later action
negating the preventable harm.

Algorithm 5 Validation for node ni+1 and πi+1

1: function ValidateDoNoHarm(πi+1, ni+1, s0)
2: if gmoral(ni+1) not exists then
3: gmoral(ni+1)← calcDoNoHarm(πi+1,ni+1, s0, TRUE)

4: if gmoral(ni+1) = 0 then
5: return TRUE
6: else
7: return FALSE

3 MORAL PLANNING ALGORITHM 10

3.4 Recursive Approach

The power set Ti+1 = P(πi+1) \ πi+1 in Chapter 3.2 is constructed from the
ground up for each new node ni+1. A more efficient approach, shown here as
Algorithm 6, constructs Ti+1 of node ni+1 in a recursive fashion, by expanding
the set Ti of its parent ni.
If the current node ni+1 is the initial node n0, then the set Ti+1 is the empty
set. There is also no point in computing gmoral(n0), as the initial node cannot
contain preventable harm. For any other node ni+1, the set Ti+1 consists of
all the elements {π′∪ ε} with π′ ∈ Ti, in addition to all elements π′ expanded
by the action ai leading from ni to ni+1.

∀π′ ∈ Ti : ∃{π′ ∪ ε} ∈ Ti+1∃{π′ ∪ ai} ∈ Ti+1 (4)

This approach is very similar to known recursive algorithms to calculate any
power set P(S).

Algorithm 6 Recursively calculate gmoral(ni+1)

1: function recCalcDoNoHarm(ai, Ti, ni+1, n0, early abort)
2: if n0 = ni+1 then
3: Ti ← Ti+1 ← {{}}
4: return 0
5: else
6: for all π′ ∈ Ti do
7: Ti+1 ← Ti+1 ∪ {π′ ∪ ε}
8: Ti+1 ← Ti+1 ∪ {π′ ∪ ai}
9: return calcGmoral(Ti+1,ni+1, n0, early abort)

While this recursive approach is more efficient, each new successor candidate
ni+1 still needs to expand all intermediate states between s0 and scurrent in
Algorithm 2, for each partial plan π′ ∈ Ti+1. Using the recursive approach,
most of these expansions can be avoided.
To accomplish this, Ti+1 no longer contains all the partial plans π′, but all the
states (s′) reached by applying (or skipping, if inapplicable) all actions a ∈ π′
for all π′. Instead of extending and simulating π′ fully, this method only
requires the application of a single action to update a state s′ representing
the application of π′ on s0. This also changes the computation of gmoral
slightly. The maximum is now over all s′ ∈ Ti, instead of all partial plans π′:

gmoral(ni) = max
s′∈Ti
|∀v ∈ V : si(v) = d and u(v = d) < 0 and si(v) 6= s′(v)|

3 MORAL PLANNING ALGORITHM 11

Algorithm 7 Recursively calculate gmoral for node ni+1, improved

1: function recCalcDoNoHarmImp(ai, Ti, ni+1, n0)
2: max gmoral ← 0
3: if n0 = ni+1 then
4: Ti+1 ← {s0}
5: return 0
6: else
7: for all (s′) ∈ Ti do
8: if ai is applicable in s′ then
9: snext ← ∆(s′, ai)

10: else
11: snext ← ∆(s′, ε)

12: snext ← ∆exo(snext)
13: Ti+1 ← Ti+1 ∪ {snext}
14: attemptAllExoActions(snext)
15: gmoral ← checkFacts(snext, si+1, FALSE)
16: if gmoral > max gmoral then
17: max gmoral ← gmoral

18: for all (s′) ∈ Ti do
19: scurrent ← ∆(s′, ε)
20: scurrent ← ∆exo(scurrent)
21: Ti+1 ← Ti+1 ∪ {scurrent}
22: attemptAllExoActions(scurrent)
23: gmoral ← checkFacts(scurrent, si+1, FALSE)
24: if gmoral > max gmoral then
25: max gmoral ← gmoral

26: return max gmoral

How this can be done is shown in Algorithm 7. If the current node ni+1 is the
initial node n0, then Ti+1 gets initialized with (s0), which is the reached state
by applying the empty partial plan π′. The algorithm immediately returns
gmoral = 0, as the initial state with no performed actions cannot be morally
impermissible.
Should ni+1 not be the initial node, the construction of Ti+1 gets split up
into two loops. The first loop from line 7 to 17 applies ai to all s′ ∈ Ti if
applicable, otherwise they are skipped with the empty action ε. After all
applicable exogenous actions are applied, the resulting state snext gets added
to Ti+1. Before the facts of snext can be compared to si+1 by Algorithm 4,
all exogenous actions not already applied are attempted by Algorithm 3.

