
Stubborn Sets Pruning for Privacy Preserving Planning

Tim Schulte
Albert-Ludwigs-Universität Freiburg

schultet@cs.uni-freiburg.de

Abstract

We adapt a partial order reduction technique based on
stubborn sets to the setting of privacy-preserving multi-
agent planning. We prove that the presented approach
preserves optimality and show experimentally that it
can significantly improve search performance on some
domains.

Introduction
Recently, privacy preserving planning (Nissim and Brafman
2014) has become an increasingly popular multi-agent plan-
ning framework. It enables agents to engage in a coopera-
tive planning process in order to compute joint plans that
achieve mutual goals. Notably, the framework allows agents
to keep certain information private. There are many settings
in which this is of great importance. Consider, for instance,
research departments of different companies that want to
collaborate on a common project in order to mutually ben-
efit from each others’ competence. Exchanging proprietary
data could diminish the benefits of this endeavor.

Heuristic search is a particularly successful approach to
privacy-preserving planning. Specifically, multi-agent for-
ward search (MAFS) (Nissim and Brafman 2012) has
proven to be highly efficient, when coupled with good
heuristic functions (Štolba and Komenda 2014; Štolba,
Fišer, and Komenda 2015). However, when accurate heuris-
tic estimates are unavailable, the search space is often
searched exhaustively (e.g. when the search gets stuck on
a plateau). Even with almost perfect heuristic estimates,
search effort can scale exponentially (in the size of the plan-
ning task), when an optimal solution is sought (Helmert and
Röger 2008). In these cases, additional pruning techniques
that narrow down the number of state expansions, while pre-
serving optimality, can substantially improve the search per-
formance.

Partial order reduction (POR) techniques exploit that in-
dependent actions can be applied in an arbitrary order. Ide-
ally, search algorithms would consider only one such order,
thereby reducing the number of expanded states exponen-
tially. Partial order reduction based on stubborn sets (Val-
mari 1989) strives to achieve just that and has successfully
been applied to optimal (single agent) planning (Alkhazraji
et al. 2012; Wehrle et al. 2013). In this paper we adapt and

apply stubborn sets pruning to the privacy-preserving plan-
ning setting. The main challenge addressed is how to ac-
count for private information without losing completeness
or optimality. We show experimentally that the revised algo-
rithm can significantly improve search performance.

As a running example, we use a new domain, inspired by
a production site. The goal is to produce a set of products
with certain properties. The agents must process the prod-
ucts to establish their required properties. Each property has
a corresponding processing action, all of which are private
and independent of one another. A concrete example that
embodies this type of domain has the agents building per-
sonal computers according to a given set of orders. Each or-
der specifies an individual PC setup, i.e. the set of compo-
nents the PC should consist of. Many components, like hard
disc drives, physical drives, sound card, working memory,
etc., can independently be installed onto the mainboard.

Background
We consider multi-agent planning in a notational variant
of the privacy-preserving planning formalism (Nissim and
Brafman 2014). The formalism extends classical planning
with a notion of agents, their respective action sets, and a
privacy partition.
Definition 1 (Multi-agent planning task). A multi-agent
planning task is a tuple Π = 〈N,V, s0, s?, {Ai}i∈N 〉, where

• N = {1, 2, . . . , n} is a finite set of agents,
• V is a finite set of state variables. Each v ∈ V is associ-

ated with a domain Dv . A variable assignment is a func-
tion s with domain Ds ⊆ V , such that s(v) ∈ Dv for all
v ∈ Ds. A variable assignment defined for all variables in
V is called state.

• s0 is the initial state,
• s? is a variable assignment over V called the goal,
• Ai is a finite set of actions available to agent i. Each ac-

tion a = 〈pre(a), eff(a), c(a)〉 ∈ Ai consists of two vari-
able assignments over V called precondition pre(a) and
an effect eff(a), and a cost c(a) ∈ R+

0 . The set of all
actions is A =

⋃
i∈N Ai.

