Stubborn Sets Pruning for Privacy Preserving Planning

Tim Schulte
Albert-Ludwigs-Universität Freiburg
schultet@cs.uni-freiburg.de

Abstract

We adapt a partial order reduction technique based on stubborn sets to the setting of privacy-preserving multi-agent planning. We prove that the presented approach preserves optimality and show experimentally that it can significantly improve search performance on some domains.

Introduction

Recently, privacy preserving planning (Nissim and Brafman 2014) has become an increasingly popular multi-agent planning framework. It enables agents to engage in a cooperative planning process in order to compute joint plans that achieve mutual goals. Notably, the framework allows agents to keep certain information private. There are many settings in which this is of great importance. Consider, for instance, research departments of different companies that want to collaborate on a common project in order to mutually benefit from each others’ competence. Exchanging proprietary data could diminish the benefits of this endeavor.

Heuristic search is a particularly successful approach to privacy-preserving planning. Specifically, multi-agent forward search (MAFS) (Nissim and Brafman 2012) has proven to be highly efficient, when coupled with good heuristic functions (ˇStolba and Komenda 2014; ˇStolba, Fišer, and Komenda 2015). However, when accurate heuristic estimates are unavailable, the search space is often searched exhaustively (e.g. when the search gets stuck on a plateau). Even with almost perfect heuristic estimates, search effort can scale exponentially (in the size of the planning task), when an optimal solution is sought (Helmert and Röger 2008). In these cases, additional pruning techniques that narrow down the number of state expansions, while preserving optimality, can substantially improve the search performance.

Partial order reduction (POR) techniques exploit that independent actions can be applied in an arbitrary order. Ideally, search algorithms would consider only one such order, thereby reducing the number of expanded states exponentially. Partial order reduction based on stubborn sets (Valmari 1989) strives to achieve just that and has successfully been applied to optimal (single agent) planning (Alkhazraji et al. 2012; Wehrle et al. 2013). In this paper we adapt and apply stubborn sets pruning to the privacy-preserving planning setting. The main challenge addressed is how to account for private information without losing completeness or optimality. We show experimentally that the revised algorithm can significantly improve search performance.

Background

We consider multi-agent planning in a notational variant of the privacy-preserving planning formalism (Nissim and Brafman 2014). The formalism extends classical planning with a notion of agents, their respective action sets, and a privacy partition.

Definition 1 (Multi-agent planning task). A multi-agent planning task is a tuple \(\Pi = (N, V, s_0, s*, \{A_j\}_{j \in N}) \), where

- \(N = \{1, 2, \ldots, n\} \) is a finite set of agents,
- \(V \) is a finite set of state variables. Each \(v \in V \) is associated with a domain \(D_v \). A variable assignment is a function \(s \) with domain \(D_s \subseteq V \), such that \(s(v) \in D_v \) for all \(v \in D_s \). A variable assignment defined for all variables in \(V \) is called state.
- \(s_0 \) is the initial state,
- \(s* \) is a variable assignment over \(V \) called the goal,
- \(A_i \) is a finite set of actions available to agent \(i \). Each action \(a = (\text{pre}(a), \text{eff}(a), c(a)) \in A_i \) consists of two variable assignments over \(V \) called precondition \(\text{pre}(a) \) and an effect \(\text{eff}(a) \), and a cost \(c(a) \in \mathbb{R}_0^+ \). The set of all actions is \(A = \bigcup_{i \in N} A_i \).

An action \(a \) is applicable in state \(s \) if \(s \) agrees with \(\text{pre}(a) \) wherever \(\text{pre}(a) \) is defined. Application of action \(a \) in state \(s \) yields the successor state \(a(s) \) which agrees with \(\text{eff}(a) \) where \(\text{eff}(a) \) is defined, and agrees with \(s \), elsewhere. The set of all applicable actions in state \(s \) is \(\text{app}(s) \). The solution to a planning task is a sequence of actions \(\pi = (a_1, \ldots, a_k) \) such that \(a_1 \) is applicable in \(s_0 \), every subsequent action is applicable in the state generated by its preceding action, and \(a_k(\ldots(a_1(s_0)) \ldots) = s* \).

