
Stubborn Sets Pruning for Privacy Preserving Planning

Tim Schulte
Albert-Ludwigs-Universität Freiburg

schultet@cs.uni-freiburg.de

Abstract

We adapt a partial order reduction technique based on
stubborn sets to the setting of privacy-preserving multi-
agent planning. We prove that the presented approach
preserves optimality and show experimentally that it
can significantly improve search performance on some
domains.

Introduction
Recently, privacy preserving planning (Nissim and Brafman
2014) has become an increasingly popular multi-agent plan-
ning framework. It enables agents to engage in a coopera-
tive planning process in order to compute joint plans that
achieve mutual goals. Notably, the framework allows agents
to keep certain information private. There are many settings
in which this is of great importance. Consider, for instance,
research departments of different companies that want to
collaborate on a common project in order to mutually ben-
efit from each others’ competence. Exchanging proprietary
data could diminish the benefits of this endeavor.

Heuristic search is a particularly successful approach to
privacy-preserving planning. Specifically, multi-agent for-
ward search (MAFS) (Nissim and Brafman 2012) has
proven to be highly efficient, when coupled with good
heuristic functions (Štolba and Komenda 2014; Štolba,
Fišer, and Komenda 2015). However, when accurate heuris-
tic estimates are unavailable, the search space is often
searched exhaustively (e.g. when the search gets stuck on
a plateau). Even with almost perfect heuristic estimates,
search effort can scale exponentially (in the size of the plan-
ning task), when an optimal solution is sought (Helmert and
Röger 2008). In these cases, additional pruning techniques
that narrow down the number of state expansions, while pre-
serving optimality, can substantially improve the search per-
formance.

Partial order reduction (POR) techniques exploit that in-
dependent actions can be applied in an arbitrary order. Ide-
ally, search algorithms would consider only one such order,
thereby reducing the number of expanded states exponen-
tially. Partial order reduction based on stubborn sets (Val-
mari 1989) strives to achieve just that and has successfully

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

been applied to optimal (single agent) planning (Alkhazraji
et al. 2012; Wehrle et al. 2013). In this paper we adapt and
apply stubborn sets pruning to the privacy-preserving plan-
ning setting. The main challenge addressed is how to ac-
count for private information without losing completeness
or optimality. We show experimentally that the revised algo-
rithm can significantly improve search performance.

Background
We consider multi-agent planning in a notational variant
of the privacy-preserving planning formalism (Nissim and
Brafman 2014). The formalism extends classical planning
with a notion of agents, their respective action sets, and a
privacy partition.

Definition 1 (Multi-agent planning task). A multi-agent
planning task is a tuple Π = 〈N,V, s0, s?, {Aj}j∈N 〉, where

• N = {1, 2, . . . , n} is a finite set of agents,
• V is a finite set of state variables. Each v ∈ V is associ-

ated with a domain Dv . A variable assignment is a func-
tion s with domain Ds ⊆ V , such that s(v) ∈ Dv for all
v ∈ Ds. A variable assignment defined for all variables in
V is called state.

• s0 is the initial state,
• s? is a variable assignment over V called the goal,
• Ai is a finite set of actions available to agent i. Each ac-

tion a = 〈pre(a), eff(a), c(a)〉 ∈ Ai consists of two vari-
able assignments over V called precondition pre(a) and
an effect eff(a), and a cost c(a) ∈ R+

0 . The set of all
actions is A =

⋃
i∈N Ai.

An action a is applicable in state s if s agrees with pre(a)
wherever pre(a) is defined. Application of action a in state
s yields the successor state a(s) which agrees with eff(a)
where eff(a) is defined, and agrees with s, elsewhere. The
set of all applicable actions in state s is app(s). The solution
to a planning task is a sequence of actions π = (a1, . . . , ak)
such that a1 is applicable in s0, every subsequent action is
applicable in the state generated by its preceding action, and
ak(. . . (a1(s0)) . . .) |= s?.

