Fast Downward Aidos
Jendrik Seipp and Florian Pommerening and Silvan Sievers and Martin Wehrle
University of Basel
Basel, Switzerland
{jendrik.seipp,florian.pommerening,silvan.sievers,martin.wehrle}@unibas.ch

Chris Fawcett
University of British Columbia
Vancouver, Canada
fawcettc@cs.ubc.ca

Yusra Alkhazrajji
University of Freiburg
Freiburg, Germany
alkhazry@informatik.uni-freiburg.de

This paper describes the three Fast Downward Aidos portfolios we submitted to the Unsolvability International Planning Competition 2016. All three Aidos variants are implemented in the Fast Downward planning system (Helmert 2006). We use a pool of techniques as a basis for our portfolios, including various techniques already implemented Fast Downward, as well as three newly developed techniques to prove unsolvability.

We used automatic algorithm configuration to find a good Fast Downward configuration for each of a set of test domains and used the resulting data to select the components, their order and their time slices for our three portfolios.

For Aidos 1 and 2 we made this selection manually, resulting in two portfolios comprised mostly of the three new techniques. Aidos 1 distributes the 30 minutes based on our experiments, while Aidos 2 distributes the time uniformly.

Aidos 3 contains unmodified configurations from the tuning process with time slices automatically optimized for the number of solved instances per time. It is based both on the new and existing Fast Downward components.

The remainder of this planner abstract is organized as follows. First, we describe the three newly developed techniques. Second, we list the previously existing components of Fast Downward that we have used for configuration. Third, we describe the benchmarks used for training and test sets. Fourth, we describe the algorithm configuration process in more detail. Finally, we briefly describe the resulting portfolios.

Dead-End Pattern Database
A dead-end pattern database (PDB) stores a set of partial states that are reachable in some abstraction, and for which no plan exists in the abstraction. Every state s encountered during the search can be checked against the dead-end PDB: if s is consistent with any of the stored partial states, then s can be pruned.

Since we also submitted a stand-alone planner using only a dead-end PDB to the IPC, we refer to its planner abstract (Pommerening and Seipp 2016) for details on this technique.

Dead-end Potentials
Dead-end potentials can prove that there is no plan for a state s by finding an invariant that must be satisfied by all states reachable from s but that is unsatisfied in every goal state. The invariants we consider are based on potentials, i.e., numerical values assigned to each state. If potentials exist such that

1. no operator application decreases a state’s potential, and
2. the potential of s is higher than the potential of all goal states,

then there cannot be a plan for s.

In order to describe the form of potentials used in our implementation, we first introduce more terminology. A feature is a conjunction of facts. We say that feature F is true in state s if all facts of F are true in s. We define a numerical weight for each feature. The potential of a state s is defined as the sum of all weights for the features that are true in s.

If the planning task is in transition normal form (Pommerening and Helmert 2015), the conditions (1) and (2) can be expressed as linear constraints over the feature weights. We can use an LP solver to check if there is a solution for these constraints. A solution of the LP forms a certificate for the unsolvability of s.

Dead-end potentials can show unsolvability using any set of features. The default feature set we use in most configurations contains all features of up to two facts. We note that the dual of the resulting LP produces an operator counting heuristic (Pommerening et al. 2014). In fact, this is the implementation strategy we used for this method.

We use dead-end potentials to prune dead ends in every encountered state. Since only the bounds of the LP differ between states, the LP can be reused by adapting the bounds instead of having to be recreated for every state.

Resource Detection
For a given planning task Π with operator cost function cost, we check for depletable resource variables (shortly called resource variables in the following). We call a variable v a resource variable if the atomic projection Π_v of Π onto v yields, apart from self-loops, a directed acyclic graph (DAG). Intuitively, if this is the case, the number of operator applications that change the value of v is bounded. We use this knowledge for pruning an optimal search in the projection of Π onto all variables except v, called Π^v.

Currently, our approach handles only a single resource variable. This resource variable is computed as follows. For
II’s variable set V, we check for each variable v in V if the above DAG property and an additional quality criterion hold for v. The additional quality criterion requires i) the domain size of v to be ≥ 5, and ii) the number of operators in Π' to be at most 85% of the number of operators in Π. If no such resource variable is found, we abort immediately (and switch to the other configurations in our portfolios). If there are several such resource variables, we choose the one with the largest domain size among them. Overall, we either end up with no resource variable found (abstaining from the following steps), or with exactly one variable with the above properties on acyclicity, domain size, and operator reduction in the corresponding abstractions.

In case a resource variable v has been found, we exploit this variable for detecting unsolvability as follows. Consider any cost function $cost'$ that maps operators inducing self-loops in Π' to 0. Let L be the cost of the most expensive path in Π' using $cost'$ (L is finite because the state space of Π' is a DAG except for edges where $cost'$ is 0). Every operator sequence $\pi = (o_1, \ldots, o_n)$ with $cost'(\pi) > L$ cannot be applicable in Π because its cost exceeds the highest possible cost in the projection Π^v. Thus every plan π of Π must have $cost'(\pi) \leq L$. The projection of these plans to $V \setminus \{v\}$ must be a plan in Π^v. We hence obtain a sufficient criterion for checking unsolvability of Π: Perform an optimal search for Π^v with an f-bound equal to L; if no plan is found in Π^v this way, then Π is unsolvable.