3 MORAL PLANNING ALGORITHM 12

The second for loop in line 18 constructs the half of Ti+1 in which ai is not
present and instead replaced by ε. It is otherwise identical to the first loop.
The gmoral values of all Algorithm 4 calls get summed up and returned, once
the second loop is finished.

3.5 Properties

Lemma 3.1. Algorithm 4 returns

|∀v ∈ V : si+1(v) = d and u(v = d) < 0 and si+1(v) 6= s′(v)| (5)

for an input state s′, reached by a partial plan π′, a morally permissible state
si+1, and early abort = FALSE

Proof. The for loop in line 3 loops over all facts si+1(v) which fulfil the
conditions si+1(v) = d and u(v = d) < 0. For each fact where preventable
harm is found, i.e. if si+1(v) 6= s′(v) (Line 4), line 5 increases gmoral by one,
just like the sum in Equation 5. Should no such fact be found, gmoral = 0 of
line 2 is returned.

Lemma 3.2. Algorithm 7 returns

gmoral(ni) = max
s′∈Ti
|∀v ∈ V : si(v) = d and u(v = d) < 0 and si(v) 6= s′(v)|

(6)
for any input node ni+1, the set of partial actions Ti+1 and the initial state
s0.

Proof. Proof by induction.
Base case: ni+1 = n0, Ti+1 is initialized with s0 as the reached state of an
empty partial plan π′. The algorithm returns 0 as the initial state s0 cannot
be morally impermissible and has no possible partial plans π′.

Induction hypothesis: Assume that the algorithm holds for any input node
ni, i.e. it returns
gmoral(ni) = maxs′∈Ti |∀v ∈ V : si(v) = d and u(v = d) < 0 and si(v) 6= s′(v)|

Induction step: Let ni+1 be the successor to ni, reached by applying ai to
ni. As ni+1 cannot be the initial state, the algorithm immediately executes
the two loops at lines 7 and 18. Each of these loops covers one half of Ti in

3 MORAL PLANNING ALGORITHM 13

Equation 7:

gmoral(ni+1)

max
s′∈Ti
|∀v ∈ V : si+1(v) = d and u(v = d) < 0 and si+1(v) 6= s′(v)|

= max
s′′∈Ti

|∀v ∈ V : si+1(v) = d and u(v = d) < 0 and si+1(v) 6= s′(v)|

+ max
s′′′∈Ti

|∀v ∈ V : si+1(v) = d and u(v = d) < 0 and si+1(v) 6= s′(v)|

(7)

where s′′ stands for states with parent action ai, and s′′′ stands for states
with parent action ε.
For each partial plan π′′, represented as the reached state s′′ ∈ Ti, the new
action ai is either applied or skipped according to the modified semantics.
After application of any exogenous actions, the now reached state snext gets
compared against si+1 by Algorithm 4, which computes the sum of Equation
7 as shown in Lemma 3.1.
The second loop in line 18 constructs the second half of Ti+1 and Equation
7, which consists of the partial plans π′′′ where ai, represented as the reached
state s′′ ∈ Ti, has been replaced by ε. It is otherwise identical to the first
loop. Should there be no preventable harm found by either calls of Algorithm
4 in line 15 and 23, Algorithm 7 returns 0.

3.5.1 Optimality

The shown search algorithm is only satisficing, not optimal. Due to the
inclusion of gmoral in the f()-function, total path cost estimations are no
longer guaranteed to be optimistic, even if an admissible heuristic is used.
An optimal solution can be hidden behind a node with temporary preventable
harm, delaying its expansion with gmoral > 0 long enough for a slightly worse
solution to be expanded and selected first.

3.5.2 Soundness

A search algorithm is considered sound, if the solution returned by the algo-
rithm is correct.

Theorem 3.3. The recursive version of the search algorithm is sound.

Proof. Assuming the search algorithm is not sound, then, given an invalid
solution plan π, one of the following must be true:

1. a0 ∈ π not applicable in s0.

2. π has an inapplicable action in its sequence.

3 MORAL PLANNING ALGORITHM 14

3. π does not end in a valid goal state (ignoring moral permissibility of
this state).