Multi-agent planning tasks can be conceived as “agent-
decoupled” classical planning tasks, and are solvable by
centralized planning systems like Fast Downward (Helmert

2006). Some settings require agents to preserve privacy dur-
ing the planning process. By constraining the agents to keep
certain information on the planning task private, the use of
distributed planning techniques becomes sensible. We now
introduce the required notation to then define the privacy-
preserving extension to multi-agent planning.
Definition 2 (Projection). Let s be a variable assignment
over the set of variables V . The projection of s to V ′ ⊆ V is
a variable assignment s|V ′ that is defined on V ′ and agrees
with s wherever it is defined, i.e. s|V ′(v) = s(v), for all
v ∈ V ′.
Definition 3 (Action projection). The projection of an
action a to the set of variables V ′ is a|V ′ =
〈pre(a)|V ′ , eff(a)|V ′ , c(a)〉.

Consequentially, the projection of a set of actionsA to the
set of variables V ′ is defined as A|V ′ = {a|V ′ |a ∈ A}.
Definition 4 (Privacy partition). Let Π =
〈N,V, s0, s?, {Aj}j∈N 〉 be a multi-agent planning task. A
privacy partition is an indexed family of sets

P = {Pv}v∈V
that, for each variable v ∈ V , contains the set of agents
Pv ⊆ N that have access to v.

In this paper, we only consider privacy partitions where
all sets Pv, v ∈ V have a cardinality of either one or |N |.
Furthermore, if v ∈ Ds? then Pv = N . Thus, P partitions
the set of variables V into a set of public variables V pub,
known to all agents, and |N | sets of private variables V pri

j ,
each known to a single agent j ∈ N only:

• V pri
j = {v ∈ V | Pv = {j}}, for j ∈ N

• V pub = {v ∈ V | Pv = N}
Actions are partitioned into a set of public actions Apub

and sets of private actions Apri
j , accordingly:

• Apri
j = {a ∈ Aj | a = a|V pri

j
}, for j ∈ N

• Apub =
⋃

j∈N (Aj \Apri
j)

Definition 5 (Local view). Let Π =
〈N,V, s0, s?, {Aj}j∈N 〉 be a multi-agent planning task and
P be a privacy partition for Π. The local view of agent i on
Π is defined as

Πi = 〈N,V i, si0, s?, {Ai
j}j∈N 〉, where

• V i = V pub ∪ V pri
i ,

• si0 = s0|V i , and

• Ai
j = (Aj \Apri

j)|V i for j 6= i, and Ai
i = Ai.

Definition 6 (Privacy preserving planning task). A privacy
preserving planning task is a tuple (Π,P) consisting of a
multi-agent planning task Π and a privacy partition P .

A multi-agent planning algorithm is weakly private if
each agent can only access its own local view on the plan-
ning task and the agents never exchange private informa-
tion with one another. A multi-agent planning algorithm is
strongly private if no agent can deduce private information

from the course of conversation (message history) between
the agents. Private information includes knowledge about
the existence or value of a variable private to another agent,
or an action model (Brafman 2015).

Multi-Agent Forward Search
Because agents can only access a factor (their local view)
of the original multi-agent planning task, cooperation with
other agents becomes a necessity.

Multi-Agent Forward Search (MAFS) (Nissim and Braf-
man 2014) is a general search scheme for privacy preserv-
ing multi-agent planning. Each agent conducts a best-first
search, maintaining its own open and closed list. Succes-
sors of expanded states are generated by using the agents’
own actions only. Whenever a state is generated for which
another agent has an applicable public action, a message
is sent to that agent. The message contains the full state,
heuristic score and g-value of the sending agent. Private
fluents of the state are encrypted such that only the rele-
vant agents can decrypt it. When agent i receives a mes-
sage m = 〈s, hj(s), gj(s)〉 of some other agent j, it checks
whether s is already in its open or closed list. If this is not
the case, agent i puts s on its open list. If agent i generated
state s previously with higher cost, then it puts s on its open
list again and assigns new costs gj(s) to it. When an agent
generates a goal state, it initiates a distributed plan extrac-
tion procedure by broadcasting the goal state in a message
to all agents.

Strong Stubborn Sets
Strong stubborn sets can be used within forward search algo-
rithms to potentially reduce the number of successor states
generated in each expansion step. In the following, we pro-
vide the definitions of action dependencies, disjunctive ac-
tion landmarks (Helmert and Domshlak 2009), and neces-
sary enabling sets, which are the three crucial components
for the computation of strong stubborn sets.
Definition 7 (Action dependency). Let Π =
〈N,V, s0, s?, {Aj}j∈N 〉 be a multi-agent planning task,
and let a1, a2 ∈ A. Then:
• a1 disables a2 if there exists a variable v ∈ V and facts
〈v, d1〉 ∈ eff(a1) and 〈v, d2〉 ∈ pre(a2) s.t. d1 6= d2.