Any cost function $cost'$ which maps self-loops in Π^v to 0 works for this technique, but some lead to more pruning in Π^v’s search space than others. A node is pruned in the search for Π^v if its f-value exceeds L, so a good cost function maximizes the number of operator sequences with maximal cost in Π^v. We compute $cost'$ by solving a linear program. Let O be the operator set in Π with corresponding abstract operator set O^v in Π^v. We maximize the weighted sum

$$\sum_{o^v \in O^v} cost(o^v) \cdot |\{o \in O | o^v \text{ is the projection of } o\}|,$$

using the constraints that the summed $cost'$ values are L on every path in Π^v from the source of the DAG (the initial value of v) to an artificial sink connecting all sinks of the DAG. In our implementation, we fix L to 1000. Every other value of L would have correspondingly scaled solutions of $cost'$ but since we round costs to integers, we have to set L sufficiently high to avoid rounding too many different costs to the same value.

Other Fast Downward Components

In addition to the three techniques described above, we used the following Fast Downward components for detecting unsolvability.

Search We implemented a simple breadth-first search that we used for most configurations. Compared to Fast Downward’s general-purpose eager best-first search, it has a considerably smaller overhead. This search method is called unsolvable_search in the configurations listed in the appendix.

Configurations using resource detection must find optimal plans in the projection where the resource variable is projected out of the task. For those configurations, we used A^* search.

Heuristics In addition to our new techniques, we made the following heuristics available for configuration.

- Blind heuristic
- CEGAR (Seipp and Helmert 2013; 2014): additive and non-additive variants
- h^m (Haslum and Geffner 2000): naive implementation
- h^{max} (Bonet, Loerincs, and Geffner 1997; Bonet and Geffner 1999)
- LM-cut (Helmert and Domshlak 2009)
- Merge-and-shrink (Helmert et al. 2014; Sievers, Wehrle, and Helmert 2014)
- Operator counting heuristics (Pommerening et al. 2015).
- The canonical PDBs heuristic either combining PDBs from systematically generated patterns (Pommerening, Röger, and Helmert 2013) or PDBs from iPDB hill climbing (Haslum and Geffner 2007), and the zero-one PDBs heuristic combining PDBs from a genetic algorithm (Edelkamp 2006). Sievers, Ortlieb, and Helmert (2012) describe implementation details.
- Potential heuristics (Pommerening et al. 2015) with different objective functions as described by Seipp, Pommerening, and Helmert (2015). We also added a variant of the potential heuristic that maximizes the average potential of all syntactic states (called unsolvable-all-states-potential heuristic). This variant sets all operator costs to zero, allowing to prune all states with a positive potential.

Pruning We used the following two pruning methods:

- Strong stubborn sets: the first variant instantiates strong stubborn sets for classical planning in a straight-forward way (Alkhazraj et al. 2012; Wehrle and Helmert 2014). The second variant (Wehrle et al. 2013) provably dominates the Expansion Core method (Chen and Yao 2009) in terms of pruning power.
- While the standard implementation of strong stubborn sets in Fast Downward entirely precomputes the interference relation, we enhanced the implementation by computing the interference relation “on demand” during the search, and by switching off pruning completely in case the amount of pruned states falls below a given threshold.
- h^2-mutexes (Alcázar and Torralba 2015): an operator pruning method for Fast Downward’s preprocessor. We use this method for all three portfolios.

Benchmarks

In this section we describe the benchmark domains we used for evaluating our heuristics and for automatic algorithm configuration.

We used the collection of unsolvable tasks from Hoffmann, Kissmann, and Torralba (2014) comprised of
the domains 3unsat, Bottleneck, Mystery, Pegsol, RCP-NoMystery, RCP-Rovers, RCP-TPP and Tiles. Furthermore, we used the unsolvable Maintenance (converted to STRIPS) and Tetris instances from the IPC 2014 optimal track.

Finally, we created two new domains and modified some existing IPC domains to contain unsolvable instances. The following list describes these domains.

Cavediving (IPC 2014). We generated unsolvable instances by limiting the maximal capacity the divers can carry.

Childsnack (IPC 2014). We generated unsolvable instances by setting the ratio of available ingredients to required servings to values less than 1.

NoMystery (IPC 2011). We generated unsolvable instances by reducing the amounts of fuel available at each location.

Parking (IPC 2011). We generated unsolvable instances by setting the number of cars to $2l - 1$, where l is the number of parking curb locations.

Sokoban (IPC 2008). We used the twelve methods described by Zerr (2014) for generating unsolvable instances.

Spanner (IPC 2011). We generated unsolvable instances by making the number of nuts exceed the number of spanners.

Pebbling (New). Consider a square $n \times n$ grid. We call the three fields in the upper left corner (i.e., coordinates $(0, 0)$, $(0, 1)$ and $(1, 0)$) the prison. The prison is initially filled with pebbles, all other fields are empty. A pebble on position (x, y) can be moved if the fields $(x + 1, y)$ and $(x, y + 1)$ are empty. Moving the pebble "clones" it to the free fields, i.e., the pebble is removed from (x, y) and new pebbles are added to $(x + 1, y)$ and $(x, y + 1)$. The goal is to free all pebbles from the prison, i.e., have no pebble on a field in the prison. This problem is unsolvable for all values of n.