Multi-agent planning tasks can be conceived as “agent-decoupled” classical planning tasks, and are solvable by centralized planning systems like Fast Downward (Helmer...
2006). Some settings require agents to preserve privacy during the planning process. By constraining the agents to keep certain information on the planning task private, the use of distributed planning techniques becomes sensible. We now introduce the required notation to then define the privacy-preserving extension to multi-agent planning.

Definition 2 (Projection). Let s be a variable assignment over the set of variables V. The projection of s to $V' \subseteq V$ is a variable assignment $s|_{V'}$ that is defined on V' and agrees with s wherever it is defined, i.e. $s|_{V'}(v) = s(v)$, for all $v \in V'$.

Definition 3 (Action projection). The projection of an action a to the set of variables V' is $a|_{V'} = \langle \text{pre}(a)|_{V'}, \text{eff}(a)|_{V'}, c(a) \rangle$.

Consequently, the projection of a set of actions A to the set of variables V' is defined as $A|_{V'} = \{ a|_{V'} \mid a \in A \}$.

Definition 4 (Privacy partition). Let $\Pi = \langle N, V, s_0, s_*, \{ A_j \}_{j \in N} \rangle$ be a multi-agent planning task. A privacy partition is an indexed family of sets $\mathcal{P} = \{ P_v \}_{v \in V}$ that, for each variable $v \in V$, contains the set of agents $P_v \subseteq N$ that have access to v.

In this paper, we only consider privacy partitions where all sets $P_v, v \in V$ have a cardinality of either one or $|N|$. Furthermore, if $v \in D_s$, then $P_v = N$. Thus, \mathcal{P} partitions the set of variables V into a set of public variables V^{pub}, known to all agents, and $|N|$ sets of private variables V^{pri}_j, each known to a single agent $j \in N$ only:

- $V^{pri}_j = \{ v \in V \mid P_v = \{ j \} \}, \text{for } j \in N$
- $V^{pub} = \{ v \in V \mid P_v = N \}$

Actions are partitioned into a set of public actions A^{pub} and sets of private actions A^{pri}_j, accordingly:

- $A^{pri}_j = \{ a \in A | a = a|_{V^{pri}_j} \}, \text{for } j \in N$
- $A^{pub} = \bigcup_{j \in N} (A_j \setminus A^{pri}_j)$

Definition 5 (Local view). Let $\Pi = \langle N, V, s_0, s_*, \{ A_j \}_{j \in N} \rangle$ be a multi-agent planning task and \mathcal{P} be a privacy partition for Π. The local view of agent i on Π is defined as

$$\Pi^i = \langle N, V^i, s^i_0, s_*, \{ A^i_j \}_{j \in N} \rangle,$$

where

- $V^i = V^{pub} \cup V^{pri}_i$
- $s^i_0 = s_0|_{V^i}$, and
- $A^i_j = (A_j \setminus A^{pri}_j)|_{V^i}$, for $j \neq i$, and $A^i_i = A_i$.

Definition 6 (Privacy preserving planning task). A privacy preserving planning task is a tuple (Π, \mathcal{P}) consisting of a multi-agent planning task Π and a privacy partition \mathcal{P}.

A multi-agent planning algorithm is weakly private if each agent can only access its own local view on the planning task and the agents never exchange private information with one another. A multi-agent planning algorithm is strongly private if no agent can deduce private information from the course of conversation (message history) between the agents. Private information includes knowledge about the existence or value of a variable private to another agent, or an action model (Brafman 2015).

Multi-Agent Forward Search

Because agents can only access a factor (their local view) of the original multi-agent planning task, cooperation with other agents becomes a necessity.

Multi-Agent Forward Search (MAFS) (Nissim and Brafman 2014) is a general search scheme for privacy preserving multi-agent planning. Each agent conducts a best-first search, maintaining its own open and closed list. Successors of expanded states are generated by using the agents’ own actions only. Whenever a state is generated for which another agent has an applicable public action, a message is sent to that agent. The message contains the full state, heuristic score and g-value of the sending agent. Private fluents of the state are encrypted such that only the relevant agents can decrypt it. When agent i receives a message $m = \langle s, h_j(s), g_j(s) \rangle$ of some other agent j, it checks whether s is already in its open or closed list. If this is not the case, agent i puts s on its open list. If agent i generated state s previously with higher cost, then it puts s on its open list again and assigns new costs $g_j(s)$ to it. When an agent generates a goal state, it initiates a distributed plan extraction procedure by broadcasting the goal state to a message to all agents.