• a1 and a2 conflict if there exists a variable v ∈ V and
facts 〈v, d1〉 ∈ eff(a1) and 〈v, d2〉 ∈ eff(a2) s.t. d1 6= d2.

• a1 and a2 are dependent if a1 disables a2, or a2 disables
a1, or a1 and a2 conflict. We write dep(a) for the set of
actions with which a is dependent.

Definition 8 (Disjunctive action landmark). A disjunctive
action landmark (DAL) for a set of facts F in state s is a set
of actions L such that every applicable action sequence that
starts in s and ends in s′ ⊇ F contains at least one action
a ∈ L.
Definition 9 (Necessary enabling set). A necessary enabling
set (NES) for action a /∈ app(s) in state s is a disjunctive
action landmark for pre(a) in s.

We can now give the definition of strong stubborn sets,
generalized to the setting of privacy preserving planning.

Definition 10 (Strong stubborn set for privacy preserving
planning). Let Πi = 〈N,V i, si0, s?, {Ai

j}j∈N 〉 be the local
view of agent i of some privacy preserving planning task
(Π,P). Let s be a state of Πi. A strong stubborn set for agent
i in s is a set of actions Ts ⊆ Ai, s.t. all of the following
conditions hold:

1. For each a ∈ Ts ∩ app(s), we have dep(a) ∩Ai ⊆ Ts.
2. For each a ∈ Ts \ app(s), we have Na

s ⊆ Ts for some
necessary enabling set Na

s ⊆ Ai of a in s.
3. Ts contains all actions a ∈ Apub

i , such that a|V pub is ap-
plicable in s.

Before an agent expands a state s, it computes the respec-
tive strong stubborn set Ts. (This can be achieved by a sim-
ple fixed-point computation.) Then, the agent expands s by
applying the actions in Tapp(s) = app(s) ∩ Ts only. As a
consequence, states reached by actions in app(s) but not in
Ts are pruned.

Definition 10 extends the classic definition of strong stub-
born sets in the following way: first, the included actions
are restricted to belong to agent i only. Second, instead of
requiring the stubborn sets for state s to contain a disjunc-
tive action landmark for a goal condition, as in the classic
definition, it must contain the set of all public actions that
are reachable from s by a potentially empty sequence of pri-
vate actions (Def. 10, point 3). This set is still a DAL for the
goal, but one that ensures the preservation of all states cre-
ated by public actions. These states resemble potential in-
teraction points between the agents. Since an agent has only
partial knowledge of the other agents’ actions, it cannot de-
cide whether an interaction point is part of a plan leading
to a goal or not. To see this, consider the following exam-
ple: let (Π,P) = (〈N,V, s0, s?, {A1, A2}〉,P) be a privacy
preserving planning task, with

N = {1, 2}, V = {v0, v1, v2, v3, v4}
Dvi = {0, 1}, for 0 ≤ i ≤ 4

P = {{1}, {1}, {2}, N,N}
s0 = {v0 = 0, v1 = 0, v2 = 0, v3 = 0, v4 = 0}
s? = {v3 = 1}
A1 = {a, b, c}, A2 = {d, e} with
a = 〈v0 = 0, v0 = 1〉, b = 〈v1 = 0, v1 = 1〉
c = 〈v0 = 1 ∧ v1 = 1, v4 = 1〉
d = 〈v4 = 1, v2 = 1〉, e = 〈v2 = 1, v3 = 1〉

Here, agent 1 can safely prune either action a or b in the
initial state, thereby avoiding either state 10000 or 01000.
Consider the local view of agent 1:

N = {1, 2}, V 1 = {v0, v1, v3, v4}
s10 = {v0 = 0, v1 = 0, v3 = 0, v4 = 0}, s? = {v3 = 1}
A1