PegsolInvasion (New). This domain is related to the well-known peg solitaire board game. Instead of peg solitaire’s “cross” layout, PegsolInvasion tasks have a rectangular $m \times n$ grid, where $m = n + x > n$. Initially, the $n \times n$ square at the bottom of the grid is filled with pegs. The goal is to move one peg to the middle of the top row using peg solitaire movement rules. This problem is unsolvable for all values of $n \geq 1$ and $x \geq 5$.

Algorithm Configuration

In the spirit of previous work (Vallati et al. 2011; Fawcett et al. 2011; Seipp et al. 2012; 2015), we used algorithm configuration to find configurations for unsolvable planning tasks. Here, we employed SMAC v2.10.04, a state-of-the-art model-based configuration tool (Hutter, Hoos, and Leyton-Brown 2011).

Some of the heuristics listed above are not useful for proving unsolvability. On the other hand, all of the mentioned heuristics are useful for our resource detection method, since we try to solve the modified tasks. We therefore considered two algorithm configuration scenarios for Fast Downward, one tailored towards unsolvability detection, the other towards resource detection.

Configuring for Unsolvability

Our configuration space for detecting unsolvability only includes one search algorithm, our new breadth-first search. We include all new techniques, existing heuristics and pruning methods described above, except for the following heuristics:

- All potential heuristics other than the unsolvable-all-states-potential heuristic. Since the other variants use bounds on each weight, they always compute finite heuristic values and will never prune any state.
- The canonical PDBs heuristic and the zero-one PDBs heuristic. Both techniques can increase the heuristic value, but will not lead to more pruning than taking the maximum over the PDBs.
- LM-cut, because it can only detect states as unsolvable that are also detected as unsolvable by h_{max}, which is faster to compute.
- Additive variant of CEGAR.

Using several hand-crafted Fast Downward configurations, we identified domains from our benchmark set containing easy-non-trivial instances, i.e., instances that are not trivially unsolvable and for which one or more of the configurations could prove unsolvability within 300 CPU seconds. These domains were 3unsat, Cavediving, Mystery, NoMystery, Parking, Pegsol, Tiles, RCP-NoMystery, RCP-Rovers, RCP-TPP, and Sokoban. The three RCP domains were further subdivided by instance difficulty into two sets each, allowing algorithm configuration to find separate configurations for easy and hard tasks. We used the easy-non-trivial instances as the training sets for each problem domain, while keeping any remaining instances from each domain for use in a held-out test set not used during configuration.

We then performed 10 independent SMAC runs for each of the 14 domain-specific training sets. Each SMAC run was allocated 12 CPU hours of runtime, and each individual run of Fast Downward was given 300 CPU seconds of runtime and 8 GB of memory. The starting configuration was a combination of the dead-end pattern database and operator counting heuristics. The 10 best configurations selected by SMAC for each considered domain were evaluated on the corresponding test set. We selected the configuration with the best penalized average runtime (PAR-10) as the incumbent configuration for that domain.

We then extended the training set for each domain by including any instances for which unsolvability was proven in under 300 CPU seconds by the incumbent configuration.
for that domain. Then we performed an additional 10 independent runs of SMAC on the new training sets for each domain, using the incumbent configuration for that domain as the starting configuration. We again evaluated the 10 best configurations for each domain on the corresponding test set, and selected the configuration with the highest PAR-10 score as the representative for this domain.

Configuring for Resource Detection

Our configuration space for resource detection allows only A* search, but includes all other components described above (new techniques, all listed heuristics and pruning methods).

We chose the easy-non-trivial instances from the three RCP domains as our benchmark set. Similar to the procedure above we subdivided the tasks from the three domains into three sets by difficulty, yielding 9 benchmark sets in total.

We employed the same procedure as above for finding representative configurations from the resource detection configuration space for these 9 sets. In this scenario we used LM-cut as the starting configuration.

Portfolios

Using the representative configurations from the two configuration scenarios described above, we obtained a total of 23 separate Fast Downward configurations. We evaluated the performance of each on our entire 928-instance benchmark set with a 1800 CPU second runtime cutoff. We used the resulting data for constructing Aidos 1 and 2 manually, and for computing Aidos 3 automatically.

Manual portfolios: Aidos 1 and 2

Analyzing the results, we distilled three configurations that together solve all tasks solved by any of the 23 representative configurations. The three configurations use h^2-mutexes during preprocessing and stubborn sets to prune applicable operators during search. In particular, they use the stubborn sets variant that provably dominates EC (called stubborn_sets_ec in the appendix). We adjusted the minimum pruning threshold individually for the three techniques. Techniques that can be evaluated fast on a given state got a higher minimum pruning threshold. The three configurations differ in the following aspects:

C1 Breadth-first search using a dead-end pattern database.

C2 Breadth-first search using dead-end potentials with features of up to two facts.

C3 Resource detection using an A* search. The search uses the CEGAR heuristic and operator counting with LM-cut and state equation constraints.

Adding other heuristics did not increase the number of solved tasks on our benchmark set. The three configurations did not dominate each other, so it made sense to include all of them in our portfolio. The only question was how to order them and how to assign the time slices.