An action a is applicable in state s if s agrees with pre(a)
wherever pre(a) is defined. Application of action a in state
s yields the successor state a(s) which agrees with eff(a)

where eff(a) is defined, and agrees with s, elsewhere. The
set of all applicable actions in state s is app(s). The solution
to a planning task is a sequence of actions π = (a1, . . . , ak)
such that a1 is applicable in s0, every subsequent action is
applicable in the state generated by its preceding action, and
ak(. . . (a1(s0)) . . .) |= s?.

Multi-agent planning tasks can be conceived as “agent-
decoupled” classical planning tasks, and are solvable by
centralized classical planning systems like Fast Downward
(Helmert 2006). Some settings require agents to preserve
privacy during the planning process. By constraining the
agents to keep certain information on the planning task pri-
vate, the use of distributed planning techniques becomes
sensible. We now introduce the required notation to then
define the privacy-preserving extension to multi-agent plan-
ning.
Definition 2 (Projection). Let s be a variable assignment
over the set of variables V . The projection of s to V ′ ⊆ V is
a variable assignment s|V ′ that is defined on V ′ and agrees
with s wherever it is defined, i.e. s|V ′(v) = s(v), for all
v ∈ V ′.
Definition 3 (Action projection). The projection of an
action a to the set of variables V ′ is a|V ′ =
〈pre(a)|V ′ , eff(a)|V ′ , c(a)〉.

Consequentially, the projection of a set of actionsA to the
set of variables V ′ is defined as A|V ′ = {a|V ′ |a ∈ A}.
Definition 4 (Privacy partition). Let Π =
〈N,V, s0, s?, {Ai}i∈N 〉 be a multi-agent planning task. A
privacy partition is an indexed family of sets

P = {Pv}v∈V
that, for each variable v ∈ V , contains the set of agents
Pv ⊆ N that have access to v.

In this paper, we only consider privacy partitions where
all sets Pv, v ∈ V have a cardinality of either one or |N |.
Furthermore, if v ∈ Ds? then Pv = N . Thus, P partitions
the set of variables V into a set of public variables V pub,
known to all agents, and |N | sets of private variables V pri

j ,
each known to a single agent j ∈ N only:

• V pri
j = {v ∈ V | Pv = {j}}, for j ∈ N

• V pub = {v ∈ V | Pv = N}
Actions are partitioned into a set of public actions Apub

and sets of private actions Apri
j , accordingly:

• Apri
j = {a ∈ Aj | a = a|V pri

j
}, for j ∈ N

• Apub =
⋃

j∈N (Aj \Apri
j)

Definition 5 (Local view). Let Π = 〈N,V, s0, s?, {Ai}i∈N 〉
be a multi-agent planning task and P be a privacy partition
for Π. The local view of agent j on Π is defined as

Πj = 〈N,V j , sj0, s?, {A
j
i}i∈N 〉, where

• V j = V pub ∪ V pri
j ,

• sj0 = s0|V j , and

• Aj
i = (Ai \Apri

i)|V j for i 6= j, and Aj
j = Aj .

Definition 6 (Privacy preserving planning task). A privacy
preserving planning task is a tuple (Π,P) consisting of a
multi-agent planning task Π and a privacy partition P .

A multi-agent planning algorithm is weakly private if
each agent can only access its own local view on the plan-
ning task and the agents never exchange private informa-
tion with one another. A multi-agent planning algorithm is
strongly private if no agent can deduce private information
from the course of conversation (message history) between
the agents. Private information includes knowledge about
the existence or value of a variable private to another agent,
or an action model (Brafman 2015).

Multi-Agent Forward Search
Because agents can only access a factor (their local view)
of the original multi-agent planning task, cooperation with
other agents becomes a necessity.

Multi-Agent Forward Search (MAFS) (Nissim and Braf-
man 2014) is a general search scheme for privacy preserv-
ing multi-agent planning. Each agent conducts a best-first
search, maintaining its own open and closed list. Succes-
sors of expanded states are generated by using the agents’
own actions only. Whenever a state is generated for which
another agent has an applicable public action, a message
is sent to that agent. The message contains the full state,
heuristic score and g-value of the sending agent. Private
fluents of the state are encrypted such that only the rele-
vant agents can decrypt it. When agent i receives a mes-
sage m = 〈s, hj(s), gj(s)〉 of some other agent j, it checks
whether s is already in its open or closed list. If this is not
the case, agent i puts s on its open list. If agent i generated
state s previously with higher cost, then it puts s on its open
list again and assigns new costs gj(s) to it. When an agent
generates a goal state, it initiates a distributed plan extrac-
tion procedure by broadcasting the goal state in a message
to all agents.