Strong Stubborn Sets

Strong stubborn sets can be used within forward search algorithms to potentially reduce the number of successor states generated in each expansion step. In the following, we provide the definitions of action dependencies, disjunctive action landmarks (Helmert and Domshlak 2009), and necessary enabling sets, which are the three crucial components for the computation of strong stubborn sets.

Definition 7 (Action dependency). Let $\Pi = \langle N, V, s_0, s_*, \{ A_j \}_{j \in N} \rangle$ be a multi-agent planning task, and let $a_1, a_2 \in A$. Then:

- a_1 disables a_2 if there exists a variable $v \in V$ and facts $\langle v, d_1 \rangle \in \text{eff}(a_1)$ and $\langle v, d_2 \rangle \in \text{pre}(a_2)$ s.t. $d_1 \neq d_2$.
- a_1 and a_2 conflict if there exists a variable $v \in V$ and facts $\langle v, d_1 \rangle \in \text{eff}(a_1)$ and $\langle v, d_2 \rangle \in \text{eff}(a_2)$ s.t. $d_1 \neq d_2$.
- a_1 and a_2 are dependent if a_1 disables a_2, or a_2 disables a_1, or a_1 and a_2 conflict. We write $\text{dep}(a)$ for the set of actions with which a is dependent.

Definition 8 (Disjunctive action landmark). A disjunctive action landmark (DAL) for a set of facts F in state s is a set of actions L such that every applicable action sequence that starts in s and ends in $s' \supseteq F$ contains at least one action $a \in L$.

Definition 9 (Necessary enabling set). A necessary enabling set (NES) for action $a \notin \text{app}(s)$ in state s is a disjunctive action landmark for $\text{pre}(a)$ in s.

We can now give the definition of strong stubborn sets, generalized to the setting of privacy preserving planning.
Definition 10 (Strong stubborn set for privacy preserving planning). Let $\Pi^i = (N, V^i, v^i_0, s^i_0, \{A^j_{2i}\}_{j \in N})$ be the local view of agent i of some privacy preserving planning task (Π, \mathcal{P}). Let s be a state of Π^i. A strong stubborn set for agent i in s is a set of actions $T_s \subseteq A_i$, s.t. all of the following conditions hold:

1. For each $a \in T_s \cap app(s)$, we have $\text{dep}(a) \cap A_i \subseteq T_s$.
2. For each $a \in T_s \setminus app(s)$, we have $N^a_s \subseteq T_s$ for some necessary enabling set $N^a_s \subseteq A_i$ of a in s.
3. T_s contains all actions $a \in A^i_{pub}$, such that $a|_{V_{pub}}$ is applicable in s.

Before an agent expands a state s, it computes the respective strong stubborn set T_s. (This can be achieved by a simple fixed-point computation.) Then, the agent expands s by applying the actions in $T_{app(s)} = app(s) \cap T_s$ only. As a consequence, states reached by actions in $app(s)$ but not in T_s are pruned.

Definition 10 extends the classic definition of strong stubborn sets in the following way: first, the included actions are restricted to belong to agent i only. Second, instead of requiring the stubborn sets for state s to contain a disjunctive action landmark for a goal condition, as in the classic definition, it must contain the set of all public actions that are reachable from s by a potentially empty sequence of private actions (Def. 10, point 3). This set is still a DAL for the goal, but one that ensures the preservation of all states created by public actions. These states resemble potential interaction points between the agents. Since an agent has only partial knowledge of the other agents’ actions, it cannot decide whether an interaction point is part of a plan leading to a goal or not. To see this, consider the following example: let $(\Pi, \mathcal{P}) = ((N, V, s_0, s_*, \{A_1, A_2\}), \mathcal{P})$ be a privacy preserving planning task, with

$N = \{1, 2\}$, $V = \{v_0, v_1, v_2, v_3, v_4\}$
$D_{v_i} = \{0, 1\}$, for $0 \leq i \leq 4$
$\mathcal{P} = \{\{1\}, \{\{2\}, N, N\}$
$s_0 = \{v_0 = 0, v_1 = 0, v_2 = 0, v_3 = 0, v_4 = 0\}$
$s_* = \{v_3 = 1\}$
$A_1 = \{a, b, c\}$, $A_2 = \{d, e\}$ with
$a = \langle v_0 = 0, v_0 = 1 \rangle$, $b = \langle v_1 = 0, v_1 = 1 \rangle$
$c = \langle v_0 = 1 \land v_1 = 1, v_4 = 1 \rangle$
$d = \langle v_4 = 1, v_2 = 1 \rangle$, $e = \langle v_2 = 1, v_3 = 1 \rangle$