1 = {a, b, c} with a, b, c as above

A1
2 = {d|V 1 , e|V 1} with

d|V 1 = 〈v4 = 1, ∅〉, e|V 1 = 〈∅, v3 = 1〉
To agent 1 there appears to be no connection between agent
2’s actions, i.e. d|V 1 and e|V 1 appear to be independent. Fur-
thermore, action e|V 1 appears to be applicable in the initial

state. Therefore, in agent 1’s local view, the set Ts = {e|V 1}
is consistent with the classic strong stubborn set definition.
This set violates completeness of SSS pruning, however,
because agent 1 has no action to apply in its initial state:
Tapp(s0) = {a, b} ∩ {e|V 1} = ∅. Hence, no goal can be
reached. Note that Ts is not consistent with the revised stub-
born sets definition (Definition 10), since it contains an ac-
tion of player 2. Furthermore, it does not contain action c
and hence does not preserve the only and essential interac-
tion point (11001). The sets T ′s = {c, b} and T ′′s = {c, a},
on the other hand, are consistent with both definitions and
lead to the pruning of either action a or b as intended.

Privacy
SSS for privacy preserving planning strives to reduce each
agent’s individual search space without introducing any ad-
ditional communication. It never transmits a state that is
not transmitted by the respective planning algorithm without
SSS pruning. We therefore believe that the presented prun-
ing technique is strongly privacy preserving.

Optimality
Definition 11 (Public step). A public step in state s is a se-
quence of actions πa, where
• a is a public action of agent i and
• π is a minimal plan from s to pre(a), i.e. π[s] |= pre(a),

that consists of private actions of agent i only.
A plan π from s to pre(a) is minimal, if there is no subse-
quence π′′ of π that can be moved behind action a, such that
πa[s] = π′aπ′′[s], where π′ is the sequence π without π′′.

A public step can be thought of as a sort of “macro action”
that encapsulates the execution of private actions followed
by a single public action.

Definition 12 (Public state). A state s is called public state
if it is reachable from the initial state by a sequence of public
steps.

Lemma 1. Let (Π,P) be a privacy preserving planning
problem and π = (a1, a2, . . . , ak) be a solution to Π. Then,
there exists a permutation π′ = (a′1, a

′
2, . . . , a

′
k) of π, such

that for all pairs of consecutive public actions1 a′i, a
′
j in π′,

(a′i+1, a
′
i+2, . . . a

′
j) is a public step.

Proof. Let π = (a1, a2, . . . , ak) be a solution to Π, such that
every private action in π is followed by another action (pub-
lic or private) of the same agent. Only considering solutions
of this type preserves optimality and completeness (Nissim
and Brafman 2014). Assume that, between two consecutive
public actions ai and aj we have a sequence of actions (of
the same agent) πi..j = (ai+1, ai+2, . . . , aj) that is not a
public step. Then, there must be a subsequence in πi..j that
can be moved behind aj . By moving this subsequence be-
hind aj , just before the next sequence of actions of the same

1By consecutive public actions we mean that there are no other
public actions between a′

i and a′
j . There might be private actions

in between, however.

agent, we create a permutation π′′ that is a legal plan. Re-
peating this process until all inconsistencies have been re-
moved yields a plan π′ that is a permutation of π and that
consists of public steps only.

Lemma 2. Restricting the successor generation to a SSS
(according to Def. 10) in every state is optimality preserving
for privacy preserving planning.

Proof. Let (Π,P) be a privacy preserving planning task.
The proof is by induction over k ∈ N, where Sk is the set
of public states that are reachable in at most k public steps
from the initial state and S′k is the set of public states that are
reachable in at most k public steps when stubborn set prun-
ing is applied. We show that Sk = S′k for all k. (It suffices to
consider public states instead of all possible states because
of Lemma 1.)

The initial state s0 is reachable by an empty sequence of
actions (zero public steps), therefore, S0 = {s0} = S′0.

Let the set of reachable states expand from Sk−1 to Sk ⊃
Sk−1. For each new state s∗ ∈ Sk \ Sk−1, a state s ∈ Sk−1
must exist from which s∗ is reachable, in a single public
step. Therefore, there must be a public state s ∈ Sk−1 and
a public step πa, such that πa[s] = s∗. Let i be the agent,
such that a ∈ Apub

i .
According to the induction hypothesis Sk−1 = S′k−1, it

holds that s ∈ S′k−1. We argue that SSS preserves a public
step (of agent i) σa, such that σa[s] = s∗. Observe that a
is included in Ts for agent i since a ∈ Apub

i and its public
projection a|V pub is applicable in s (Definition 10, point 3).