Strong Stubborn Sets
Strong stubborn sets can be used within forward search algo-
rithms to potentially reduce the number of successor states
generated in each state expansion step. Instead of expand-
ing a state s by generating a successor state a(s) for each
applicable action a ∈ app(s), only a subset of actions
Tapp(s) ⊆ app(s) needs to be considered. Applicable ac-
tions that are not contained in Tapp(s) are said to be pruned.

In the following, we provide the definitions of action
dependencies, disjunctive action landmarks (Helmert and
Domshlak 2009), and necessary enabling sets, which are the
three crucial components for the computation of strong stub-
born sets.

Definition 7 (Action dependency). Let Π =
〈N,V, s0, s?, {Ai}i∈N 〉 be a multi-agent planning task, and
let a1, a2 ∈ A.

• a1 disables a2 if there exists a variable v ∈ V and facts
〈v, d1〉 ∈ eff(a1) and 〈v, d2〉 ∈ pre(a2) s.t. d1 6= d2.

• a1 and a2 conflict if there exists a variable v ∈ V and
facts 〈v, d1〉 ∈ eff(a1) and 〈v, d2〉 ∈ eff(a2) s.t. d1 6= d2.

Algorithm 1: Strong stubborn set computation of agent
i for state s (incomplete)

Input: Π = 〈N,V, s0, s?, {Ai}i∈N 〉, state s
Result: strong stubborn set Ts ⊆ A

1 Ts ← Ls?
s for some DAL Ls?

s for s? in s
2 repeat
3 forall a ∈ Ts do
4 if a ∈ app(s) then
5 Ts ← Ts ∪ dep(a)
6 else
7 Ts ← Ts ∪Na

s for some NES Na
s

8 until Ts reaches a fixed-point
9 return Ts

• a1 and a2 are dependent if a1 disables a2, or a2 disables
a1, or a1 and a2 conflict. We write dep(a) for the set of
actions with which a is dependent.

Definition 8 (Disjunctive action landmark). A disjunctive
action landmark (DAL) for a set of facts F in state s is a set
of actions L such that every applicable action sequence that
starts in s and ends in s′ ⊇ F contains at least one action
a ∈ L.
Definition 9 (Necessary enabling set). A necessary enabling
set (NES) for action a /∈ app(s) in state s is a disjunctive
action landmark for pre(a) in s.

We can now give the definition of strong stubborn sets. It
is identical to the one used in classical single-agent planning
(Alkhazraji et al. 2012) except for the input data now being
a multi-agent planning problem.
Definition 10 (Strong stubborn set). Let Π be a multi-agent
planning task with actions A and goal s?, and let s be a
state of Π. A strong stubborn set (SSS) in s is an action set
Ts ⊆ A such that:

1. For each a ∈ Ts ∩ app(s), we have dep(a) ⊆ Ts.
2. For each a ∈ Ts \ app(s), we have Na

s ⊆ Ts for some
necessary enabling set Na

s of a in s.
3. Ts contains a disjunctive action landmark for s? in s.

The above definition of strong stubborn sets ensures that
for every plan π for the current state s, a permutation of π
exists which is not pruned. An algorithm to compute a strong
stubborn set for a state s is given in Algorithm 1. The state
expansion step of forward search algorithms can be modified
in the following way: before expanding state s, compute the
respective strong stubborn set Ts using Algorithm 1, then
expand s by applying the actions in Tapp(s) := Ts ∩ app(s)
only. As a consequence, states reached by actions in app(s)
but not in Ts are pruned.