Both C1 and C2 prove many of our benchmark tasks unsolvable in the initial state. On such instances the configurations usually take less than a second. Since the unsolvability IPC uses time scores to break ties we start with two short runs of C1 and C2. This avoids spending a lot of time using one configuration, when another solves the task very quickly.

Next, we run the resource detection method (C3). It will be inactive on tasks where no resources are found and therefore not consume any time. Experiments showed that the dead-end potentials use much less memory than the dead-end PDB. To avoid a portfolio that runs out of memory while executing the last component and therefore does not use the full amount of time, we put the dead-end potentials (C2) last.

Results on our benchmarks showed that C3 did not solve any additional tasks after 420 seconds. Similarly, C2 did not solve any additional tasks after 100 seconds. Since C1 tends to solve more tasks if given more time, we limited the times for the other two configurations to 420 and 100 seconds and allotted the remaining time (1275 seconds) to C1.

Aidos 2 is almost identical to Aidos 1, the only difference being that it equally distributes the time among the three main portfolio components.

Automatic portfolio: Aidos 3

In order to automatically select configurations and assign both order and allocated runtime for Aidos 3, we used the greedy schedule construction technique of Streeter and Smith (2008). Briefly, given a set of configurations and corresponding runtimes for each on a benchmark set, this technique iteratively adds the configuration which maximizes $\frac{n}{t}$, where n is the number of additional instances solved within a runtime cutoff of t. This can be efficiently solved for a given benchmark set, as the runtime required for each configuration on each instance is known and thus a finite set of possible t need to be considered. Usually, this results in a schedule beginning with many configurations and short runtime cutoffs in order to quickly capture as much coverage as possible. In order to avoid schedule components with extremely short runtime cutoffs, we set a minimum of 1 CPU second for each component.

Using the performance of the 23 configurations obtained from our two configuration scenarios configurations evaluated on our entire benchmark set (i.e., all domains without distinction of training or test set), this process resulted in the Aidos 3 portfolio with 11 schedule components and runtime cutoffs ranging from 2 to 1549 CPU seconds. All configurations use h^2-mutexes during preprocessing.

Post IPC Evaluation

Aidos achieved the first place in the IPC. Since Aidos is composed many components we performed experiments to explain its performance to some degree. To do so, we ran all three versions of Aidos and its individual components on the same hardware as in the competition. This comprises the portfolios (denoted Aidos 1, Aidos 2, and Aidos 3 in the following tables and figures); our simple breadth-first search (blind); two versions of the dead-end PDBs, one with a 1s
limit to compute the PDB (PDBs 1s 80%) and one with a 300s limit (PDBs 300s 80%); the resource detection (resources 50%); and the dead-end potentials (potentials 20%). The percentage behind the configuration name relates to the safety-belt we added to the stubborn-sets pruning technique: To avoid wasting runtime when no pruning is possible, we added a safety-belt feature to the stubborn-sets pruning technique, which switches it off if less than x% of operators are pruned during the first 1000 expansions. This is the percentage included in the configuration names if the configuration uses this technique. Finally, we ran all of the above configurations without using h^2 mutexes in the preprocessor.

Domain-wise Coverage

We start with a discussion of domain-wise coverage on the benchmarks used in the IPC. Table 1 shows the number of solved tasks by domain for the different configurations. During the IPC Aidos crashed for some tasks from the diagnosis domain because the translator created conditional effects. Therefore Table 1 includes results for a version of the translator that works around this, shown in the last row.

Effect of Dead-end PDB Preprocessing Time

Recall that Aidos 1 was set up so that dead-end PDBs get the largest time slice and use 50% of that time for preprocessing. In our pre-IPC experiments adding more time often lead to a higher coverage. In the IPC this effect was minimal: Aidos 1 solves two more tasks than Aidos 2, which has a shorter time slice for dead-end PDBs. Also the coverage of dead-end PDBs as a single configuration only has a 2 task difference between 1s (PDBs 1s 80%) and 300s (PDBs 1s 80%) preprocessing time. The domains where this makes a difference are mostly the oversubscription domains (over-nomystery, over-rovers, and over-tpp).

Effect of Resource Detection

We only detect a depletable resource in the oversubscription domains. Detecting that fuel is a resource in over-nomystery leads to good results, but dead-end PDBs solve more tasks. Using the energy level in over-rovers as a resource is not as helpful, because there are two rovers and projecting out the energy consumption of only one of them means that the other one can achieve all goal fluents for free. In over-tpp we detect money as the resource, which works quite well, but again dead-end PDBs perform at least as good. All in all, resource detection did not provide an advantage in the IPC domains.

Effect of Dead-end Potentials

Several domains are completely solved by this heuristic, i.e., the initial state of all unsolvable tasks is detected as a dead end. These are bag-gripper, bag-transport, bottleneck, chessboard-pebbling, pegsol-row5 and tetr. Additionally, the dead-end potentials detect some tasks from the over-tpp domain as unsolvable in the initial state. Without using h^2-mutexes in the preprocessor, we no longer detect all tasks from the domains bag-gripper and bag-transport as unsolvable in the initial state.

