
Trial-based Heuristic Tree-search for Distributed Multi-Agent Planning

Tim Schulte
Institut für Informatik

Albert-Ludwigs-Universität
Freiburg, Germany

schultet@cs.uni-freiburg.de

Bernhard Nebel
Institut für Informatik

Albert-Ludwigs-Universität
Freiburg, Germany

nebel@cs.uni-freiburg.de

Abstract

We present a novel search scheme for privacy-
preserving multi-agent planning, inspired by UCT
search. We compare the presented approach to classi-
cal multi-agent forward search and evaluate it based on
benchmarks from the CoDMAP competition.

Introduction
In collaborative multi-agent planning multiple agents at-
tempt to achieve a common goal by planning and coordi-
nating their actions appropriately. In this paper, we intro-
duce a novel search technique for privacy preserving dis-
tributed multi-agent planning based on trial-based heuris-
tic tree-search (THTS) (Keller and Helmert 2013), a gen-
eral scalable framework for solving different types of plan-
ning tasks. Our main contribution is the definition of the re-
sulting search framework, which we call distributed multi-
agent trial-based heuristic tree-search (DMT). This frame-
work extends the way of how distributed plans can be gen-
erated and so might be useful for portfolio approaches to
multi-agent planning. We exemplify two DMT algorithms
and provide preliminary empirical evaluation.

Background
A multi-agent planning task consists of a finite set of n
agents {ϕi}ni=1, a finite set of state variables V with finite
domains, a variable assignment s0 over V called the initial
state, a partial variable assignment s? over V called the goal,
and a finite set of actions Ai for each agent ϕi. Each action
a is specified via precondition pre(a) and effect eff(a), both
being partial variable assignments over V . An action a is ap-
plicable in state s if s agrees with pre(a) wherever pre(a) is
defined. Application of action a in state s yields the succes-
sor state a(s) which agrees with eff(a) where eff(a) is de-
fined, and agrees with s, elsewhere. The solution to a plan-
ning task is a sequence of actions π = (a1, . . . , ak) such
that a1 is applicable in s0, every subsequent action is ap-
plicable in the state generated by its preceding action, and
ak(. . . (a1(s0)) . . . ) |= s?.

Privacy constraints are defined in terms of private vari-
ables and private actions. The private variables of an agent
ϕi can only be observed and be affected by actions of ϕi.
Private actions of ϕi are only known to ϕi and only depend

on or affect private variables of ϕi. Public actions can affect
or depend on both public and private variables of the agent.
Therefore, other agents can only access projections of ϕi’s
public actions, where private variables are hidden.

Trial-based Heuristic Tree-Search (Schulte and Keller
2014; Keller and Helmert 2013) algorithms maintain a tree
of search nodes and select one of its leaf nodes for expansion
in each search step. Three phases are executed repeatedly;
their specific behaviour must be defined to derive concrete
algorithms. Selection is the first phase of the algorithm with
the objective to select one of the leaf nodes for expansion.
Beginning from the root, a selection strategy recursively se-
lects a child, until a leaf node is reached. In the initialization
phase, the previously selected leaf node is initialized. Suc-
cessor nodes are generated and integrated into the tree. Dur-
ing the backpropagation phase new information, like value
estimates or the number of times a node has been visited
during selection, is propagated through the tree. After the
backpropagation phase, the algorithm starts again with the
first phase. This process is repeated until a goal state is gen-
erated, or some limit is reached. By alternatingly executing
selection and initialization phase, multiple nodes can be ini-
tialized in each search step. The number of nodes that get
initialized in a single search step is denoted as trial length.

Distributed Multi-Agent THTS
We now present a complete and privacy preserving scheme
for the distributed application of trial-based heuristic tree-
search. The concept is similar to MAFS (Nissim and Braf-
man 2014), where forward-search is concurrently executed
while state information is exchanged between the planning
agents according to a specific message passing scheme. Each
agent performs THTS locally, using its own actions only.
Whenever agent ϕi expands a state s in which a public pro-
jection of an action of ϕj is applicable, ϕi will send a mes-
sage to ϕj containing s. ϕj then integrates s into its search
tree, such that it can prospectively select s for expansion. To
accomplish this, ϕj identifies a suitable parent and adds s
as a child to it. In principle, any node can be used as a par-
ent without soundness or completeness being compromised.
However, since the tree structure is crucial to the success of
THTS algorithms, it is important where new states are inte-
grated. Let s be the result of applying the sequence of actions
(a1, . . . , ak) in the initial state, i.e. ak(...(a1(s0))...) = s.



0

2

5

0

3

4

m1 = 〈s, 7, 2, {ϕ2 7→ 3}〉

m2 = 〈s′, 5, 2, {ϕ2 7→ 3, ϕ1 7→ 5}〉
ϕ1 ϕ2

Figure 1: State integration.