Strong Stubborn Sets Revised
We now exemplify two ways in which the pruning of succes-
sor states based on strong stubborn sets, as defined above,
violates completeness when used in combination with a pri-
vacy preserving distributed planning approach, like MAFS.
We then propose two possible adaptations that make up for

Agent 1 Agent 2 Agent 1 Agent 2

(1) (2)

Figure 1: Two ways in which planning for the task of Exam-
ple 1 goes wrong. Agent 1’s action is represented by a solid
arrow, agent 2’s action by a dashed arrow. Dotted arrows rep-
resent state transmissions. Pruned actions are marked red.

the identified shortcomings and argue that the revised stub-
born set approach maintains the completeness property of
MAFS.

The first example fails despite the absence of private in-
formation. The second example fails because required infor-
mation is private to another agent.

Example 1. Let (Π,P) = (〈N,V, s0, s?, {A1, A2}〉,P) be
a privacy preserving planning task, with

00

10

01

11

Search space N = {1, 2}, V = {v0, v1}
P = {N,N}
s0 = {v0 = 0, v1 = 0}
s? = {v0 = 1, v1 = 1}
A1 = {a} with a = 〈v0 = 0, v0 = 1〉
A2 = {b } with b = 〈v1 = 0, v1 = 1〉

There is no private information (all variables are known
to both agents), hence, the agents’ public projections are
identical, i.e. Π1 = Π2 = Π. When expanding a state,
each agent independently applies stubborn set pruning (Al-
gorithm 1) to potentially reduce the number of generated
successor states. Ideally, the agents would either prune state
10 or state 01.

Because actions a and b are independent of one another
and both are applicable in the initial state, the respective
strong stubborn set contains either a or b (but not both), de-
pending on the choice of the initial disjunctive action land-
mark. When both agents choose the same DAL, they would
virtually agree on either pruning state 01 or state 10 (which
is the desired outcome). If the agents select different DALs,
however, this leads to the following undesirable outcomes,
depicted in Figure 1:

(1) The agents end up generating all states. This happens be-
cause both of them prune the other’s initial action. There-
fore, they generate different successor states, which they
then transmit to the respective other agent.

(2) The agents end up in a livelock, waiting for one another to
apply the first action (which they pruned) and to transmit
the resulting state (which never happens).

In this example, planning fails because the agents do
not synchronize their pruning efforts, using different strong
stubborn sets, and prune “public” successor states, relevant
to the other agent. We can resolve this issue by enforcing that
the stubborn sets computed by each agent only include the
agent’s own actions. That way, the agents would not prune
their own public action in the initial state and therefore not
end up in a livelock. We will explain this in more detail fur-
ther below and continue by emphasizing another issue that
occurs when dealing with private information.

Example 2. Let (Π,P) = (〈N,V, s0, s?, {A1, A2}〉,P) be
a privacy preserving planning task, with

000

100

010

110 111 211

N = {1, 2}, V = {v0, v1, v2},P = {N,N, {2}}
s0 = {v0 = 0, v1 = 0, v2 = 0}
s? = {v0 = 2}
A1 = {a, b}, A2 = {c, d} with
a = 〈v0 = 0, v0 = 1〉, b = 〈v1 = 0, v1 = 1〉
c = 〈v0 = 1 ∧ v1 = 1, v2 = 1〉, d = 〈v2 = 1, v0 = 2〉

Here, agent 1 can savely prune either action a or b in the
initial state, thereby avoiding either state 100 or 010, re-
spectively. This, however, does not work out, as both agents
are planning with their local view. Consider the local view
of agent 1:

N = {1, 2}, V 1 = {v0, v1}
s10 = {v0 = 0, v1 = 0}, s? = {v0 = 2}
A1

1 = {a, b}, A1
2 = {c|V 1 , d|V 1} with

a = 〈v0 = 0, v0 = 1〉, b = 〈v1 = 0, v1 = 1〉
c|V 1 = 〈v0 = 1 ∧ v1 = 1, ∅〉, d|V 1 = 〈∅, v0 = 2〉

To agent 1 there appears to be no connection between agent
2’s actions, i.e. c and d appear to be independent. Further-
more, action d appears to be applicable in the initial state.
Applying Algorithm 1 in s0 therefore yields the following
strong stubborn set Ts:

Ts = {d}
Hence:

Tapp(s0) = app(s0) ∩ Ts = {a, b} ∩ {d} = ∅

Since agent 1 has no action to apply in its initial state, no
goal can be reached and completeness is violated.