Effect of Pruning

We performed additional experiments, not shown here, to evaluate the impact of the stubborn-sets

<table>
<thead>
<tr>
<th>Coverage</th>
<th>with h^2 mutexes</th>
<th>without h^2 mutexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagnosis (fix)</td>
<td>11 12 11 10 11 11</td>
<td>11 12 11 11 11 11</td>
</tr>
<tr>
<td>tetr (20)</td>
<td>10 10 10 10 10 10</td>
<td>12 12 12 12 12 12</td>
</tr>
<tr>
<td>pegsol-row5 (20)</td>
<td>15 15 15 15 15 15</td>
<td>15 15 15 15 15 15</td>
</tr>
<tr>
<td>pegsol (29)</td>
<td>24 24 24 24 24 24</td>
<td>12 12 12 12 12 12</td>
</tr>
<tr>
<td>over-tpp (34)</td>
<td>26 26 26 26 26 26</td>
<td>26 26 26 26 26 26</td>
</tr>
<tr>
<td>over-rovers (26)</td>
<td>13 13 12 12 12 12</td>
<td>14 14 14 14 14 14</td>
</tr>
<tr>
<td>over-nomystery (29)</td>
<td>14 14 14 14 14 14</td>
<td>14 14 14 14 14 14</td>
</tr>
<tr>
<td>cave-diving (30)</td>
<td>28 28 28 28 28 28</td>
<td>28 28 28 28 28 28</td>
</tr>
<tr>
<td>chessboard-pebbling (23)</td>
<td>23 23 23 23 23 23</td>
<td>23 23 23 23 23 23</td>
</tr>
<tr>
<td>diagnosis (32)</td>
<td>6 6 6 6 6 6 6</td>
<td>5 5 5 5 5 5 6</td>
</tr>
<tr>
<td>document-transfer (34)</td>
<td>13 13 14 14 14 14</td>
<td>13 13 14 14 14 14</td>
</tr>
<tr>
<td>over-nomystery (29)</td>
<td>14 14 14 14 14 14</td>
<td>14 14 14 14 14 14</td>
</tr>
<tr>
<td>over-tpp (34)</td>
<td>26 26 26 26 26 26</td>
<td>26 26 26 26 26 26</td>
</tr>
<tr>
<td>pegsol (29)</td>
<td>24 24 24 24 24 24</td>
<td>24 24 24 24 24 24</td>
</tr>
<tr>
<td>pegsol-row5 (20)</td>
<td>15 15 15 15 15 15</td>
<td>15 15 15 15 15 15</td>
</tr>
<tr>
<td>sliding-tiles (25)</td>
<td>10 10 10 10 10 10</td>
<td>10 10 10 10 10 10</td>
</tr>
<tr>
<td>diagnosis (488)</td>
<td>263 261 251 174 193 195</td>
<td>243 241 229 137 167 173</td>
</tr>
</tbody>
</table>

Table 1: Number of solved tasks.
pruning technique with blind search. Blind search without pruning and blind search with pruning (20% and 80% safety-belt) showed no difference in coverage and no dramatic difference in the number of expansions. We assume that pruning was switched off in most domains. The domains with a difference in expansions are chessboard-pebbling (which is solved completely by the dead-end potentials), diagnosis and over-tpp (only one task where minor pruning occurs).

In our pre-IPC experiments pruning was mainly useful for domains like 3unsat that have a lot of order-independent choices.

Effect of Using h^2 Mutexes in the Preprocessor Without the preprocessor, the coverage of Aidos 1 would have been 20 tasks lower. This difference stems from the domains bag-gripper (25 vs. 8), bag-transport (28 vs. 25), diagnosis (6 vs. 5) and over-rovers (13 vs. 14). The domain bottleneck, which is completely solved by the preprocessor, is also solved by dead-end potentials in the initial state. Similar results can be observed for all other configurations.

Effect of Resource Limits

We now turn towards an analysis of the configurations with respect to time and memory limits. Figures 1 and 2 show the number of tasks solved with different memory and time bounds for the individual configurations. As expected, dead-end PDBs and dead-end potentials solve a large number of tasks in the initial state. The two dead-end PDB configurations show a jump in the number of solved tasks when the search starts (i.e., after 1 or 300 seconds). In these cases, the initial state is not recognized as a dead end, but blind search pruning states with the discovered dead ends is strong enough to quickly exhaust the search space. Looking at Figure 2 shows that not many tasks required more than 2 GB of memory.

Which Component is Most Useful in Which Domain?