4. π ends in a goal state which is morally impermissible according to
Definition 1.

The algorithms shown in the last chapters influence the search in two ways:
The computation and addition of gmoral to the f()-function merely changes
the node expansion order of A*, and does not exclude any nodes from inser-
tion or removal into and from the open list. The composition of a solution π
is not affected by gmoral in any way.
During goal validation, Algorithm 5 may reject certain states identified as
goals by A*, but does not change the composition of π as well. Therefore,
in order for the algorithm to be not sound, A* would have to construct π in
such a way that it violates at least one of the uppermost three reasons listed
above. This contradicts with the fact that A* is sound.
Any morally impermissible plan π would get rejected by Algorithm 5, as
shown in Lemma 3.2, which contradicts with reason four listed above.

3.5.3 Completeness

A search algorithm is considered complete, if it always returns a solution,
should one exist.

Theorem 3.4. The recursive version of the search algorithm is complete. If
there exists a morally permissible path from s0 to s∗, then the search algorithm
returns a solution path.

Proof. As already outlined in Lemma 3.3, the addition of gmoral to the f()-
function does not influence the composition of solution paths. Assuming
completeness of A*, the only other point in the algorithm where completeness
could be violated is during goal validation in Algorithm 5.
Assume that the search algorithm is not complete. This would mean that
Algorithm 2 returns gmoral > 0 for a morally permissible goal node s∗, causing
Algorithm 5 to reject it. However, this contradicts with Lemma 3.2.

3.6 Implementation in Fast Downward

The algorithm was implemented in Fast Downward (Helmert, 2006) by mod-
ifying one of the already existing search engines, Lazy Best First Search.
When used with a certain set of parameters, Lazy Best First Search behaves
like Weighted A*. Other components of Fast Downward are untouched and
compatible with Moral Planning, such as the choice of heuristic(s) used.

4 BENCHMARK 15

Due to being limited to PDDL 2.2 level 1 (Fox and Long, 2011) of Fast
Downward, outcomes considered morally bad (i.e. with negative utility)
are flagged as such using a binary predicate for each potentially morally
bad outcome. This is not a restriction for the do-no-harm principle, as it
makes no difference how bad preventable harm must be until it is morally
impermissible.
The number of exogenous actions per time step must be one or less. Ad-
ditionally, each time step with an applicable exogenous action may have no
other applicable endogenous actions. This not only prevents the need for
a separate open list for successor candidates expanded with exogenous ac-
tions, it also allows the use of search algorithms as long as they accept PDDL
2.2 domains and problems as an input. Although plans produced by such
algorithms ignore any potential harm done as defined in Definition 1, this
property might still be useful to gauge the performance impact of the Moral
Planning algorithm compared to classical planning on the same domain.
To skip inapplicable actions according to the modified semantics defined in
Chapter 2, a domain must have a wait action ε that advances time by one
time step without doing anything else. This action must always be applicable
in time steps without a exogenous action and must be inapplicable in time
steps with an exogenous action.

4 Benchmark

4.1 Setup

The algorithm was evaluated using Downward Lab (Seipp et al., 2017) by
running it in 3 different configurations against regular A*:

• MA* using the iterative approach of Chapter 3.2 and wmoral = 10.

• MA*abo using the iterative approach of Chapter 3.2, early abort =
TRUE and wmoral = 1000.

• MA*rec using the recursive approach of Chapter 3.4 and wmoral = 10.

• MA*app using the approximate approach of Chapter 3.1 and wmoral =
20.

• MA*ver using the iterative approach of Chapter 3.2 and wmoral = 10,
but only computing gmoral for goal candidates, which is equivalent to
morally unguided search with goal verification.

4 BENCHMARK 16

Additionally, each configuration is run with both the hFF -heuristic (Hoff-
mann and Nebel, 2001) and hblind, which returns 1 in each state except goal
states, where it returns 0. All configurations use a Weighted A* weight of 1,
which makes Weighted A* equivalent to A*. The time-out of Fast Downward
was set to 3600 seconds. These configurations are run on the sokobanMoral
domain with four different problems detailed in the next chapters.