Initially, agent 1 computes a disjunctive action landmark
for the goal (Algorithm 1, line 1). The only action satisfy-
ing a goal condition is action d of agent 2. The stubborn
set therefore initially consists of action d only. According
to Algorithm 1 either the set of dependent actions dep(d)

Algorithm 2: Strong stubborn set computation of agent
i for state s (revised, complete)

Input: Π = 〈N,V, s0, s?, {Aj}j∈N 〉, state s
Result: strong stubborn set Ts ⊆ A

1 Ts ← {a ∈ Apub
i | a|V pub appl. in s}

2 repeat
3 forall a ∈ Ts do
4 if a ∈ app(s) then
5 Ts ← Ts ∪ (dep(a) ∩Ai)
6 else
7 Ts ← Ts ∪ (Na

s ∩Ai) for some NES Na
s

8 until Ts reaches a fixed-point
9 return Ts

has to be added to Ts (if d is applicable in s0) or a neces-
sary enabling set for d (if d is not applicable in s0). Neither
is possible for agent 1. Additionally, agent 1 cannot decide
correctly, whether action d is applicable in s0 or not. This
would require knowledge of private information not avail-
able to agent 1. In the example, agent 1 adds all dependent
actions instead of a necessary enabling set for d. Since ac-
tion d is not dependent on any other action in agent 1’s lo-
cal view, a fixed point is reached and the algorithm returns
Ts = {d}. Even if agent 1 could decide that action d was
not applicable in s0, he could not add a valid necessary en-
abling set for d. The only enabling action is c and it enables
a private precondition of d that is not visible to agent 1.
Hence, the NES would be empty. (As we have already seen,
computing the dependent actions is error prone for the same
reasons.)

Again, we observe that the inclusion of other agents’
(publicly projected) actions during the strong stubborn set
computation is problematic. For these actions, the agent can-
not compute disjunctive action landmarks or necessary en-
abling sets correctly. Simply excluding other agents’ actions
from the stubborn set computation, as the solution to the first
example suggests, does not resolve the entire issue. In Ex-
ample 2, agent 1 has no action to satisfy a goal condition,
hence, the initial DAL would be empty when simply omit-
ting agent 2’s actions.

Having other agents’ actions in the stubborn sets is only a
superficial cause of failure, while the real problem is deeper.
The ultimate cause is that public actions, which are part of
a plan, are pruned. States created by public actions resem-
ble potential interaction points between the agents. An agent
cannot decide, whether these states are part of a plan leading
to a goal or not, because they have only partial knowledge
of the other agents’ actions. Consequently, we need to alter
the definition of strong stubborn sets in the context of pri-
vacy preserving planning. Instead of requiring the stubborn
sets for state s to contain a disjunctive action landmark for a
goal condition (Definition 10, point 3), we constrain them to
contain the set of all public actions that are reachable from
s by a (potentially empty) sequence of private actions. This
definition of strong stubborn sets ensures that for every se-
quence of actions π, starting in the current state s and end-

ing with a public action, a permutation of π exists which is
not pruned. All successor states created by public actions are
therefore preserved. Furthermore, we can now savely restrict
the stubborn set computation to include only the agents’ own
actions.

Consider the following, revised definition of strong stub-
born sets:
Definition 11 (Strong stubborn set for privacy preserving
planning). Let (Π,P) be a privacy preserving planning task
and let s be a state of Π. A strong stubborn set for agent i in
s is an action set Ts ⊆ Ai such that:

1. For each a ∈ Ts ∩ app(s), we have dep(a) ∩Ai ⊆ Ts.
2. For each a ∈ Ts \ app(s), we have Na

s ∩ Ai ⊆ Ts for
some necessary enabling set Na

s of a in s.

3. Ts contains all actions a ∈ Apub
i , such that a|V pub is ap-

plicable in s.