We tried to determine which component was responsible for solving tasks in each domain. This is often hard to judge, because in some domains each of many components could be sufficient and in other domains only certain combinations of components are able to achieve a high coverage. The following table lists our interpretation of the experiments.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Most influential component</th>
</tr>
</thead>
<tbody>
<tr>
<td>bag-barman</td>
<td>dead-end PDBs</td>
</tr>
<tr>
<td>bag-gripper</td>
<td>dead-end potentials + h^2 mutexes</td>
</tr>
<tr>
<td>bag-transport</td>
<td>dead-end potentials + h^2 mutexes</td>
</tr>
<tr>
<td>bottleneck</td>
<td>dead-end potentials or h^2 mutexes (either technique is sufficient to solve all tasks)</td>
</tr>
<tr>
<td>cave-diving</td>
<td>breadth-first search (+ maybe dead-end PDBs)</td>
</tr>
<tr>
<td>chessboard-pebbling</td>
<td>dead-end potentials</td>
</tr>
<tr>
<td>diagnosis</td>
<td>breadth-first search</td>
</tr>
<tr>
<td>document-transfer</td>
<td>dead-end PDBs or dead-end potentials + h^2 mutexes or breadth-first search + h^2 mutexes (all three are similar)</td>
</tr>
<tr>
<td>over-nomystery</td>
<td>dead-end PDBs</td>
</tr>
<tr>
<td>over-rovers</td>
<td>dead-end PDBs</td>
</tr>
<tr>
<td>over-tpp</td>
<td>dead-end PDBs or resource detection breadth-first search (almost every technique solves every task)</td>
</tr>
<tr>
<td>pegsol</td>
<td>dead-end potentials</td>
</tr>
<tr>
<td>pegsol-row5</td>
<td>breadth-first search</td>
</tr>
<tr>
<td>sliding-tiles</td>
<td>(problems are either too easy or too hard)</td>
</tr>
<tr>
<td>tetris</td>
<td>dead-end potentials</td>
</tr>
</tbody>
</table>
Acknowledgments

We would like to thank all Fast Downward contributors. We are especially grateful to Malte Helmert, not only for his work on Fast Downward, but also for many fruitful discussions about the unsolvability IPC. Special thanks also go to Álvaro Torralba and Vidal Alcázar for their h^2-mutexes code.

References

Appendix – Fast Downward Aidos Portfolios

We list the configurations forming our three portfolios. Our portfolio components have the form of pairs (time slice, configuration), with the first entry reflecting the time slice allowed for the configuration, which is in turn shown below the time slice.

Aidos 1

1,
--heuristic h_seq=operatorcounting([state_equation_constraints(),
 feature_constraints(max_size=2)], cost_type=zero)
--search unsolvable_search([h_seq], pruning=stubborn_sets_ec(
 min_pruning_ratio=0.20))

4,
--search unsolvable_search([deadpdbs(max_time=1)], pruning=stubborn_sets_ec(
 min_pruning_ratio=0.80))

420,
--heuristic h_seq=operatorcounting([state_equation_constraints(),
 lmcut_constraints()])
--heuristic h_cegar=cegar(subtasks=[original()], pick=max_hadd, max_time=relative time 75, f_bound=compute)
--search astar(f_bound=compute, eval=max([h_cegar, h_seq]),
 pruning=stubborn_sets_ec(min_pruning_ratio=0.50))

1275,
--search unsolvable_search([deadpdbs(max_time=relative time 50)],
 pruning=stubborn_sets_ec(min_pruning_ratio=0.80))

100,
--heuristic h_seq=operatorcounting([state_equation_constraints(),
 feature_constraints(max_size=2)], cost_type=zero)
--search unsolvable_search([h_seq], pruning=stubborn_sets_ec(
 min_pruning_ratio=0.20))

Aidos 2

1,
--heuristic h_seq=operatorcounting([state_equation_constraints(),
 feature_constraints(max_size=2)], cost_type=zero)
--search unsolvable_search([h_seq], pruning=stubborn_sets_ec(
 min_pruning_ratio=0.20))

4,
--search unsolvable_search([deadpdbs(max_time=1)], pruning=stubborn_sets_ec(
 min_pruning_ratio=0.80))

598,
--heuristic h_seq=operatorcounting([state_equation_constraints(),
 lmcut_constraints()])
--heuristic h_cegar=cegar(subtasks=[original()], pick=max_hadd, max_time=relative time 75, f_bound=compute)
--search astar(f_bound=compute, eval=max([h_cegar, h_seq]),
 pruning=stubborn_sets_ec(min_pruning_ratio=0.50))

598,
--search unsolvable_search([deadpdbs(max_time=relative time 50)],
 pruning=stubborn_sets_ec(min_pruning_ratio=0.80))

599,
--heuristic h_seq=operatorcounting([state_equation_constraints(),
 feature_constraints(max_size=2)], cost_type=zero)
--search unsolvable_search([h_seq], pruning.stubborn_sets_ec(
 min_pruning_ratio=0.20))

Aidos 3

--heuristic h_blind=blind(cache_estimates=false, cost_type=one)
--heuristic h_cegar=cegar(subtasks=[original(copies=1)], max_states=10,
 use_general_costs=true, cost_type=one, max_time=relative time 50,
 pick=min_unwanted, cache_estimates=false)
--heuristic h_deadpdbs=deadpdbs(patterns=combo(max_states=1), cost_type=one,
 max_dead_ends=290355, max_time=relative time 99, cache_estimates=false)
--heuristic h_deadpdbs_simple=deadpdbs_simple(patterns=combo(max_states=1),
 cost_type=one, cache_estimates=false)
--heuristic h_hm=hm(cache_estimates=false, cost_type=one, m=1)
--heuristic h_hmax=hmax(cache_estimates=false, cost_type=one)
--heuristic h_operatorcounting=operatorcounting(cache_estimates=false,
 constraint_generators=[feature_constraints(max_size=3), lmcut_constraints(),
 pho_constraints(patterns=combo(max_states=1)), state_equation_constraints()],
 cost_type=one)
--heuristic h_unsolvable_all_states_potential=unsolvable_all_states_potential(
 cache_estimates=false, cost_type=one)
--search unsolvable_search(heuristics=[h_blind, h_cegar, h_deadpdbs,
 h_deadpdbs_simple, h_hm, h_hmax, h_operatorcounting,
 h_unsolvable_all_states_potential], cost_type=one, pruning.stubborn_sets_ec(
 min_pruning_ratio=0.9887183754249436))

