
Trial-based Heuristic Tree-search for Distributed Multi-agent Planning

Tim Schulte and Bernhard Nebel
Institut für Informatik, Albert-Ludwigs-Universität, Freiburg, Germany

{schultet, nebel}@informatik.uni-freiburg.de

Abstract

We present a novel search scheme for privacy-preserving
multi-agent planning. Inspired by UCT search, the scheme
is based on growing an asynchronous search tree by run-
ning repeated trials through the tree. We describe key differ-
ences to classical multi-agent forward search, discuss theo-
retical properties of the presented approach, and evaluate it
based on benchmarks from the CoDMAP competition. Fur-
thermore, we describe a technique that enhances search by
performing explorative trials subsequent to each node expan-
sion and show empirically that this technique has a strong
positive impact on the number of problems solved.

Introduction
In collaborative multi-agent planning multiple agents at-
tempt to achieve a common goal by planning and coor-
dinating their actions appropriately. In this work, we con-
sider a distributed form of collaborative multi-agent plan-
ning where agents cooperate with one another while keep-
ing various information private. MA-STRIPS (Brafman and
Domshlak 2013) is one of the most basic formalisms for this
type of privacy-preserving multi-agent planning (or privacy-
preserving planning for short), and several planning tech-
niques have since been proposed to solve respective tasks
(Nissim and Brafman 2013; 2014; Torreño, Onaindia, and
Sapena 2014). The recent emergence of a dedicated com-
petition on distributed and multi-agent planning (CoDMAP)
(Štolba, Komenda, and Kovacs 2015) emphasizes the raising
interest in this field.

In this paper, we introduce a novel search technique for
privacy-preserving planning based on trial-based heuristic
tree-search (THTS) (Keller and Helmert 2013), a general
scalable framework for solving different types of planning
tasks. Our main contribution is the definition and evaluation
of the resulting search framework, which we call distributed
multi-agent trial-based heuristic tree-search (DMT). We
present two DMT algorithms. The first approach resembles
best-first search, comparable to multi-agent forward search
(MAFS) (Nissim and Brafman 2014), the second balances
exploration and exploitation similar to UCT (Kocsis and
Szepesvári 2006). We show that both algorithms are sound

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and complete, and evaluate them on a set of benchmark
problems from the CoDMAP competition.

As a secondary contribution, we describe a technique that
extends the regular search approach by small explorative tri-
als which are performed subsequent to each node expansion.
(Similar to the approaches successfully implemented by the
ARVAND (Nakhost and Müller 2009) and PROBE (Lipovet-
zky and Geffner 2011) planning systems). We show that this
technique significantly increases the number of problems
solved for both DMT and MAFS.

Background
We consider multi-agent planning in a notational variant
of the privacy-preserving planning formalism (Nissim and
Brafman 2014). The formalism extends classical planning
with a notion of agents, their respective action sets, and a
privacy partition.

Definition 1 (Multi-agent planning task). A multi-agent
planning task is a tuple Π = 〈N,V, s0, s?, {Aj}j∈N 〉 ,
where

• N = {1, 2, . . . , n} is a finite set of agents,
• V is a finite set of state variables. Each v ∈ V is associ-

ated with a finite domain Dv . A variable assignment is a
function s with domain Ds ⊆ V , such that s(v) ∈ Dv for
all v ∈ Ds. A variable assignment with Ds = V is called
state.

• s0 is the initial state,
• s? is a variable assignment over V called the goal,
• Aj is a finite set of actions available to agent j. Each

action a = 〈pre(a), eff(a), c(a)〉 ∈ Aj consists of two
variable assignments over V called precondition pre(a)
and effect eff(a), and a cost c(a) ∈ R+

0 . The set of all
actions is A =

⋃
j∈N Aj .

An action a is applicable in state s if s agrees with pre(a)
wherever pre(a) is defined. Application of action a in state
s yields the successor state a(s) which agrees with eff(a)
where eff(a) is defined, and agrees with s, elsewhere. The
set of all applicable actions in state s is app(s). The solution
to a planning task is a sequence of actions π = (a1, . . . , ak)
such that a1 is applicable in s0, every subsequent action is
applicable in the state generated by its preceding action, and

ak(. . . (a1(s0)) . . .) |= s?. Privacy-preserving planning ex-
tends multi-agent planning by a notion of privacy.
Definition 2 (Projection). Let s be a variable assignment
over the set of variables V . The projection s|V ′ of s to V ′ ⊆
V is the variable assignment over V ′ that agrees with s on
all variables of V ′, i.e. s|V ′(v) = s(v), for all v ∈ V ′.
Definition 3 (Action projection). The projection of an
action a to the set of variables V ′ ⊆ V is a|V ′ =
〈pre(a)|V ′ , eff(a)|V ′ , c(a)〉. The projection of a set of ac-
tions A to V ′ is defined as A|V ′ = {a|V ′ | a ∈ A}.
Definition 4 (Privacy-preserving planning task).
A privacy-preserving planning task is a tuple
Π = 〈N,V, s0, s?, {Aj}j∈N ,P〉, where N,V, s0, s?
and {Aj}j∈N form a multi-agent planning task and P is an
indexed family of sets called a privacy partition:

P = {Pv}v∈V .