Here, agent 1 can safely prune either action a or b in the initial state, thereby avoiding either state 10000 or 01000. Consider the local view of agent 1:

$N = \{1, 2\}$, $V^1 = \{v_0, v_1, v_3, v_4\}$
$s^1_0 = \{v_0 = 0, v_1 = 0, v_3 = 0, v_4 = 0\}$, $s_* = \{v_3 = 1\}$
$A^1_1 = \{a, b, c\}$ with a, b, c as above
$A^1_2 = \{d|_{V^1}, e|_{V^1}\}$ with
d|_{V^1} = \langle v_4 = 1, 0 \rangle$, e|_{V^1} = \langle 0, v_3 = 1 \rangle

To agent 1 there appears to be no connection between agent 2’s actions, i.e. $d|_{V^1}$ and $e|_{V^1}$ appear to be independent. Furthermore, action $e|_{V^1}$ appears to be applicable in the initial state. Therefore, in agent 1’s local view, the set $T_s = \{e|_{V^1}\}$ is consistent with the classic strong stubborn set definition. This set violates completeness of SSS pruning, however, because agent 1 has no action to apply in its initial state: $T_{app(s)} = \{a, b\}$ and $\{e|_{V^1}\} = \emptyset$. Hence, no goal can be reached. Note that T_s is not consistent with the revised stubborn sets definition (Definition 10), since it contains an action of player 2. Furthermore, it does not contain action c and hence does not preserve the only and essential interaction point (11001). The sets $T_s = \{c, b\}$ and $T_s^0 = \{c, a\}$, on the other hand, are consistent with both definitions and lead to the pruning of either action a or b as intended.

Privacy

SSS for privacy preserving planning strives to reduce each agent’s individual search space without introducing any additional communication. It never transmits a state that is not transmitted by the respective planning algorithm without SSS pruning. We therefore believe that the presented pruning technique is strongly privacy preserving.

Optimality

Definition 11 (Public step). A public step in state s is a sequence of actions π_α, where

- α is a public action of agent i and
- π is a minimal plan from s to $\text{pre}(\alpha)$, i.e. $\pi[s] = \pi[\alpha]$.

A plan π from s to $\text{pre}(\alpha)$ is minimal, if there is no subsequence π'' of π that can be moved behind action α, such that $\pi[\alpha] = \pi''[\alpha]$, $\pi''[s]$ where π'' is the sequence π without π''.

A public step can be thought of as a sort of “macro action” that encapsulates the execution of private actions performed by a single public action.

Definition 12 (Public state). A state s is called public state if it is reachable from the initial state by a sequence of public steps.

Lemma 1. Let (Π, \mathcal{P}) be a privacy preserving planning problem and $\pi = (a_1, a_2, \ldots, a_k)$ be a solution to Π. Then, there exists a permutation $\pi' = (a'_1, a'_2, \ldots, a'_k)$ of π, such that for all pairs of consecutive public actions 3 a'_i, a'_j in π', $(a'_i+1, a'_i+2, \ldots, a'_j)$ is a public step.

Proof. Let $\pi = (a_1, a_2, \ldots, a_k)$ be a solution to Π, such that every private action in π is followed by another action (public or private) of the same agent. Only considering solutions of this type preserves optimality and completeness (Nissim and Bramfan 2014). Assume that, between two consecutive public actions a_i and a_j, we have a sequence of actions (of the same agent) $\pi_{i,j} = (a_{i+1}, a_{i+2}, \ldots, a_j)$ that is not a public step. Then, there must be a subsequence in $\pi_{i,j}$ that can be moved behind a_j. By moving this subsequence behind a_j, just before the next sequence of actions of the same

3By consecutive public actions we mean that there are no other public actions between a'_i and a'_j. There might be private actions in between, however.
agent, we create a permutation \(\pi'' \) that is a legal plan. Repeating this process until all inconsistencies have been removed yields a plan \(\pi' \) that is a permutation of \(\pi \) and that consists of public steps only.

Lemma 2. Restricting the successor generation to a SSS (according to Def. 10) in every state is optimality preserving for privacy preserving planning.