Aidos 3

--heuristic h_deadpdbs=deadpdbs(patterns=genetic(disjoint=false,
 mutation_probability=0.2794745683909153, pdb_max_size=1, num_episodes=2),
 cost_type=normal, max_time=relative time 52, cache_estimates=false)
--heuristic h_deadpdbs_simple=deadpdbs_simple(patterns=genetic(disjoint=false,
 mutation_probability=0.2794745683909153, pdb_max_size=1, num_episodes=2),
 cost_type=normal, cache_estimates=false)
--heuristic h_lmcut=lmcut(cache_estimates=true, cost_type=normal)
--heuristic h_operatorcounting=operatorcounting(cache_estimates=false,
 constraint_generators=[feature_constraints(max_size=2), lmcut_constraints(),
 pho_constraints(patterns=genetic(disjoint=false,
 mutation_probability=0.2794745683909153, pdb_max_size=1, num_episodes=2)),
 state_equation_constraints()], cost_type=normal)
--heuristic h_zopdbs=zopdbs(patterns=genetic(disjoint=false,
 mutation_probability=0.2794745683909153, pdb_max_size=1, num_episodes=2),
 cost_type=normal, cache_estimates=true)
--search astar(f_bound=compute, mpd=false, pruning.stubborn_sets_ec(
 min_pruning_ratio=0.244996579070121), eval=max([h_deadpdbs,
 h_deadpdbs_simple, h_lmcut, h_operatorcounting, h_zopdbs]))

2,
--heuristic h_deadpdbs_simple=deadpdbs_simple(patterns=systematic(
 only_interesting_patterns=true, pattern_max_size=3), cost_type=one,
 cache_estimates=false)
--search unsolvable_search(heuristics=[h_deadpdbs_simple], cost_type=one,
 pruning=null())

2,
--heuristic h_deadpdbs_simple=deadpdbs_simple(patterns=genetic(disjoint=true,
 mutation_probability=0.32087500872172836, num_collections=30, num_episodes=7,
pdb_max_size=1908896), cost_type=one, cache_estimates=false)
--heuristic h_hm=hm(cache_estimates=false, cost_type=one, m=3)
--heuristic h_pdb=pdb(pattern=greedy(max_states=18052), cost_type=one, cache_estimates=false)
--search unsolvable_search(heuristics=[h_deadpdbs_simple, h_hm, h_pdb],
cost_type=one, pruning=null())
2,
--heuristic h_blind=blind(cache_estimates=false, cost_type=one)
--heuristic h_deadpdbs=deadpdbs(cache_estimates=false, cost_type=one, max_dead_ends=4, max_time=relative time 84, patterns=systematic(only_interesting_patterns=false, pattern_max_size=15))
--heuristic h_deadpdbs_simple=deadpdbs_simple(patterns=systematic(only_interesting_patterns=false, pattern_max_size=15), cost_type=one, cache_estimates=false)
--heuristic h_merge_and_shrink=merge_and_shrink(cache_estimates=false, label_reduction=exact(before_shrinking=true, system_order=random, method=all_transition_systems, before_merging=false), cost_type=one, shrink_strategy=shrink_bisimulation(threshold=115, max_states_before_merge=56521, max_states=228893, greedy=true, at_limit=use_up), merge_strategy=merge_dfp(atomic_before_product=false, atomic_ts_order=regular, product_ts_order=random, randomized_order=true),
cost_type=one, pruning=null())
--search unsolvable_search(heuristics=[h_blind, h_deadpdbs, h_deadpdbs_simple, h_merge_and_shrink], cost_type=one, pruning=null())
4,
--heuristic h_cedar=cegar(subtasks=[original(copies=1)], max_states=114, use_general_costs=false, cost_type=normal, max_time=relative time 1, pick=max_hadd, cache_estimates=false)
--heuristic h_cpdbs=cpdbs(patterns=genetic(disjoint=true, mutation_probability=0.7174375735405052, num_collections=4, num_episodes=170, pdb_max_size=1), cost_type=normal, dominance_pruning=true, cache_estimates=false)
--heuristic h_deadpdbs=deadpdbs(cache_estimates=true, cost_type=normal, max_dead_ends=12006, max_time=relative time 21, patterns=genetic(disjoint=true, mutation_probability=0.7174375735405052, num_collections=4, num_episodes=170, pdb_max_size=1))
--heuristic h_deadpdbs_simple=deadpdbs_simple(cache_estimates=false, cost_type=normal, patterns=genetic(disjoint=true, mutation_probability=0.7174375735405052, num_collections=4, num_episodes=170, pdb_max_size=1))
--heuristic h_lmcut=lmcut(cache_estimates=true, cost_type=normal)
--heuristic h_operatorcounting=operatorcounting(cache_estimates=false, cost_type=normal, constraint_generators=[feature_constraints(max_size=2), lmcut_constraints(), pho_constraints(patterns=genetic(disjoint=true, mutation_probability=0.7174375735405052, num_collections=4, num_episodes=170, pdb_max_size=1)), state_equation_constraints()])
--heuristic h_pdb=pdb(pattern=greedy(max_states=250), cost_type=normal, cache_estimates=false)
--search astar(f_bound=compute, mpd=true, pruning=null(), eval=max([h_cedar, h_cpdbs, h_deadpdbs, h_deadpdbs_simple, h_lmcut, h_operatorcounting, h_pdb]))
7,
--heuristic h_blind=blind(cache_estimates=false, cost_type=one)
--heuristic h_cedar=cegar(subtasks=[original(copies=1)], max_states=5151, use_general_costs=false, cost_type=one, max_time=relative time 44, pick=max_hadd, cache_estimates=false)
--heuristic h_hmax=hmax(cache_estimates=false, cost_type=one)
--heuristic h_merge_and_shrink=merge_and_shrink(cache_estimates=false, label_reduction=exact(before_shrinking=true, system_order=random, method=all_transition_systems_with_fixpoint, before_merging=false), cost_type=one, shrink_strategy=shrink_bisimulation(threshold=1, max_states_before_merge=12088, max_states=100000, greedy=false, at_limit=return), merge_strategy=merge_linear(variable_order=cg_goal_random))
--heuristic h_operatorcounting=operatorcounting(cache_estimates=false, constraint_generators=[feature_constraints(max_size=2), lmcut_constraints(), state_equation_constraints()], cost_type=one)
--heuristic h_unsolvable_all_states_potential=unsolvable_all_states_potential(cache_estimates=false, cost_type=one)
--search unsolvable_search(heuristics=[h_blind, h_cegar, h_hmax, h_merge_and_shrink, h_operatorcounting, h_unsolvable_all_states_potential], cost_type=one, pruning=null())