For each variable v ∈ V , P contains the set of agents Pv ⊆
N that have access to v. For the purpose of this paper, we
assume that all sets Pv, v ∈ V , have a cardinality of either
1 or |N |. Then, P partitions the set of variables V into a
set of public variables V pub, known to all agents, and |N |
sets of private variables V prij , each known to a single agent
j ∈ N only. Likewise, actions are partitioned into a set of
public actions Apub and sets of private actions Aprij :

V prij = {v ∈ V | Pv = {j}}, for j ∈ N
V pub = {v ∈ V | Pv = N}
Aprij = {a ∈ Aj | a = a|V pri

j
}, for j ∈ N

Apub =
⋃
j∈N (Aj \Aprij)

A privacy-preserving planning task is a multi-agent plan-
ning task with the addition of a privacy partition. The pri-
vacy partition describes, which agent can access which vari-
ables or actions at plan time. Every information of a privacy-
preserving planning task that a single agent can access, is
again a planning task: the local view of agent i.
Definition 5 (Local view). The local view of agent
i ∈ N on a privacy-preserving planning task Π =
〈N,V, s0, s?, {Aj}j∈N ,P〉 is defined as

Πi = 〈N,V i, si0, s?, {Aij}j∈N 〉, where

V i = V pub ∪ V prii ,

si0 = s0|V i , and

Aij = (Aj \Aprij)|V i for j 6= i, and Aii = Ai.

The local view only contains projections of other agents’
public actions. These projections never contain precondi-
tions or effects on variables that are private to another agent.
Assume aj to be an action of agent j. The local view of some
other agent i includes a projection aij of aj . Since aij does
not contain preconditions or effects private to agent j, to
agent i it might appear applicable in some state s, although
aj is not applicable in s (for some private precondition is not
satisfied). This is why communication between the agents

Selection Expansion Backpropagation

Figure 1: Phases of THTS.

during the planning process is essential. A multi-agent plan-
ning algorithm is weakly private if, at plan time, each agent
can only access its own local view on the planning task and
the agents never exchange private information with one an-
other. A multi-agent planning algorithm is strongly private
if no agent can deduce private information, including knowl-
edge about the existence or value of a variable or action pri-
vate to another agent, from the course of conversation (mes-
sage history) between the agents (Brafman 2015).

Multi-Agent Forward Search (MAFS) (Nissim and Braf-
man 2014) is a general search scheme for privacy preserv-
ing multi-agent planning. Each agent conducts a best-first
search, maintaining its own open and closed list. Successors
of expanded states are generated by using the agents own
actions only. Whenever an agent i expands a state for which
the local view of agent i contains an applicable action pro-
jection of another agent j, a message is sent to that agent.
The message contains the full state, heuristic score and g-
value of the sending agent. Private fluents of the state are
encrypted such that only the relevant agents can decrypt it.
When agent i receives a message m = 〈s, hj(s), gj(s)〉 of
some other agent j, it checks whether s is already in its open
or closed list. If this is not the case, i puts s on its open list.
If i generated state s previously with higher cost, it puts s on
its open list again and assigns new costs gj(s) to it. When
an agent generates a goal state, it initiates a distributed plan
extraction procedure by broadcasting the goal state in a mes-
sage to all agents.

Distributed Multi-agent Trial-based Heuristic
Tree-search

While MAFS is locally based on best-first search, DMT is
based on trial-based heuristic tree-search (THTS) (Keller
and Helmert 2013; Schulte and Keller 2014). THTS algo-
rithms repeatedly execute three phases. Each of these phases
corresponds to a search component that must be specified in
order to derive a concrete algorithm. In contrast to best-first
search (BFS) approaches which expand nodes from an open
list that is sorted by priority, THTS algorithms maintain a
tree of nodes and select one of its leaf nodes for expansion
in each search step. We now briefly sketch the three phases
of THTS displayed in Figure 1.
1. Selection is the first phase of the algorithm with the ob-

jective to select one of the leaf nodes for expansion. Be-
ginning from the root, a selection strategy recursively se-
lects a child, until a leaf node is reached.

2. In the expansion phase, successor nodes of the previ-

ously selected leaf node are generated and integrated into
the tree. While the algorithms presented in this paper
use heuristic functions to compute state value estimates
for the generated nodes, this is not a necessity. A non-
systematic search approach could, for instance, use Monte
Carlo rollouts to aggregate value estimates.