Note how the first two constraints are only subtly differ-
ent from Definition 10 restricting the included actions to be-
long to agent i only, while the third constraint ensures that
all interaction points are preserved. Algorithm 2 computes
stubborn sets consistent with the above definition.

Consider Example 1 again. According to Algorithm 2
each agent initially adds its own public action (line 1). Since
they are both applicable in the initial state, all dependent ac-
tions are added in the next step (line 4, 5). There are none,
hence, the computation reaches a fixed point and the stub-
born sets are returned: T00 = {a} for agent 1 and T00 = {b}
for agent 2. We end up with case (1) depicted in Figure 1.
Similarly, in Example 2 agent 1 adds actions a and b to the
initial strong stubborn set. Since these two actions are both
applicable in the initial state and there are no dependent ac-
tions, the computation finishes returning T000 = {a, b}.

In both examples completeness is retained at the expense
of pruning capacity. Since an agent cannot savely prune pub-
lic actions, the pruning potential is restricted to permutations
of private action sequences. We now discuss some theoret-
ical properties of the presented stubborn set pruning tech-
nique.

Privacy
SSS for privacy preserving planning strives to reduce each
agents individual search space without introducing any ad-
ditional communication. It never transmits a state that is
not transmitted by the respective planning algorithm without
SSS pruning. We therefore believe that the presented tech-
nique is strongly privacy preserving.

Optimality
First, we define the terminology used in the proof.
Definition 12 (Public step). A public step in state s is a se-
quence of actions πa, where
• a is a public action of agent i and
• π is a minimal plan from s to pre(a), i.e. π[s] |= pre(a),

that consists of private actions of agent i only.
A plan π from s to pre(a) is minimal, if there is no subse-
quence π′′ of π that can be moved behind action a, such that
πa[s] = π′aπ′′[s], where π′ is the sequence π without π′′.

A public step can be thought of as a sort of “macro action”
that encapsulates the execution of private actions followed
by a single public action.
Definition 13 (Public state). A state s is called public state
if it is reachable from the initial state by a sequence of public
steps.

Lemma 1. Let (Π,P) be a privacy preserving planning
problem and π = (a1, a2, . . . , ak) be a solution to Π. Then,
there exists a permutation π′ = (a′1, a

′
2, . . . , a

′
k) of π, such

that for all pairs of consecutive public actions1 a′i, a
′
j in π′,

(a′i+1, a
′
i+2, . . . a

′
j) is a public step.

Proof. Let π = (a1, a2, . . . , ak) be a solution to Π, such that
every private action in π is followed by another action (pub-
lic or private) of the same agent. Only considering solutions
of this type preserves optimality and completeness (Nissim
and Brafman 2014). Assume that, between two consecutive
public actions ai and aj we have a sequence of actions (of
the same agent) πi..j = (ai+1, ai+2, . . . , aj) that is not a
public step. Then, there must be a subsequence in πi..j that
can be moved behind aj . By moving this subsequence be-
hind aj , just before the next sequence of actions of the same
agent, we create a permutation π′′ that is a legal plan. Re-
peating this process until all inconsistencies have been re-
moved yields a plan π′ that is a permutation of π and that
consists of public steps only.

Lemma 2. Restricting the successor generation to a SSS
(according to Def. 11) in every state is optimality preserving
for privacy preserving planning.

Proof. Let (Π,P) be a privacy preserving planning task.
The proof is by induction over k ∈ N, where Sk is the set
of public states that are reachable in at most k public steps
from the initial state and S′k is the set of public states that are
reachable in at most k public steps when stubborn set prun-
ing is applied. We show that Sk = S′k for all k. (It suffices to
consider public states instead of all possible states because
of Lemma 1.)

The initial state s0 is reachable by an empty sequence of
actions (zero public steps), therefore, S0 = {s0} = S′0.