If a is applicable in s, i.e. a(s) = s∗, then s∗ ∈ S′k. If
a is not applicable in s, then a necessary enabling set for a
must be contained in Ts (Definition 10, point 2). That is, a
disjunctive action landmark for pre(a) in s. The stubborn
sets generated for s according to Definition 10 correspond
to the stubborn sets generated for s according to the classic
definition when planning towards the goal s? = pre(a) with
the set of actions A = Ai. Since classic strong stubborn sets
are optimality and completeness preserving (Alkhazraji et
al. 2012), a permutation σ of π must be preserved, such that
πa[s] = s∗ = σa[s]. Hence s∗ ∈ S′k.

Evaluation
The presented algorithms were implemented in a distributed
multi-agent planning system written in Go. Experiments
were run on a 2.6 Ghz Intel Xeon 8-core CPU. Each prob-
lem instance used a single core and 8 GB of RAM, shared
by all agents. We experimented with the benchmarks from
the CoDMAP competition (Štolba, Komenda, and Kovacs
2015) consisting of 12 domains with 20 problems each.

Furthermore, we used a new domain, inspired by a pro-
duction site. Here, the goal is to produce a set of products
with certain properties. The agents must process the prod-
ucts to establish their required properties. Each property has
a corresponding processing action, all of which are private
and independent of one another. A concrete example that

blind goalcount FF

Domain def sss def sss def sss

blocksworld 0 0 1 1 0 1
depot 2 2 6 4 0 0
driverlog 7 7 17 16 16 16
elevators 3 2 20 20 12 14
logistics 3 3 18 14 17 15
rovers 20 20 19 20 20 18
satellites 3 3 20 20 20 19
sokoban 2 0 2 4 7 7
taxi 6 8 11 13 2 2
wireless 0 0 0 0 2 1
woodworking 2 1 2 1 2 1
zenotravel 5 5 20 16 16 14

Total 53 51 136 129 114 108

prod. site 0 20 11 20 8 20

Table 1: Benchmark results.

embodies this type of domain has the agents building per-
sonal computers according to a given set of orders. Each or-
der specifies an individual PC setup, i.e. the set of compo-
nents the PC should consist of. Many components, like hard
disc drives, physical drives, sound card, working memory,
etc., can independently be installed onto the mainboard.

Of the new production site domain 20 problem instances
of varying difficulty were included in the benchmarks. Plan-
ning time was limited to 30 minutes per problem instance.
Table 1 shows coverage results for the tested configurations.

While plain MAFS solves 0, 11 and 8 instances of the pro-
duction site domain when using the blind, goalcount and FF
heuristic (Hoffmann and Nebel 2001) respectively, MAFS
with stubborn set pruning solves all 20 instances, indepen-
dent of the heuristic used. Blind MAFS resembles depth-
first search and chains together random sequences of actions,
most of which do not lead to a goal. Due to the expansive
search space, even the easiest instances cannot be solved.
The goalcount and FF heuristics, on the other hand, both
guide MAFS towards states with as many subgoals satisfied
as possible. That way, the search focuses on one subgoal, or
product, after the other and the number of generated states
is reduced decisively. Although this behavior seems to be fa-
vorable, it has its own shortcomings. The heuristics cannot
differentiate between two states in which the same number
of subgoals are satisfied, even if one state is significantly
closer to satisfying another subgoal than the other. The rea-
son for this is that the heuristics are computed based on each
agent’s local view. The public actions of other agents es-
tablish a subgoal (finish a product) with a cost of one and
appear to always be applicable, because their public projec-
tions do not include their private preconditions. Because of
this heuristic inaccuracy, states that satisfy a larger number
of subgoals but which do not lead to a goal are preferred to
states that lead to a goal but satisfy fewer subgoals. Process-
ing actions, for instance, cannot be undone. Therefore, if a
product is processed in a way not consistent with its goal re-