3. During backpropagation (or backup) phase new informa-
tion, like state value estimates or the number of times
a node has been visited during selection, is propagated
through the tree.
After the backpropagation phase, the algorithm starts

again with the first phase. This process is repeated until a
goal state is generated, or some limit is reached.

We now present a complete and privacy-preserving
scheme for the distributed application of trial-based heuris-
tic tree-search. The concept is similar to MAFS, where
forward-search is concurrently executed while state infor-
mation is exchanged between the planning agents according
to a specific message passing scheme. Each agent performs
THTS locally, using its own actions only. Whenever agent i
expands a state s in which an action projection of agent j is
applicable, i will send a message to j containing s. Agent j
then integrates s into its search tree, such that it can prospec-
tively select s for expansion. To accomplish this, agent j
identifies a suitable parent and adds s as a child to it. In prin-
ciple, any node can be used as a parent without soundness or
completeness being compromised. However, since the tree
structure is crucial to the success of THTS algorithms, it is
important where new states are integrated. Let s be the re-
sult of applying the sequence of actions (a1, . . . , ak) in the
initial state, i.e. ak(...(a1(s0))...) = s, and let aj be the last
action of agent j in that sequence. If aj exists, j adds s as
a child to s′ = aj(...(a1(s0))...). Otherwise, j adds s as a
child to the root. Note that agent j is not aware of all actions
in the sequence leading to s and hence cannot compute s′.
We enable agent j to identify s′ by using a special message
type.

Definition 6 (State message). A state message from agent i
to agent j for state s is a tuple m = 〈s, hi, gi, T 〉, where

• s is a state; private components are encrypted, such that
each agent can only decrypt its own private components.

• hi is a value estimate of agent i for state s,
• gi is the cost of agent i to establish state s,
• T is a set of state tokens.

Each state token belongs to an agent k and contains a
state identification number. This number references a node
in the local search space of agent k and is meaningless to
all other agents. Figure 2 illustrates how tokens are used to
integrate states. Here, two agents i and j are planning con-
currently. Numbers next to nodes depict state IDs that corre-
spond to the local state represented by the node. Nodes asso-
ciated with states for which an applicable action projection
of the other agent exists are rendered in bold. When agent
j expands the node with state ID 3, it transmits message
m1 = 〈s, 7, 2, {j 7→ 3}〉 to agent i. m1 contains a token that
enables j to identify the node labelled with 3. When agent i
receives m1, it creates a new search node for s. Because m1

0

2

5

0

3

4

m1 = 〈s, 7, 2, {j 7→ 3}〉

m2 = 〈s′, 5, 2, {j 7→ 3, i 7→ 5}〉
Agent i Agent j

Figure 2: State integration.

contains no token for agent i, the new node is attached as a
child to the root. Later on, i expands the node with state ID
5, for which j has an applicable public projection. The mes-
sage m2 = 〈s′, 5, 2, {j 7→ 3, i 7→ 5}〉 is sent back, from i to
j. Because state 5 was generated in a branch to which agent
j contributed an ancestor state, the token j 7→ 3 is attached
to the message, along with the new token i 7→ 5 of agent i.
The latter token enables i to identify the state corresponding
to state ID 5. When agent j receives m2 it looks up its token
j 7→ 3, creates a new node for state s′, and attaches it as a
child to the node with state ID 3.

An overview of the resulting search scheme is depicted
in Figure 3. The algorithms main routine is defined in Al-
gorithm 1. Methods process-messages, select, expand, send-
messages and backup correspond to integration-, selection-
, expansion-, distribution- and backup-phase respectively.
These components are described in detail below. For ease
of exposition we define the following functions to access in-
formation stored with each search node σ:

• state(σ): associated search state

• par(σ): parent of σ

• children(σ): set of children of σ

• action(σ): action leading from state(par(σ)) to state(σ)

• h(σ): value estimate for σ

We refer to a search node σ and its associated state s =
state(σ) interchangeably where convenient.

Selection. A selection strategy is a function that maps
from a set of search nodes Σ to a single node σ ∈ Σ. To
ensure that the node selected last in the selection phase is an
unexpanded leaf node, a special locking mechanism is used.
The idea is to mark expanded nodes from which no unex-
panded leaf node is reachable as locked and to ignore such
nodes in the selection phase. Each expanded node σ∗ with-
out any non-locked children is locked in the backup phase
by setting l(σ∗) = true. New nodes created in the expan-
sion phase are non-locked by default. We use two selection
strategies: greedy and balanced. greedy resembles a greedy
best-first search policy, selecting the successor node σ with
the lowest value estimate h(σ). balanced aims to balance ex-
ploration and exploitation by using a selection formula sim-
ilar to UCB1 (Auer, Cesa-Bianchi, and Fischer 2002) found

out: in:

Selection Expansion BackpropagationDistribution Integration

Figure 3: Phases of DMT.