4.2 Domain

The benchmark uses a modified Sokoban domain, originally used at IPC-
2008. Classical Sokoban is a game in which a player needs to push crates
onto goal locations. The map consists of a board of squares, which are either
a floor or a wall, and can be occupied by either the player or a crate. Some
floor squares are marked as goal locations. A solution is found, if the player
manages to cover all goal locations with a crate. To accomplish this, the
player has several different actions it can perform. He can move from square
to square in any cardinal direction, as long as the second square is not a wall
or occupied by a crate. In order to move a crate, the player can push a crate
to the square beyond when occupying a square adjacent to the crate.
To make this domain suitable for moral planning with the do-no-harm prin-
ciple, several additions were made. Squares can now also be occupied by a
cat. The player can move itself or push crates on a square occupied by the
cat, which kills it. This is considered morally impermissible and this outcome
therefore has a negative utility. Additionally, squares can be designated as
a train track. An exogenous action lets a train drive over these tracks at
certain time steps. Should there be a crate on the tracks at this time, the
train crashes, which is considered morally impermissible. All actions have
action cost one, with the exception of the exogenous action, which has the
cost zero. To enforce the execution of all exogenous actions, the goal condi-
tion must require the time step to be at least one step higher than the last
possible exogenous action. With these modifications and the limitations to
the number of exogenous actions per time step outlined in Chapter 3.6, this
domain can also be run with any other classical planner supporting at least
PDDL 2.2 level 1. As these other planners are ignorant towards any morally
impermissible outcome, solutions are unlikely to be acceptable according to
the do-no-harm principle, but might still be useful to gauge the performance
impact of the added moral planning component.

4 BENCHMARK 17

4.3 Limitations

The original Sokoban domain is written in a STRIPS-only (Fikes and Nilsson,
1971) form without any conditional effects or quantifiers. The modified moral
version of this domain called sokobanMoral can be found in the Appendix
of this report. Each action of this domain contains a list of parameters
which are needed for the precondition and effect parts of the action. As a
simplified example, consider the move action of the sokobanMoral domain.
Among others, it requires not only a direction predicate ?dir, but also the
location predicates ?from and ?to.
During the translation component of Fast Downward, where the PDDL do-
main and problem are converted into a SAS planning problem, these actions
are translated into ground operators. This creates a separate operator for
each valid and unique combination of action parameters. In our simpli-
fied example, this means that it creates a separate move operator for every
connected position and direction in which the player could move to. This
phenomenon can lead to potentially unwanted outcomes during the runtime
of the moral planner. Consider the following problem:
Let Figure 1 (a) (Meger, 2018) be the initial state of a planning problem at
time step t0. The player is at position pos-1-3, where 1 denotes the position
on the x-axis and 3 the position on the y-axis. The goal is to push either one
of the crates on the goal location at pos-3-1. A train will pass pos-2-2 at t3.
At time step t3 the player is at pos-3-2 with the following plan:

π = 〈
(move dir-right pos-1-3 pos-2-3),
(move dir-right pos-2-3 pos-3-3),
(push-to-goal dir-up pos-3-3 pos-3-2 pos-3-1)〉

During the calculation of gmoral, one of the possible partial plans π′ is the
plan where the first move action of π has been replaced by the empty action
ε, which is called wait in the sokobanMoral domain:

π′ = 〈
(wait),
(move dir-right pos-2-3 pos-3-3),
(push-to-goal dir-up pos-3-3 pos-3-2 pos-3-1)〉

Intuitively, the expected outcome of π′ would lead to a state at t3 where the
player is at pos-2-2 after it has pushed the crate at pos-2-2 upwards to pos-2-
1. This would eventually lead to an increase of gmoral, due to it preventing the
train crash at t3. However, due to the duplication of move actions into ground

4 BENCHMARK 18

(a) t0 (b) t3

Figure 1

actions during translation, the action (move dir-right pos-2-3 pos-3-3) of π′

is not applicable with the player still being at pos-1-3 after applying the wait
action.
Let π′′ be another partial plan of π, where the second move action of π has
been replaced by the empty action ε:

π′′ = 〈
(move dir-right pos-1-3 pos-2-3),
(wait),
(push-to-goal dir-up pos-3-3 pos-3-2 pos-3-1)〉