Let the set of reachable states expand from Sk−1 to Sk ⊃
Sk−1. For each new state s∗ ∈ Sk \ Sk−1, a state s ∈ Sk−1
must exist from which s∗ is reachable, in a single public
step. Therefore, there must be a public state s ∈ Sk−1 and
a public step πa, such that πa[s] = s∗. Let i be the agent,
such that a ∈ Apub

i .
According to the induction hypothesis Sk−1 = S′k−1, it

holds that s ∈ S′k−1. We argue that SSS preserves a public
step (of agent i) σa, such that σa[s] = s∗. Observe that a
is included in Ts for agent i since a ∈ Apub

i and its public
projection a|V pub is applicable in s (Definition 11, point 3).

If a is applicable in s, i.e. a(s) = s∗, then s∗ ∈ S′k. If
a is not applicable in s, then a necessary enabling set for a
must be contained in Ts (Definition 11, point 2). That is, a

1By consecutive public actions we mean that there are no other
public actions between a′

i and a′
j . There might be private actions

in between, however.

blind goalcount FF

Domain def sss def sss def sss

blocksworld 0 0 1 1 0 1
depot 2 2 6 4 0 0
driverlog 7 7 17 16 16 16
elevators 3 2 20 20 12 14
logistics 3 3 18 14 17 15
rovers 20 20 19 20 20 18
satellites 3 3 20 20 20 19
sokoban 2 0 2 4 7 7
taxi 6 8 11 13 2 2
wireless 0 0 0 0 2 1
woodworking 2 1 2 1 2 1
zenotravel 5 5 20 16 16 14

prod. site 0 20 11 20 8 20
Total 53 71 147 149 122 128

Table 1: Benchmark results.

disjunctive action landmark for pre(a) in s. The stubborn
sets generated for s according to Definition 11 correspond
to the stubborn sets generated for s according to Definition
10 when planning towards the goal s? = pre(a) with the
set of actions A = Ai. Since strong stubborn sets consistent
with Definition 10 are optimality and completeness preserv-
ing (Alkhazraji et al. 2012), a permutation σ of π must be
preserved, such that πa[s] = s∗ = σa[s]. Hence s∗ ∈ S′k.

Evaluation
The presented algorithms were implemented in a distributed
multi-agent planning system written in Go. Experiments
were run on a 2.6 Ghz Intel Xeon 8-core CPU. Each prob-
lem instance used a single core and 8 GB of RAM, shared
by all agents.

We experimented with the benchmarks from the
CoDMAP competition (Štolba, Komenda, and Kovacs 2015)
consisting of 12 domains with 20 problems each. Of the new
production site domain 20 problem instances of varying dif-
ficulty were included in the benchmarks. Planning time was
limited to 30 minutes per problem instance. Table 1 shows
coverage results for the tested configurations, while Figure
2 shows the running time for the production site instances.

Production site domain. While plain MAFS solves 0, 11
and 8 instances of the production site domain when using
the blind, goalcount and FF heuristic (Hoffmann and Nebel
2001) respectively, MAFS with stubborn set pruning solves
all 20 instances, independent of the heuristic used.

Blind MAFS resembles depth-first search and chains to-
gether random sequences of actions, most of which do not
lead to a goal. Due to the expansive search space, even the
easiest instances cannot be solved.

The goalcount and FF heuristics, on the other hand, both
guide MAFS towards states with as many subgoals satisfied

Figure 2: Runtime in seconds for increasingly difficult in-
stances of the production site domain. Both configurations
used the goalcount heuristic.

as possible. That way, the search focuses on one subgoal, or
product, after the other and the number of generated states
is reduced decisively. Although this behavior seems to be fa-
vorable, it has its own shortcomings. The heuristics cannot
differentiate between two states in which the same number
of subgoals are satisfied, even if one state is significantly
closer to satisfying another subgoal than the other. The rea-
son for this is that the heuristics are computed based on each
agent’s local view. The public actions of other agents es-
tablish a subgoal (finish a product) with a cost of one and
appear to always be applicable, because their public projec-
tions do not include their private preconditions. Because of
this heuristic inaccuracy, states that satisfy a larger number
of subgoals but which do not lead to a goal are preferred to
states that lead to a goal but satisfy fewer subgoals. Process-
ing actions, for instance, cannot be undone. Therefore, if a
product is processed in a way not consistent with its goal re-
quirements, the agent cannot finish that product. The respec-
tive subgoal can then only be supplied by another agent. If
no agent can supply the subgoal, the search has to backtrack
to a state in which the faulty processing action has not been
applied yet.