Algorithm 1: DMT for agent i

Data: Πi = 〈N,V i, si0, s?, {Aij}j∈N ,P〉
Result: plan π = 〈ak ∈ Ai〉Kk=1

1 root← new tree from s0

2 while within computational budget do
3 σ ← root
4 if ¬l(σ) then
5 while children(σ) 6= ∅ do
6 σ ← select(children(σ))
7 expand(σ) // memorizes plans
8 send-messages(σ, N) // distribution
9 mark σ for backup

10 process-messages() // integration
11 backup()
12 return best memorized plan

in UCT algorithms (Kocsis and Szepesvári 2006). Formally:

greedy(Σ) = arg min
σ∈Σ,¬l(σ)

h(σ)

balanced(Σ) = arg min
σ∈Σ,¬l(σ)

h(σ)− c ·

√
ln v(par(σ))

v(σ)

Here, h(σ) ∈ [0, 1] is the normalized value estimate of σ,
such that h(σ?) = 0 for the node σ? with the lowest value
estimate from Σ and h(σ−) = 1 for the node σ− with the
highest value estimate from Σ. All other nodes σ′ ∈ Σ are
interpolated accordingly. The number of times a node has
been selected during selection phase is denoted by v(σ) (vis-
its). balanced selection favours nodes with fewer visits. Co-
efficient c is a weight bias to increase or decrease the de-
sired amount of exploration. The higher c the higher the bias
towards exploration. greedy and balanced are just two ex-
amples of selection strategies that can be used in line 6 of
Algorithm 1.

Expansion. Algorithm 2 specifies how a node σ is ex-
panded by an agent i. First, a heuristic value for state(σ)
is computed and h(σ) is set to that value. Then, all succes-
sor states s′ are generated. For each successor state s′ that
is not already in the tree a new node σ′ is created and added
to children(σ); its values are set accordingly (Algorithm 2,
line 9-11). If a successor state s′ is already in the tree, the re-
spective search node σ′ with state(σ′) = s′ is determined. If

Algorithm 2: Expansion for agent i

Data: σ,Ai = Ainti ∪A
pub
i

Result: modified tree node σ
1 s← state(σ)
2 h(σ)← evaluate heuristic function for s
3 foreach action a ∈ Ai applicable in s do
4 s′ ← a(s)
5 if s′ is a goal state then
6 extract and memorize plan
7 if s′ is not in the tree then
8 σ′ ← new node
9 par(σ′), action(σ′), h(σ′)← σ, a, h(σ)

10 state(σ′), v(σ′), l(σ′)← s′, 0, false
11 children(σ)← children(σ) ∪ {σ′}
12 else
13 lookup σ′ where state(σ′) = s′

14 if g(σ) + c(a) < g(σ′) and ¬l(σ′) then
15 mark par(σ′) for backup
16 remove σ′ from children(par(σ′))
17 par(σ′), action(σ′), h(σ′)← σ, a, h(σ)
18 children(σ)← children(σ) ∪ {σ′}

the new path to s′ induces lower costs than the existing path,
the subtree rooted at σ′ is moved to children(σ) by adapting
parent and child pointers of the involved nodes (Algorithm
2, line 16-18). Since the former parent of σ′ lost a child,
the value estimates of all nodes along the path from the for-
mer parent to the root are deprecated. Therefore, before σ′ is
moved to its new parent σ, par(σ′) is marked to get updated
in the next backup phase (line 15).

Distribution. Let σ be the node agent i expanded last.
In the distribution phase i creates a state message m =
〈state(σ), g(σ), h(σ), T 〉, such that T contains a token of i
to identify σ. For each other agent the first token traceable
on the path from σ to the root is attached to T . Then, agent
i sends m to all agents that have a public action projection
applicable in s.

Integration. Following the distribution phase agent i inte-
grates each state s received in a message m = 〈s, hj , gj , T 〉
into its local search tree. First, i identifies the new parent σ∗
for s by looking up its token from T . If T contains no token
for i, then σ∗ is set to the tree’s root node. If s is new to agent
i, a new search node σ is created and added to children(σ∗).

If some node σ′ representing s is already in the tree, it is
moved to children(σ∗) in case s is reachable with lower cost
that way. As in the expansion phase, when σ′ is moved, its
old parent is marked for backup.

Backpropagation. The backup function starts at the node
σ that was expanded last and updates its values. The node’s
visits are increased by one, its value estimate is set to the
minimum among its non-locked children, and the locked flag
is set if the node itself has no non-locked child:

v(σ) = v(σ) + 1

h(σ) = minσ′∈children(σ),¬l(σ) h(σ′)

l(σ) =
∧
σ′∈children(σ) l(σ

′)

Then backup continues with the node’s parent par(σ) and
updates it accordingly. This process is repeated until the
root node is reached. In case other nodes have been marked
for backup, during expansion or integration, the process
is repeated for each marked node. This may lead to the
same node getting updated multiple times, but can easily be
avoided by using a backup queue.