Proof. Let \((\Pi, \mathcal{P})\) be a privacy preserving planning task. The proof is by induction over \(k \in \mathbb{N} \), where \(S_k \) is the set of public states that are reachable in at most \(k \) public steps from the initial state and \(S_k' \) is the set of public states that are reachable in at most \(k \) public steps when stubborn set pruning is applied. We show that \(S_k = S_k' \) for all \(k \). (It suffices to consider public states instead of all possible states because of Lemma 1.)

The initial state \(s_0 \) is reachable by an empty sequence of actions (zero public steps), therefore, \(S_0 = \{ s_0 \} = S_0' \).

Let the set of reachable states expand from \(S_{k-1} \) to \(S_k \supseteq S_{k-1} \). For each new state \(s^* \in S_k \setminus S_{k-1} \), a state \(s \in S_{k-1} \) must exist from which \(s^* \) is reachable, in a single public step. Therefore, there must be a public state \(s \in S_{k-1} \) and a public step \(\pi \sigma s \), such that \(\pi a[s] = s^* \). Let \(i \) be the agent, such that \(a \in A_i^{pub} \).

According to the induction hypothesis \(S_{k-1} = S'_{k-1} \), it holds that \(s \in S_{k-1}'' \). We argue that SSS preserves a public step (of agent \(i \)) \(\sigma a \), such that \(\sigma a[s] = s^* \). Observe that \(a \) is included in \(T_a \) for agent \(i \) since \(a \in A_i^{pub} \) and its public projection \(a_{Y^{pub}} \) is applicable in \(s \) (Definition 10, point 3).

If \(a \) is applicable in \(s \), i.e., \(a(s) = s^* \), then \(s^* \in S_k'' \). If \(a \) is not applicable in \(s \), then a necessary enabling set for \(a \) must be contained in \(T_a \) (Definition 10, point 2). That is, a disjunctive action landmark for \(pre(a) \) in \(s \). The stubborn sets generated for \(a \) according to Definition 10 correspond to the stubborn sets generated for \(a \) according to the classic definition when planning towards the goal \(s_\pi = pre(a) \) with the set of actions \(A = A_\pi \). Since classic strong stubborn sets are optimality and completeness preserving (Alkhazraji et al. 2012), a permutation \(\sigma \) of \(\pi \) must be preserved, such that \(\pi a[s] = s^* = \sigma a[s] \). Hence \(s^* \in S_k'' \).

Evaluation

The presented algorithms were implemented in a distributed multi-agent planning system written in Go. Experiments were run on a 2.6 Ghz Intel Xeon 8-core CPU. Each problem instance used a single core and 8 GB of RAM, shared by all agents. We experimented with the benchmarks from the CoDMAP competition (Štola, Komenda, and Kovacs 2015) consisting of 12 domains with 20 problems each.

Furthermore, we used a new domain, inspired by a production site. Here, the goal is to produce a set of products with certain properties. The agents must process the products to establish their required properties. Each property has a corresponding processing action, all of which are private and subtractive of one another. A concrete example that embodies this type of domain has the agents building personal computers according to a given set of orders. Each order specifies an individual PC setup, i.e., the set of components the PC should consist of. Many components, like hard disc drives, physical drives, sound card, working memory, etc., can independently be installed onto the mainboard.

Of the new production site domain 20 problem instances of varying difficulty were included in the benchmarks. Planning time was limited to 30 minutes per problem instance. Table 1 shows coverage results for the tested configurations.

While plain MAFS solves 0, 11 and 8 instances of the production site domain when using the blind, goalcount and FF heuristic (Hoffmann and Nebel 2001) respectively, MAFS with stubborn set pruning solves all 20 instances, independent of the heuristic used. Blind MAFS resembles depth-first search and chains together random sequences of actions, most of which do not lead to a goal. Due to the expansive search space, even the easiest instances cannot be solved. The goalcount and FF heuristics, on the other hand, both guide MAFS towards states with as many subgoals satisfied as possible. That way, the search focuses on one subgoal, or product, after the other and the number of generated states is reduced decisively. Although this behavior seems to be favorable, it has its own shortcomings. The heuristics cannot differentiate between two states in which the same number of subgoals are satisfied, even if one state is significantly closer to satisfying another subgoal than the other. The reason for this is that the heuristics are computed based on each agent’s local view. The public actions of other agents establish a subgoal (finish a product) with a cost of one and appear to always be applicable, because their public projections do not include their private preconditions. Because of this heuristic inaccuracy, states that satisfy a larger number of subgoals but which do not lead to a goal are preferred to states that lead to a goal but satisfy fewer subgoals. Processing actions, for instance, cannot be undone. Therefore, if a product is processed in a way not consistent with its goal re-