In this case, the first move action and the wait action are applicable. The
third action, push-to-goal, is inapplicable due to two reasons. Similarly to π′,
the pos-predicates do not match up with the actual positions of the player,
the crate and the position it is supposed to be pushed to. Additionally, the
position the crate is supposed to be pushed to is no longer a goal location.
Even with the correct pos-predicates, the push-to-goal action would need to
be replaced by the push-to-nongoal action to make it applicable.
Depending on the domain, these issues might lead to unexpected behaviour
where the planner does not recognize morally superior partial plans as such,
and then permitting plans which violate the do-no-harm-principle.
This can be avoided by replacing problematic action parameters as quantified
and conditional effects of an action. A rewritten version of the Sokoban do-
main called sokobanMoralCond can be found in the Appendix. Additionally,

4 BENCHMARK 19

push-to-nongoal and push-to-goal have been combined into a single action
called push, fixing the inapplicability issue of π′′. The planner now correctly
identifies a morally valid solution π∗:

π∗ = 〈
(move dir-right),
(push dir-up),
(move dir-left),
(move dir-up),
(push dir-right)〉

Due to issues with running certain quantified and conditional effects on the
current version of Fast Downward, finding this solution takes 32.902 seconds.
This is due to a blow-up of the translator runtime, which increases from 0.07
seconds to 32.9 seconds when using the sokobanmoralCond domain. The
Iterated Width planner(Geffner and Lipovetzky, 2012) does not experience
this blow-up, both versions of the domain take approximately 0.008 seconds
to find a (morally impermissible) solution. Due to these runtime issues, the
benchmark shown in the following chapters was run on the quantifier-free
sokobanMoral domain only. For the more difficult problems, the planner
would require several hours of runtime per configuration for the translation
part of Fast Downward alone.

4.4 Problems

There are four problems based on this domain.

• The map of Problem 1 is shown in Figure 2. In order to reach the crate
next onto the goal location, the player needs to push the second crate
onto the train tracks. To avoid a train crash at time step 7 for Problem
1 the player can push the crate one square further.

• Problem 2 shown in Figure 3 adds a cat and has an unavoidable train
crash at time step 6.

• Problem 3 shown in Figure 4 requires a significantly longer solution
plan if moral admissibility is needed. Only the right-hand crate needs
to be pushed onto a goal location.

• Problem 4 shown in Figure 5 expands Problem 3 by adding an unavoid-
able train crash at time step 1.

4 BENCHMARK 20

Figure 2: Problem 1

4.5 Results

A* has the lowest total action cost across all four problems. It ignores morally
impermissible states and guarantees the otherwise optimal solution, which
includes the train crash on Problem 1 , and the dead cat on Problem 2, 3
and 4. Even though they are only satisficing, MA*basic, MA*abort, MA*rec
and MA*ver always find the morally optimal plan for all four problems.
Configurations without any stated cost did not terminate within the 3600
second time limit.

Cost A* MA* MA*abo MA*rec MA*app MA*ver

Problem 1 hFF 8 10 10 10 10 10
Problem 1 hblind 8 10 10 10 10 10
Problem 2 hFF 7 9 9 9 9 9
Problem 2 hblind 7 9 9 9 9 9
Problem 3 hFF 5 - 22 - 22 22
Problem 3 hblind 5 - 22 - 22 22
Problem 4 hFF 5 - - - 22 22
Problem 4 hblind 5 - - - 22 22

Unsurprisingly, regular A* also dominates in regards to search time, as these
Problems have very simple but morally impermissible solutions. As none

4 BENCHMARK 21

Figure 3: Problem 2

of the Problems contain temporary preventable harm, MA*abort is always
faster than MA*basic.
With the exception of Problem 2 using hFF , MA*rec performs worse than
MA*abort and MA*ver. This is likely due to the fact that MA*rec lacks
not only early abort, but also the early return of Algorithm 2 Line 5, which
is used in both MA*abort and MA*ver. This early return avoids checking
any partial plans whenever no fact with negative utility exists in the current
expansion candidate. This is usually the case for Problems 1 to 3. Only
Problem 4 has a fact with negative utility in almost all states, due to the un-
avoidable train crash. This is probably the reason why MA*basic, MA*abort
and MA*rec did not manage to compute a solution for Problem 4 within the
time limit.
Another factor why MA*rec performs poorly might be due to a special case
with the special case with the do-no-harm principle, where the empty par-
tial plan is always morally permissible. The empty partial plan always gets
checked first for MA*abort and MA*ver. This allows these configurations to
abort using the early abort in Line 17 of Algorithm 2 almost immediately
for many morally impermissible expansion candidates.
MA*ver performs 2nd best on all configurations except Problem 3 hFF , even
compared to MA*abort. This is probably also due to the special case of the
empty partial plan. Even though MA*ver needed to validate 4674 unique
goal candidates, it outperformed all other configurations. As MA*ver only