Trial Length. When a node σ is expanded, all its succes-
sors are generated and associated state messages are sent.
Before the agent continues with the integration phase, it can
select one of the newly generated nodes and expand it as
well. By alternatingly executing selection, expansion and
distribution phase, multiple nodes can be expanded in each
search step. The number of nodes to get expanded in a single
search step is denoted as trial length. For simplicity we did
not include it in Algorithm 1. It can easily be implemented
by looping around lines 5-10.

An increased trial length induces additional exploration,
which is supposed to help to overcome biases of the heuristic
function and to exit local minima faster. The method, there-
fore, is most beneficial in the presence of inaccurate or mis-
leading heuristic estimates, which is a known problem of
locally computed heuristic functions in privacy-preserving
planning. It turns out that the trial length is an important
feature for making DMT search much more efficient. To see
whether the advantages of the trial length are transferable to
MAFS and for the sake of a fair comparison, we added this
technique to MAFS as well.

Although the trial length is a native feature of DMT, trans-
ferring it to MAFS is straightforward: In each search step,
MAFS selects the best node from its open list and gener-
ates all successor states. Then, the best successor (according
to the heuristic function) is selected and all of its successor
states are generated. Again, the best successor is selected
and all of its successors are generated, and so on. For a trial
length of t, this process is repeated t − 1 times. Each node
generated in the process is added to the open list and, if nec-
cessary, transmitted to relevant agents. Then, control is re-
turned to the MAFS loop.

Plan Extraction
If some agent i generates a goal state a valid plan can be
extracted and agent i initiates a distributed plan extraction
process. First, it traces back all states of its local plan, until a

state s∗ is reached that was received in a state message from
another agent j. Then, i sends a plan extraction request to j,
including s∗. Agent j then continues to trace back its local
plan, beginning from the state received in the state message.
This process is repeated until some agent reaches the initial
state, at which point plan extraction ends. If more planning
time is available, DMT search progressively tries to generate
better solutions. When a plan is extracted, its cost is com-
puted and the plan with the best cost found so far is memo-
rized as π. From then on each agent marks search nodes with
a higher g-value than π as locked. Each time a new goal state
is reached, its g-value is computed, and, if it is an improve-
ment, π is updated. Once each agents root is locked, π is the
optimal solution. If the time limit is exceeded earlier, π is
returned.

Soundness and Completeness
Lemma 1. Each state s in the search tree of an agent i is
reachable.

Proof sketch. The first state generated by DMT is the initial
state. Each subsequently generated state is reached by an ac-
tion applied in a previously generated state. Therefore, every
state s in the search tree represents a valid sequence of ac-
tions that is applicable starting with the initial state, and that
results in state s. Hence, if a state satisfies the goal, a valid
plan can be extracted.

Lemma 2. If a goal is reachable by some sequence of ac-
tions then some agent will generate a goal.

Proof sketch. We will only consider sequences in which a
private action of an agent is followed by another action of
that agent. In (Nissim and Brafman 2014) it was shown that
it suffices to consider such sequences for any goal that in-
volves public variables only. In the following we argue that
the presented two selection functions (greedy and balanced),
in combination with the other components presented, yield
complete algorithms.

In every search step, each agent expands a new leaf node
and generates all its successors. Nodes without children are
locked, either because they are dead-ends or because all of
their successor states can be reached on shorter paths and
have been moved to other states in the tree. Therefore, all
paths that do not lead to a solution will eventually be locked.
Both selection functions solely select non-locked nodes and
will eventually, for the lack of an alternative, select a node
along a path that leads to a goal. Given sufficient time, all
nodes along such a path will be selected until the goal is
reached. If no such path exists in an agents local search
space, the agent exhaustively generates all possible states,
until its root node is locked.

We now regard sequences that involve actions of different
agents and that lead to a goal state. It is easy to see that each
agent transmits the last state s, established by a subsequence
of its own actions, to the agent owning the next action in
the sequence. If the next action is private, it is always fol-
lowed by another action of the same agent, until one action
is public. This actions public projection is applicable in state
s, and hence sent to the agent in a state message.

Relation to MAFS
MAFS and DMT are both schemes for distributed search al-
gorithms that differ in the types of algorithms they support.
MAFS supports forward search algorithms where nodes are
expanded from an open list, while DMT supports THTS al-
gorithms that use a search tree instead. In MAFS, states are
inserted into an open list together with a static value esti-
mate computed prior insertion. The value estimates of states
in the open list never changes, hence, their relative order
remains unchanged. DMT algorithms, by way of contrast,
insert states into a tree together with value estimates that
are continuously subject to change. Therefore, algorithms
that depend on a dynamic node ordering, like UCT (Koc-
sis and Szepesvári 2006), can easily be expressed as DMT
algorithms by defining appropriate selection, backup and ex-
pansion functions. It is not possible to implement these al-
gorithms competitively with an open list, especially when a
large number of nodes change their relative position in each
search step. Another major difference between DMT and
MAFS concerns the reopening of closed states. In MAFS, a
newly generated state s is put on the open list only if it is not
already on the closed list or if its new g-value is smaller than
the registered g-value. In the latter case, states previously
generated as successors to s will potentially be reopened in
future search steps as well. In DMT, if s is already in the
tree and its new g-value is smaller than the current g-value,
the subtree of the existing node is moved to the node that is
currently expanded. This is achieved by adapting parent and
child pointers of the involved nodes (Algorithm 2, line 15-
18). Successor states must not be generated all over again.