<table>
<thead>
<tr>
<th>Domain</th>
<th>def</th>
<th>sss</th>
<th>def</th>
<th>sss</th>
<th>FF</th>
</tr>
</thead>
<tbody>
<tr>
<td>blind</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>depot</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>droplet</td>
<td>7</td>
<td>7</td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>elevators</td>
<td>3</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>logistics</td>
<td>3</td>
<td>3</td>
<td>18</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>rovers</td>
<td>20</td>
<td>20</td>
<td>19</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>satellite</td>
<td>3</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>sokoban</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>taxi</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>wireless</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>woodworking</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>zenotravel</td>
<td>5</td>
<td>5</td>
<td>20</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>51</td>
<td>136</td>
<td>129</td>
<td>114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>prod. site</th>
<th>def</th>
<th>sss</th>
<th>def</th>
<th>sss</th>
<th>FF</th>
</tr>
</thead>
<tbody>
<tr>
<td>depot</td>
<td>20</td>
<td>11</td>
<td>8</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Benchmark results.
quirements, the agent cannot finish that product. The respective subgoal can then only be supplied by another agent. If no agent can supply the subgoal, the search has to backtrack to a state in which the faulty processing action has not been applied yet. This problem does not occur in the stubborn set pruning variant. Counter-productive processing actions that prevent a product from being finished are always pruned. These actions are independent of the other processing actions and therefore may only be included in the stubborn set if they establish a precondition of the public action that finishes the product. Stubborn set pruning therefore effectively restricts the search to consider only such states that can be extended into a goal state. Furthermore, each agent must consider only a single permutation of processing actions to finish each product, where otherwise exponentially many permutations would have to be considered. When FF or goalcount heuristic is used, the stubborn set approach also focuses on one subgoal after the other. The generated plans encourage the division of labor between the agents, each creating a subset of the products, rather than one agent creating them all. Furthermore, plans are found very fast, as all parts of the search space that do not progress towards a goal are pruned.

Regarding the CoDMAP domains, the results are mixed. There are no major differences in coverage between the strong stubborn set approach and regular MAFS, although overall the latter configuration solves a few problems more. We believe that this is due to the additional computations required for computing the stubborn sets. Interestingly, some domains seem not to benefit from the stubborn sets based partial order reduction at all. A possible explanation is that these domains already internalize a form of POR by decoupling the planning task in such a way that each agent has its own individual responsibilities. If in the production site domain each agent had a single processing action only, there would be as good as no pruning potential. This is exactly what we find in some of the CoDMAP domains. The woodworking domain is a good example of such an agent decoupling. Here, most of the agents can only perform a single action. Another explanation is that the pruning potential is not fully exploited, because the agents compute their stubborn sets independent of one another. Hence, a state pruned by one agent could be generated and broadcasted by another agent. Investigating how to get the agents’ pruning efforts more in sync seems to be worthwhile.

Future Work

Without additional communication between the agents only private actions can safely be pruned. By computing SSS in a distributed fashion the agents could also prune public actions, leading to a higher pruning potential. The general idea is that, whenever an agent encounters another agent’s public action during a SSS computation, it will send a request to that agent. The other agent sends back a set of dependent public actions or a public necessary enabling set, depending on whether the requested action is applicable in the respective state or not.

Conclusion

This paper provides a theoretical basis for stubborn sets pruning in the context of privacy preserving planning. The empirical results show that some domains significantly benefit from partial order reduction. Although the production site domain was created with partial order reduction in mind, we believe that it models a specific situation that can also occur within the search space of other domains. In this situation, the heuristics are blind or misleading and, in consequence, the search exhaustively explores the affected parts of the search space. When these parts consist of many independent actions, then stubborn sets pruning can significantly reduce the search effort.

References

Wehrle, M.; Helmert, M.; Alkhazraj, Y.; and Mattmüller, R. 2013. The relative pruning power of strong stubborn sets and expansion core. In ICAPS.