4 BENCHMARK 22

Figure 4: Problem 3

validates goal candidates, it only needs to check all partial plans for the fi-
nal, morally permissible goal state. All other goal candidates are morally
impermissible, which gets detected very quickly. As MA*abort also checks
intermediate states for moral permissibility, it encounters many morally per-
missible intermediate states which need their complete power set of par-
tial plans checked. This is significantly slower, as such a power set of par-
tial plans for a solution path of length 22 as found in Problem 4 contains
222 = 4194304 partial plans. Even with a perfect heuristic, given a expan-
sion candidate with plan length 22, MA*abort has to check a minimum of
21 + 22 + 23...+ 222 = 223 − 2 = 8388606 partial plans to compute a morally
permissible solution path. As such a perfect heuristic is generally not avail-
able, MA*abort performs many times worse than MA*ver on problems with
longer solution plan lengths.
The approximative approach MA*app performs best on Problem 3 and 4.
In Problem 3, the approximation of gmoral is accurate in all states, as there
are no possible facts with negative utility which would not be caused by the
player. In Problem 4, the approximation is inaccurate in almost all states,
due to the inevitable train crash. However, this does not negatively affect
the search, as the inaccuracy is the same for all these states, which negates
its influence on the search guidance.
Another interesting result is the comparison between the performance of hFF
versus hblind. hFF does not perform significantly faster than hblind on many
problems. This is likely at least partially due to the following two reasons.
For very simple problems such as Problem 1, the overhead of initialising

4 BENCHMARK 23

Figure 5: Problem 4

hFF is probably the reason why it performs worse than hFF for MA*abort
and MA*ver. In the case of Problem 3 and 4, hFF causes the generation of
more goal candidates than hblind, before a valid solution is found. This might
be due to the fact that hFF is unaware of any moral permissibility. If for
example MA*ver in Problem 3 rejects a goal candidate with a solution path
π due to a dead cat caused by some action a in π, the hFF values for plans
very similar to π do not increase, even for a plan π′ which is identical to π
except for a additional wait action ε right before killing the cat. This is due
to the fact that the f()-value for similar, slightly different, plans such as π′

is still comparatively low, due to the seemingly great short-cut by running
the cat over.

Search time
in sec

A* MA* MA*abo MA*rec MA*app MA*ver

Problem 1 hFF 0.006 0.429 0.015 5.217 0.011 0.010
Problem 1 hblind 0.001 0.571 0.009 9.314 0.008 0.002
Problem 2 hFF 0.001 0.767 0.679 0.312 0.039 0.040
Problem 2 hblind 0.001 4.400 3.523 8.143 0.037 0.035
Problem 3 hFF 0.003 > 3600 0.254 > 3600 0.213 0.629
Problem 3 hblind 0.001 > 3600 0.321 > 3600 0.168 0.216
Problem 4 hFF 0.003 > 3600 > 3600 > 3600 775.39 808.73
Problem 4 hblind 0.001 > 3600 > 3600 > 3600 743.72 851.09

4 BENCHMARK 24

Expansions
(Goal cand.)

A* MA* MA*abo MA*rec MA*app MA*ver

Problem 1 hFF 172 177(1) 177(1) 177(1) 177(1) 246(22)
Problem 1 hblind 235 313(1) 313(1) 313(1) 313(1) 388(5)
Problem 2 hFF 12 42(1) 42(1) 42(1) 53(1) 134(29)
Problem 2 hblind 102 78(1) 78(1) 78(1) 114(1) 148(4)
Problem 3 hFF 19 - 805(1) - 805(1) 3737(1778)
Problem 3 hblind 47 - 3820(1) - 3820(1) 10672(1638)
Problem 4 hFF 18 - - - 2112(1) 10656(5619)
Problem 4 hblind 53 - - - 9553(1) 26330(4674)