Evaluation
The presented algorithms were implemented in a distributed
multi-agent planning system written in Go called GOA1.
During the experiments, each problem instance was run on
a single core of a 2.6 GHz Intel Xeon CPU and 4 GB of
RAM. The assignment of processor time and memory per
agent was left to the Go scheduler. Although supported by
the planner, communication between the agents was realized
by sharing memory instead of using a network layer. Privacy
constraints were strictly met and no agent accessed memory
containing private information of another agent. We experi-
mented with the set of benchmarks from the CoDMAP com-
petition (Štolba, Komenda, and Kovacs 2015) consisting of
12 domains with 20 problem instances each. Additionally,
we included 40 problem instances of the productionsite do-
main, which is inspired by a (very abstract) smart factory.
Planning time was limited to 30 minutes per planning task.
In all cases, the FF heuristic (Hoffmann and Nebel 2001)
was used to compute state value estimates. The heuristic
function was applied to the agents’ local view of the prob-
lem, containing the agents’ private and public variables and
actions together with the other agents’ public action projec-
tions. Compared to jointly computed heuristics, this yields
rather uninformed value estimates, but doesn’t require extra
communication. We conducted two experiments. The first

1https://github.com/schultet/goa

experiment compares MAFS to the presented DMT algo-
rithms: (1) DMT with greedy selection (DMTG) and (2)
DMT with balanced selection (DMTB), each using a trial
length of one. In a second experiment, we analyzed the im-
pact of the trial length on the overall search performance,
comparing MAFS to multiple DMT configurations that dif-
fer in the chosen trial length. Note that the results reported
below differ from (but are generally consistent with) results
reported in an earlier research abstract (Schulte and Nebel
2016). All configurations now use a lazy communication
scheme, sending messages only when states are expanded
as opposed to when they are generated. Other changes in-
clude general planner improvements and the much higher
time limit of 30 minutes instead of 2.

Table 1 shows performance results for the tested base con-
figurations: MAFS, DMTG and DMTB. We report cover-
age, as well as the number of messages that were sent (a
message broadcast to k agents is counted as k messages),
the time to completion and the number of expanded states.
Except for the coverage, we report averages only over the
problems that were solved by all algorithms. The numbers
reflect that MAFS performs best in terms of coverage, solv-
ing 20 instances more than DMTG, and 67 instances more
than DMTB. We expected greedy DMT to perform slightly
worse than MAFS, because both approaches search the state
space greedily, but the DMT approach is computationally
more demanding (each node expansion requires to run a
trial through the tree). Comparing the problems solved by
all configurations, however, greedy DMT requires signifi-
cantly fewer expansions in all but two domains and needs to
send fewer messages in all but four domains. It also gener-
ally finds plans faster. The lower coverage is more than com-
pensated for, when choosing a different trial length, as will
be shown below. Interestingly, balanced DMT which overall
performs worst, solves 15 instances of the blocksworld do-
main where neither MAFS nor greedy DMT solve a single
instance. Another interesting observation, albeit not shown
in Table 1, is that the plan quality vastly differs between
MAFS and the two DMT variants, with MAFS having an
average plan cost of 100.7, while DMTG and DMTB hav-
ing an average plan cost of 53.4 and 51.8, respectively. The
difference could be due to DMT breaking ties in favor of
shallower nodes. This requires further investigation, though.

Next, we analyze the impact of the trial length. Figure 4
depicts the total number of problems solved by each of the
three search approaches using different trial lengths. We
consider all trial lengths from 10 to 400 in increments of
10, i.e. t = 10, 20, . . . , 400, plus the baseline approaches
(t = 1). For all configurations, increasing the trial length
leads to a notable increase in coverage. The difference is
especially pronounced in the case of greedy DMT, which
solves 35 additional problem instances even when increas-
ing the trial length only slightly by 10. The maximum cov-
erage over all configurations is 211 (DMTG), 200 (MAFS)
and 148 (DMTB), which is an increase over the baseline ap-
proaches by 30%, 11% and 29%, respectively. While the
addition of explorative trials generally leads to an increase
in the coverage, there are some domains where it has a
detrimental effect on the coverage. To look further into this