If ϕj has no action in the sequence, it adds s as a child to
the root. Otherwise, let aj be the last action of ϕj in the se-
quence. Then, ϕj adds s as a child to s′ = aj(...(a1(s0))...).
Note that ϕj is not aware of all actions in the sequence lead-
ing to s and hence cannot compute s′. We enable ϕj to iden-
tify s′ by using a special message type.

Definition 1 (State message). A state message from ϕi to ϕj

for state s is a tuplem = 〈s, hi, gi, T 〉, where s is a state, hi
is a value estimate of ϕi for s, gi is the cost of ϕi to establish
state s from the nearest ancestor state contributed by ϕj (or
the root if no such state exists), and T is a set of state tokens.
Private components of s are encrypted, such that each agent
can only decrypt its own private components.

Each state token belongs to an agent ϕk and contains a
state identification number. This number references a node
in the local search space ofϕk and is meaningless to all other
agents. Figure 1 illustrates how tokens are used to integrate
states. Numbers next to nodes depict state IDs that corre-
spond to the local state represented by the node. Nodes asso-
ciated with states for which the other agent has an applicable
public projection are rendered in bold. When ϕ2 initializes
the node with state ID 3, it transmits messagem1 to ϕ1, con-
taining a token that enables ϕ2 to identify the node. When
ϕ1 receives m1, it creates a new search node for s. Because
m1 contains no token for ϕ1, the new node is attached as a
child to the root. Later on, ϕ1 initializes the node labelled
with 5 and sends message m2 to ϕ2. Because the state with
ID 5 was generated in a branch to which ϕ2 contributed an
ancestor state, the token ϕ2 7→ 3 is attached to the message,
along with the new token ϕ1 7→ 5 of ϕ1. On receiving m2

ϕ2 looks up its token ϕ2 7→ 3, creates a new node for s′, and
attaches it as a child to the node with state ID 3.

Algorithms. We propose two DMT algorithms, which
only differ in the selection strategy used. Both algorithms
generate all successors in the initialization phase and propa-
gate the best (minimum) value estimate in the backup phase.
DMT-BFS selects the successor node with the best value es-
timate. DMT-UCB uses a balanced selection strategy based
on UCB1 (Kocsis and Szepesvári 2006). Both algorithms
were shown to be sound and complete (Schulte and Nebel
2016) when privacy constraints of MA-STRIPS (Brafman
and Domshlak 2013) apply.

mafs dmt-bfs1 dmt-ucb1 dmt-bfs100 dmt-ucb100
80 69 52 92 84

Table 1: Coverage. DMT algorithms use a trial length ac-
cording to their indices (1 or 100).

Evaluation
DMT and MAFS were both implemented in a distributed
multi-agent planning system using the FF heuristic (Hoff-
mann and Nebel 2001). Experiments were run on a PC with
a quad-core CPU and 4 GB of RAM. Table 1 shows coverage
results on 240 planning tasks from the CoDMAP competi-
tion (Štolba, Komenda, and Kovacs 2015) with a time limit
of two minutes per task. The results show that both DMT
configurations have significantly higher coverage when a
trial length of 100 is used and could even outperform the
MAFS approach. Increasing the trial length causes addi-
tional exploration and encourages faster escape from local
minima. A portfolio planner running dmt-ucb100, dmt-bfs100
and mafs for 2 minutes each solves 117 instances, which
shows that MAFS and DMT complement each other well.

Conclusion
In this paper we presented DMT, a novel and privacy pre-
serving scheme for distributing THTS algorithms. We pro-
posed two concrete DMT algorithms and evaluated them
empirically. Results have shown DMT and MAFS to com-
plement each other in a promising way. In future work we
will create and analyze new DMT algorithms to further ex-
ploit such complementary strengths.

References
Brafman, R. I., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence 198:52–71.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14:253–302.
Keller, T., and Helmert, M. 2013. Trial-based heuristic tree
search for finite horizon MDPs. In Proceedings of ICAPS
2013.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Proceedings of ECML 2006, 282–293.
Nissim, R., and Brafman, R. I. 2014. Distributed heuristic
forward search for multi-agent planning. Journal of Artifi-
cial Intelligence Research (JAIR) 51:293–332.
Schulte, T., and Keller, T. 2014. Balancing exploration and
exploitation in classical planning. In Proceedings of SoCS
2014.
Schulte, T., and Nebel, B. 2016. Trial-based heuristic tree-
search for distributed multi-agent planning. In Proceedings
of DMAP 2016.
Štolba, M.; Komenda, A.; and Kovacs, D. L. 2015. Compe-
tition of distributed and multiagent planners (CoDMAP). In
Proceedings of WIPC 2015, 24–28.