37,
--heuristic h_hmax=hmax(cache_estimates=false, cost_type=one)
--heuristic h_operatorcounting=operatorcounting(cache_estimates=false, constraint_generators=[feature_constraints(max_size=10), state_equation_constraints()], cost_type=zero)
--search unsolvable_search(heuristics=[h_hmax, h_operatorcounting], cost_type=one, pruning=stubborn_sets_ec(min_pruning_ratio=0.4567602354825518))

33,
--heuristic h_all_states_potential=all_states_potential(max_potential=1e8, cache_estimates=true, cost_type=normal)
--heuristic h_blind=blind(cache_estimates=false, cost_type=normal)
--heuristic h_cegar=cegar(subtasks=[goals(order=hadd_down), landmarks(order=original, combine_facts=true), original(copies=1)], max_states=601, use_general_costs=false, cost_type=normal, max_time=relative time 88, pick=min_unwanted, cache_estimates=true)
--heuristic h_deadpdbs_simple=deadpdbs_simple(cache_estimates=true, cost_type=normal, patterns=hillclimbing(min_improvement=2, pdb_max_size=7349527, collection_max_size=233, max_time=relative time 88, num_samples=28))
--heuristic h_initial_state_potential=initial_state_potential(max_potential=1e8, cache_estimates=true, cost_type=normal)
--heuristic h_operatorcounting=operatorcounting(cache_estimates=false, constraint_generators=[feature_constraints(max_size=10), lmcut_constraints(), pho_constraints(patterns=hillclimbing(min_improvement=2, pdb_max_size=7349527, collection_max_size=233, max_time=relative time 88, num_samples=28)), state_equation_constraints()], cost_type=normal)
--heuristic h_pdb=pdb(pattern=greedy(max_states=6), cost_type=normal, cache_estimates=true)
--heuristic h_zopdbs=zopdbs(patterns=hillclimbing(min_improvement=2, pdb_max_size=7349527, collection_max_size=233, max_time=relative time 88, num_samples=28), cost_type=normal, cache_estimates=false)
--search astar(f_bound=compute, mpd=true, pruning=stubborn_sets_ec(min_pruning_ratio=0.0927145675045078), eval=max([h_all_states_potential, h_blind, h_cegar, h_deadpdbs_simple, h_initial_state_potential, h_operatorcounting, h_pdb, h_zopdbs]))

150,
--heuristic h_deadpdbs=deadpdbs(cache_estimates=false, cost_type=one, max_dead_ends=6, max_time=relative time 75, patterns=systematic(only_interesting_patterns=true, pattern_max_size=1))
--search unsolvable_search(heuristics=[h_deadpdbs], cost_type=one, pruning=stubborn_sets_ec(min_pruning_ratio=0.3918701752094733))
--heuristic h_deadpdbs=deadpdbs(cache_estimates=false, cost_type=one, max_dead_ends=63156737, max_time=relative time 4, patterns=ordered_systematic(pattern_max_size=869))
--heuristic h_merge_and_shrink=merge_and_shrink(cache_estimates=false, label_reduction=exact(before_shrinking=true, system_order=random, method=all_transition_systems_with_fixpoint, before_merging=false), cost_type=one, shrink_strategy=shrink_bisimulation(threshold=23, max_states_before_merge=29143, max_states=995640, greedy=false, at_limit=return), merge_strategy=merge_dfp(atomic_before_product=false, atomic_ts_order=regular, product_ts_order=new_to_old, randomized_order=false))
--search unsolvable_search(heuristics=[h_deadpdbs, h_merge_and_shrink], cost_type=one, pruning=null())