Coverage Expansions Messages Time
Domain MAFS DMTG DMTB MAFS DMTG DMTB MAFS DMTG DMTB MAFS DMTG DMTB

blocksworld 0 0 15 - - - - - - - - -
depot 3 4 1 4032 2352 46060 9904.0 5540.0 88704.0 2.4 2.4 20.0
driverlog 18 17 15 545 416 6612 384.9 308.9 2995.9 0.3 0.3 3.2
elevators 13 10 4 15274 8789 78898 8054.2 5868.0 56070.0 1.8 1.5 47.1
logistics 20 16 3 11366 14791 96648 9542.7 11700.7 84582.7 1.1 1.2 16.3
prod.site 35 29 20 8004 4487 106829 54.2 30.4 13548.6 4.1 4.1 211.6
rovers 19 13 7 14374 89782 208370 5894.9 30702.1 135844.9 11.0 130.9 179.5
satellites 20 12 3 2268 1759 24189 265.5 369.5 6336.0 1.8 1.6 22.4
sokoban 6 7 11 34069 2048 84927 90122.8 2506.8 80212.2 110.6 3.1 113.1
taxi 16 19 17 49862 45447 142137 66027.4 65739.2 226438.5 9.0 9.7 78.2
wireless 2 2 1 15586 11774 143804 27215.0 19774.0 195400.0 3.7 3.4 44.7
woodworking 10 13 2 5216 3862 3534 14609.5 10071.0 9710.5 1.7 1.7 1.8
zenotravel 20 20 16 11639 2372 24140 2925.3 674.6 13458.9 135.2 21.0 177.9

Sum/Ratio 182 162 115 1.0 0.65 5.69 1.0 0.65 7.64 1.0 0.77 7.84

Table 1: Comparing the performance of MAFS, DMTG and DMTB. For each domain the average over all problems is reported.

Domain MAFS DMTG DMTB

blocksworld 18 16 4
depot 3 4 3
driverlog 20 20 17
elevators 13 11 6
logistics 20 19 8
prod.site 18 27 26
rovers 20 20 17
satellites 20 20 5
sokoban 9 9 12
taxi 18 20 14
wireless 2 2 3
woodworking 14 19 20
zenotravel 20 20 12

Sum 195 207 147

Table 2: Coverage with a trial length of 100 (t = 100).

1 50 100 150 200 250 300 350 400

Trial length

120

130

140

150

160

170

180

190

200

C
o

ve
ra

g
e DMTB

DMTG

MAFS

Figure 4: Total coverage (max 280) for MAFS and DMT
using different trial length values.

behavior, Table 2 shows the domain coverage of the three
search strategies using an exemplary trial length of 100.

The increase in coverage is most noticeable in the
blocksworld domain where MAFS and greedy DMT previ-
ously (t = 1) solved zero instances, they now (t = 100)
solve 18 and 16, respectively. However, it is also evident
that the increased trial length negatively affects the balanced
DMT variant which previously solved 15 instances and now
solves merely 4. The opposite behaviour can be observed in
the productionsite domain. Here, both MAFS and DMTG
solve fewer problems (−17 and −2) with the higher trial
length, while DMTB solves more (+6). To further under-
stand the impact of the trial length, it is necessary to analyze
the interplay of domain specific features, the search strat-
egy used and the heuristic function used. The FF heuristic,
for instance, yields comparatively uninformed estimates for
blocksworld problems, resulting in huge local minima dur-
ing the search. Here, the additional exploration of baseline
(t = 1) DMTB pays off, while baseline MAFS and DMTG
perform significantly worse. Increasing the trial length helps
the latter two configurations to escape from local minima
and therefore find plans much faster. Why the increase in
trial length has a detrimental effect on the coverage of the
balanced DMT version is less clear. However, it must be
noted that the kind of exploration performed by DMTB is
very different from the one resulting from an increased trial
length. While the former converges to a breadth-first search
when the exploration coefficient is set high enough, the lat-
ter behaves more like depth-first search when the explo-
rative trials are long enough. To keep the discussion con-
cise, we conclude that increasing the trial length causes reg-
ular search to perform additional exploration and encourages
faster escape from local minima. Intuitively, this seems to be
most beneficial in domains where many solution paths ex-
ist but search is misguided into local minima by inaccurate
heuristic value estimates.

Figure 5 compares greedy DMT versions with differ-
ent trial lengths against the baseline MAFS version. The
brighter the color, the greater the trial length of the DMT
configuration. We find that there is a minor impact on

101 102 103 104 105 106 107

DMTt∈{1,10,20,...,400}

101

102

103

104

105

106

107
M

A
F

S

(a) Expansions

101 102 103 104 105

DMTt∈{1,10,20,...,400}

101

102

103

104

M
A

F
S

(b) Plan cost

101 102 103 104 105 106 107

DMTt∈{1,10,20,...,400}

101

102

103

104

105

106

107

M
A

F
S

(c) Messages

10−2 10−1 100 101 102 103

DMTt∈{1,10,20,...,400}

10−2

10−1

100

101

102

103

M
A

F
S

(d) Time in seconds

Figure 5: Expansions, time in seconds, messages and cost for baseline MAFS and DMT with trial length 1, 10, 20, . . . , 400.

the number of expansions, slightly favoring the DMT ap-
proaches. On the other hand, increasing the trial length leads
to generating plans of lower quality as Figure 5b shows. Re-
garding the number of messages sent and the time required
to find a plan, we see no significant difference.