This problem does not occur in the stubborn set pruning
variant. Counter-productive processing actions that prevent
a product from being finished are always pruned. These ac-
tions are independent of the other processing actions and
therefore may only be included in the stubborn set if they
establish a precondition of the public action that finishes the
product. Stubborn set pruning therefore effectively restricts
the search to consider only such states that can be extended
into a goal state. Furthermore, each agent must consider only
a single permutation of processing actions to finish each
product, where otherwise exponentially many permutations
would have to be considered. When FF or goalcount heuris-
tic is used, the stubborn set approach also focuses on one
subgoal after the other. The generated plans encourage the
division of labor between the agents, each creating a subset
of the products, rather than one agent creating them all. Fur-
thermore, plans are found very fast, as all parts of the search

space that do not progress towards a goal are pruned. Figure
2 highlights this fact.

CoDMAP domains. Regarding the CoDMAP domains,
the results are mixed. There are no major differences in cov-
erage between the strong stubborn set approach and regu-
lar MAFS, although overall the latter configuration solves a
few problems more. We believe that this is due to the ad-
ditional computations required for computing the stubborn
sets. Interestingly, some domains seem not to benefit from
the stubborn sets based partial order reduction at all.

A possible explanation is that these domains already in-
ternalize a form of POR by decoupling the planning task in
such a way that each agent has its own individual respon-
sibilities. If in the production site domain each agent had a
single processing action only, there would be as good as no
pruning potential. This is exactly what we find in some of the
CoDMAP domains. The woodworking domain is a good ex-
ample of such an agent decoupling. Here, most of the agents
can only perform a single action.

Another explanation is that the pruning potential cannot
be exploited, because the agents compute their stubborn sets
independent of one another. Therefore, they might end up
generating more states than necessary, similar to the first
case of Figure 1. Investigating how to get the agents’ prun-
ing efforts more in sync seems to be worthwhile.

Conclusion
This paper provides a theoretical basis for stubborn sets
pruning in the context of privacy preserving planning. The
empirical results show that some domains significantly ben-
efit from partial order reduction. Although the production
site domain was created with partial order reduction in mind,
we believe that it models a specific situation that can also
occur within the search space of other domains. In this sit-
uation, the heuristics are blind or misleading and, in conse-
quence, the search exhaustively explores the affected parts
of the search space. When these parts consist of many inde-
pendent actions, then stubborn sets pruning can significantly
reduce the search effort.

References
Alkhazraji, Y.; Wehrle, M.; Mattmüller, R.; and Helmert, M.
2012. A stubborn set algorithm for optimal planning. In
Proc. ECAI, 891–892.
Brafman, R. I. 2015. A privacy preserving algorithm for
multi-agent planning and search. In IJCAI, 1530–1536.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. ICAPS, 162–169.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? In Proc. AAAI, volume 8, 944–949.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Nissim, R., and Brafman, R. I. 2012. Multi-agent A* for
parallel and distributed systems. In Proc. AAMAS, 1265–
1266.
Nissim, R., and Brafman, R. I. 2014. Distributed heuristic
forward search for multi-agent planning. JAIR 51:293–332.
Štolba, M., and Komenda, A. 2014. Relaxation heuristics
for multiagent planning. In Proc. ICAPS.
Štolba, M.; Fišer, D.; and Komenda, A. 2015. Admissi-
ble landmark heuristic for multi-agent planning. In Proc.
ICAPS.
Štolba, M.; Komenda, A.; and Kovacs, D. L. 2015. Compe-
tition of distributed and multiagent planners (CoDMAP). In
Proc. WIPC, 24–28.
Valmari, A. 1989. Stubborn sets for reduced state space
generation. In Proc. Petri Nets, 491–515. Springer.
Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmüller, R.
2013. The relative pruning power of strong stubborn sets
and expansion core. In ICAPS.