quirements, the agent cannot finish that product. The respec-
tive subgoal can then only be supplied by another agent. If
no agent can supply the subgoal, the search has to backtrack
to a state in which the faulty processing action has not been
applied yet. This problem does not occur in the stubborn set
pruning variant. Counter-productive processing actions that
prevent a product from being finished are always pruned.
These actions are independent of the other processing ac-
tions and therefore may only be included in the stubborn
set if they establish a precondition of the public action that
finishes the product. Stubborn set pruning therefore effec-
tively restricts the search to consider only such states that
can be extended into a goal state. Furthermore, each agent
must consider only a single permutation of processing ac-
tions to finish each product, where otherwise exponentially
many permutations would have to be considered. When FF
or goalcount heuristic is used, the stubborn set approach also
focuses on one subgoal after the other. The generated plans
encourage the division of labor between the agents, each cre-
ating a subset of the products, rather than one agent creating
them all. Furthermore, plans are found very fast, as all parts
of the search space that do not progress towards a goal are
pruned.

Regarding the CoDMAP domains, the results are mixed.
There are no major differences in coverage between the
strong stubborn set approach and regular MAFS, although
overall the latter configuration solves a few problems more.
We believe that this is due to the additional computations re-
quired for computing the stubborn sets. Interestingly, some
domains seem not to benefit from the stubborn sets based
partial order reduction at all. A possible explanation is that
these domains already internalize a form of POR by decou-
pling the planning task in such a way that each agent has its
own individual responsibilities. If in the production site do-
main each agent had a single processing action only, there
would be as good as no pruning potential. This is exactly
what we find in some of the CoDMAP domains. The wood-
working domain is a good example of such an agent decou-
pling. Here, most of the agents can only perform a single
action. Another explanation is that the pruning potential is
not fully exploited, because the agents compute their stub-
born sets independent of one another. Hence, a state pruned
by one agent could be generated and broadcasted by another
agent. Investigating how to get the agents’ pruning efforts
more in sync seems to be worthwhile.

Future Work

Without additional communication between the agents only
private actions can safely be pruned. By computing SSS in
a distributed fashion the agents could also prune public ac-
tions, leading to a higher pruning potential. The general idea
is that, whenever an agent encounters another agent’s pub-
lic action during a SSS computation, it will send a request
to that agent. The other agent sends back a set of dependent
public actions or a public necessary enabling set, depending
on whether the requested action is applicable in the respec-
tive state or not.

Conclusion
This paper provides a theoretical basis for stubborn sets
pruning in the context of privacy preserving planning. The
empirical results show that some domains significantly ben-
efit from partial order reduction. Although the production
site domain was created with partial order reduction in mind,
we believe that it models a specific situation that can also
occur within the search space of other domains. In this sit-
uation, the heuristics are blind or misleading and, in conse-
quence, the search exhaustively explores the affected parts
of the search space. When these parts consist of many inde-
pendent actions, then stubborn sets pruning can significantly
reduce the search effort.

References
Alkhazraji, Y.; Wehrle, M.; Mattmüller, R.; and Helmert, M.
2012. A stubborn set algorithm for optimal planning. In
Proc. ECAI, 891–892.
Brafman, R. I. 2015. A privacy preserving algorithm for
multi-agent planning and search. In IJCAI, 1530–1536.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. ICAPS, 162–169.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? In Proc. AAAI, volume 8, 944–949.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Nissim, R., and Brafman, R. I. 2012. Multi-agent A* for
parallel and distributed systems. In Proc. AAMAS, 1265–
1266.
Nissim, R., and Brafman, R. I. 2014. Distributed heuristic
forward search for multi-agent planning. JAIR 51:293–332.
Štolba, M., and Komenda, A. 2014. Relaxation heuristics
for multiagent planning. In Proc. ICAPS.
Štolba, M.; Fišer, D.; and Komenda, A. 2015. Admissi-
ble landmark heuristic for multi-agent planning. In Proc.
ICAPS.
Štolba, M.; Komenda, A.; and Kovacs, D. L. 2015. Compe-
tition of distributed and multiagent planners (CoDMAP). In
Proc. WIPC, 24–28.
Valmari, A. 1989. Stubborn sets for reduced state space
generation. In Proc. Petri Nets, 491–515. Springer.
Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmüller, R.
2013. The relative pruning power of strong stubborn sets
and expansion core. In ICAPS.