Lastly, we analyze how well MAFS and DMT comple-
ment each other. A portfolio planner running the three base-
line (t = 1) versions of MAFS, DMTG and DMTB for 10
minutes each solves 205 instances. This already improves
the coverage by 23 problems solved when compared to run-
ning the best of the three configurations (MAFS) on its own
for 30 minutes. Combining higher trial length versions in the
same fashion yields a coverage of 224. Excluding the pro-
ductionsite domain, we have 192 problems solved. The best
CoDMAP planners, PSM-VRD and MAPLAN, solved 180
and 177 instances, respectively.2 The best planners evaluated
in a setting almost identical to the setting used in this paper
were GPPP, MAPLAN and DPP, with a coverage of 184,
197 and 224, respectively (Maliah, Shani, and Stern 2016).
This shows that MAFS and DMT complement each other
well, and that we can get comparable performance to state-
of-the-art planners even when using much simpler, locally
computed heuristics.

2http://agents.fel.cvut.cz/codmap/results/

Conclusion

In this paper we presented DMT, a novel privacy-preserving
planning scheme based on trial-based heuristic tree-search.
We derived two concrete DMT algorithms and showed them
to be sound and complete. Additionally, we discussed a
search enhancement that extends regular search by small ex-
plorative trials which are executed subsequent to each node
expansion. We showed empirically that this has a profound
positive effect on the coverage for both DMT and MAFS. A
comparison to classical multi-agent forward search revealed
that DMT and MAFS have complementary strengths which
can be exploited in a promising way. While the baseline ver-
sion of MAFS had a higher coverage than the baseline ver-
sion of DMT, DMT consistently outperformed MAFS when
a higher trial length was chosen. The best performance and
the highest coverage, however, achieved a portfolio planner
that combines MAFS and DMT strategies. In future work
we will create and analyze new DMT algorithms to further
exploit complementary strengths. It remains interesting to
see, how robust it is to enhance search by adding explorative
trials across different heuristics. Furthermore, more sophis-
ticated trial policies could increase the overall performance
quite significantly.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47(2-3):235–256.
Brafman, R. I., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence 198:52–71.
Brafman, R. I. 2015. A privacy preserving algorithm for
multi-agent planning and search. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial
Intelligence (IJCAI 2015), 1530–1536.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR 2001) 14:253–302.
Keller, T., and Helmert, M. 2013. Trial-based heuristic
tree search for finite horizon MDPs. In Proceedings of the
Twenty-Third International Conference on Automated Plan-
ning and Scheduling (ICAPS 2013).
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Proceedings of the Seventeenth European
Conference on Machine Learning (ECML 2006), 282–293.
Lipovetzky, N., and Geffner, H. 2011. Searching for plans
with carefully designed probes. In Twenty-First Interna-
tional Conference on Automated Planning and Scheduling.
Maliah, S.; Shani, G.; and Stern, R. 2016. Stronger privacy
preserving projections for multi-agent planning. In Twenty-
Sixth International Conference on Automated Planning and
Scheduling (ICAPS 2016).
Nakhost, H., and Müller, M. 2009. Monte-carlo exploration
for deterministic planning. In Twenty-First International
Joint Conference on Artificial Intelligence.
Nissim, R., and Brafman, R. I. 2013. Cost-optimal plan-
ning by self-interested agents. In Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence (AAAI
2013).
Nissim, R., and Brafman, R. I. 2014. Distributed heuristic
forward search for multi-agent planning. Journal of Artifi-
cial Intelligence Research (JAIR 2014) 51:293–332.
Schulte, T., and Keller, T. 2014. Balancing exploration
and exploitation in classical planning. In Proceedings of the
Seventh Annual Symposium on Combinatorial Search (SoCS
2014).
Schulte, T., and Nebel, B. 2016. Trial-based heuristic tree-
search for distributed multi-agent planning. In Ninth Annual
Symposium on Combinatorial Search (SoCS 2016).
Štolba, M.; Komenda, A.; and Kovacs, D. L. 2015. Compe-
tition of distributed and multiagent planners (CoDMAP). In
The International Planning Competition (WIPC 2015), 24–
28.
Torreño, A.; Onaindia, E.; and Sapena, O. 2014. FMAP:
distributed cooperative multi-agent planning. Applied Intel-
ligence 41(2):606–626.