5 CONCLUSION 25

5 Conclusion

This paper has shown a method to solve a planning problem while respecting
the do-no-harm principle, by guiding the search away from morally prob-
lematic state expansions. In the benchmark section it was shown that this
approach can find a morally permissible solution, as long as the required solu-
tion path is not too long. Evaluation has also revealed that classic heuristics
are not suited for this kind of task, and may even harm the search time of the
algorithm compared to using no heuristic at all. Defining and implementing
such a moral heuristic could be part of future work.
Another issue are the limitations regarding the modelling of a moral domain
for Fast Downward. The translator runtime issue described in Chapter 4.3
could possibly be solved by rewriting the domain into a form which suits Fast
Downward better. Another possible solution might be to identify functionally
identical actions in partial plans during runtime of the planner. In that case
the domain could remain in a STRIPS-only form.
It might also make sense to disallow temporary preventable harm in the def-
inition of the do-no-harm-principle. Not only is the concept of temporary
preventable harm not very intuitive, removing it would likely speed up the
search significantly, as states with preventable harm could be closed perma-
nently even before they are expanded. Other possible future work includes
proving whether the modified semantics are needed for this approach or not.
Removal of the modified semantics would likely reduce the number of par-
tial plans with identical end state dramatically, as most partial plans cur-
rently consist of many empty actions ε due to one inapplicable action leading
to even more inapplicable actions. Alternatively, a method to identify and
merge identical end states of partial plans in the recursive approach could
speed up the search greatly, as the size of Ti would not grow as fast with in-
creasing path length as it currently does. The recursive approach also lacks
some form of early abort, to prevent the need to compute all partial plans.
This could be done on demand, where some previously unneeded part of Ti
only gets computed if it is needed during computation of Ti+1.
Lastly, other moral principles such as do-no-instrumental-harm could be im-
plemented in a similar fashion shown in this paper. The performance of
guided search approaches compared to goal verification might be better for
moral principles without the special case of the empty partial plan, which is
always morally permissible.

REFERENCES 26

References

C. Allen, W. Wallach, and I. Smit. Why machine ethics? IEEE Intelligent
Systems, 21(4):12–17, July 2006. ISSN 1541-1672. doi: 10.1109/MIS.2006.
83.

Michael Anderson and Susan Leigh Anderson. Machine ethics: Creating an
ethical intelligent agent. AI Magazine, 28(4):15, 2007.

Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ plan-
ning. Computational Intelligence, 11:625–655, 1993.

Stephen Cresswell and Alexandra Coddington. Planning with timed literals
and deadlines. In Proceedings of the 21st Workshop of the UK Planning
and Scheduling SIG, pages 22–35, 2003.

Julia Driver. Ethics: the fundamentals. John Wiley & Sons, 2013.

Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the appli-
cation of theorem proving to problem solving. Artificial Intelligence, 2(3):
189 – 208, 1971. ISSN 0004-3702.

Philippa Foot. The problem of abortion and the doctrine of double effect.
1967.

Maria Fox and Derek Long. PDDL2.1: an extension to PDDL for expressing
temporal planning domains. CoRR, abs/1106.4561, 2011.

Maria Fox, Richard Howey, and Derek Long. Validating plans in the context
of processes and exogenous events. In Proceedings of the 20th National
Conference on Artificial Intelligence (AAAI 2005), volume 5, pages 1151–
1156, 2005.

Héctor Geffner and Nir Lipovetzky. Width and serialization of classical plan-
ning problems. 2012.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, July 1968. ISSN 0536-1567. doi:
10.1109/TSSC.1968.300136.

Malte Helmert. The fast downward planning system. J. Artif. Int. Res., 26
(1):191–246, July 2006. ISSN 1076-9757.

REFERENCES 27

Jörg Hoffmann and Bernhard Nebel. The ff planning system: Fast plan gener-
ation through heuristic search. Journal of Artificial Intelligence Research,
14:253–302, 2001.

Kenneth E Iverson. A programming language. In Proceedings of the May
1-3, 1962, spring joint computer conference, pages 345–351. ACM, 1962.

Felix Lindner, Robert Mattmüller, and Bernhard Nebel. Moral permissi-
bility of action plans. In Proceedings of the ICAPS-2018 Workshop on
eXplainable AI Planning (XAIP 2018), 2018.

Matthias Meger. JSoko, 2018. URL https://sourceforge.net/
projects/jsokoapplet/.

Jussi Rintanen. Expressive equivalence of formalisms for planning with sens-
ing. In Proceedings of the 13th International Conference on Automated
Planning and Scheduling (ICAPS 2003), pages 185–194, 2003.

Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert.
Downward lab, 2017. URL https://doi.org/10.5281/zenodo.
790461.

6 APPENDIX 28

6 Appendix

