
Expressiveness of ADL and Golog: Functions Make a Difference

Gabriele Röger and Bernhard Nebel
Institut für Informatik, Albert-Ludwigs-Universität Freiburg, Germany

{roeger,nebel}@informatik.uni-freiburg.de

Abstract

The main focus in the area of action languages, such as
GOLOG, was put on expressive power, while the develop-
ment in the area of action planning was focused on efficient
plan generation. An integration of GOLOG and planning lan-
guages would provide great advantages. A user could con-
strain a system’s behavior on a high level using GOLOG,
while the actual low-level actions are planned by an efficient
planning system. First endeavors have been made by Eyerich
et al. by identifying a subset of the situation calculus (which
is the basis of GOLOG) with the same expressiveness as the
ADL fragment of PDDL. However, it was not proven that the
identified restrictions define a maximum subset. The most
severe restriction appears to be that functions are limitedto
constants. We will show that this restriction is indeed neces-
sary in most cases.

Introduction
While action formalisms and planning techniques share the
same origin, the emphasis in their development lies on dif-
ferent aspects. The main focus in the area of action for-
malisms was put on expressive power, whereas the devel-
opment of planning techniques was focused on an efficient
generation of action plans. The languages used in this field
– such as the basic variant of STRIPS – had only a compar-
atively limited expressive power. This changed in 1998 with
the introduction of PDDL (McDermott 1998), whose ex-
pressive power has been more and more extended but whose
development has always been oriented on the capabilities of
state-of-the-art planning systems. In recent years one could
observe some convergence of the expressive power of PDDL
and of the expressiveness of action formalisms like GOLOG
(Levesqueet al. 1997), at least if one focuses on linear se-
quences of actions.

This generates the idea of integrating the concepts from
both areas, which would provide great advantages. A user
could write a program in GOLOG and benefit from the flex-
ibility in describing a system’s (e.g. a robot’s) behaviour,
while, during execution, the upcoming planning tasks could
be solved with efficient planning systems. Therefore a com-
mon semantic basis and a comparison of the expressiveness
of the two languages GOLOG and PDDL is required.

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

As a first step Eyerichet al. (2006) presented restrictions
on basic action theories (Reiter 2001), which are formu-
lated in the situation calculus, which is in turn the basis of
GOLOG. With these restrictions the formalism has the same
expressive power as ADL, a subset of PDDL. Eyerichet
al. show this by giving a compilation scheme (Nebel 2000)
from these restricted basic action theories to ADL and vice
versa.

Another step towards a common semantic basis is the
work of Claßenet al. (2007): They presented a mapping of
ADL to a variant of the situation calculus and related the up-
date of an ADL world to progression in the situation calcu-
lus. Moreover, they presented first experimental results and
demonstrated that a GOLOG interpreter which uses a state-
of-the-art planning system can handle much bigger instances
and takes less time (except for the smallest instances) thana
system which uses the built-in GOLOG planner.

But it is still an open problem what amaximumsubset
of the situation calculus with the same expressive power as
ADL is. The restrictions of Eyerichet al. provide a good
starting point in search for such a subset, but it is still open
whether it is possible to shift a wider part of GOLOG to a
highly efficient ADL planning system. We will address this
issue for the restriction that appears to be most severe: The
limitation of functions to constants. We will prove that as
soon as functions lead to additional actions or objects, the
formalism would have more expressive power than ADL.
Also we will present restrictions which maintain the same
expressiveness as ADL.

The paper is structured as follows: First we will intro-
duce the framework used to compare the expressiveness of
planning formalisms. In the following two sections, we will
briefly sketch the two considered formalisms, namely ADL
and basic action theories. Subsequently we will first present
our results concerning situation-independent functions be-
fore we turn to the functions that can change their value af-
ter each action. We will close with a brief conclusion and an
outlook on our future work.

Compilation Schemes
In order to compare the expressive power of different plan-
ning formalisms, we use a technique introduced by Nebel
(2000) – the so-calledcompilation schemes, which areso-
lution preserving mappingswith polynomially sized results



from one formalismX to another formalismY.
A planning instanceΠ = 〈Ξ, I,G〉 consists of thedo-

main structureΞ which contains primarily the description
of the possible actions, theinitial state specificationI, and
the goal specificationG. A plan is a sequence of actions
that leads from the start situation to a goal. A compilation
scheme maps such a planning instanceΠ of formalismsX
to an instanceF (Π) of formalismY.
Definition 1. Let f be a tuple〈fξ, fi, fg, ti, tg〉 of functions
that induces a functionF fromX -instancesΠ = 〈Ξ, I,G〉
toY-instancesF (Π):

F (Π) =〈fξ(Ξ), fi(Ξ) ∪ ti(I), fg(Ξ) ∪ tg(G)〉.

We callf a compilation scheme fromX toY iff
1. there exists a plan forΠ iff there exists a plan forF (Π),
2. thestate translation functionsti and tg are polynomial-

time computable,
3. and the size of the results offξ, fi, andfg is polynomial

in the size of the arguments.

Note that there are no restrictions on the computational
resources being used to compile the domain structureΞ.

To compare the expressive power of two formalisms
we additionally have to measure the size of corresponding
plans. If a compilation schemef has the property that for
each planP of instanceΠ there is a planP ′ solvingF (Π)
such that‖P ′‖ ≤ c × ‖P‖ + k for some positive inte-
gersc andk, we say thatf is a compilation scheme pre-
serving plan size linearly, and conclude that the target for-
malism is at least as expressive as the source formalism. If
there is at most a polynomial blow-up required, i.e.‖P ′‖ ≤
p(‖P‖, ‖Π‖) for some polynomialp, we callf acompilation
scheme preserving plan size polynomially. In this case the
source formalism has more expressive power than the target
formalism. If we even need a super-polynomial blow-up,
there is a huge difference in the expressiveness of the two
formalisms.

Let us now turn to the first of the formalisms considered
in this article.

The ADL fragment of PDDL
In 1998 McDermott published the Planning Domain De-
scription Language PDDL, which, with some revisions (Fox
& Long 2003; Gerevini & Long 2005), has since become a
standard for the representation of planning domains. In this
article we are interested in the ADL fragment of PDDL, i.e.
the language we get if exactly the:adl requirement is set.
Beyond the definition of standard STRIPS operators, pre-
conditions may contain negation, disjunction and quantifica-
tion. Effects may contain conditional effects. Furthermore,
equality is a built-in predicate and variables and objects may
be typed.

For the proofs in this article we do not need to go into the
details of ADL. It is only necessary to know that the state
space of an ADL planning task is always finite and, thus, the
general planning problem, i.e. the problem whether there is
a plan for a given problem, is decidable.

The second formalism we consider in this paper is formu-
lated in the situation calculus.

Basic Action Theories
The situation calculus is a second-order language which is
specially designed for representing dynamically changing
worlds. All changes to the world are the result ofactions
and each action leads to a newsituation, which hence can be
identified with a sequence of actions. The empty sequence
corresponds to theinitial situation which is denoted bys0.
Besidesactionsand situationsthere is a third sortobject
which is used for everything else. In the following, we use
variablesa for actions ands for situations (each with sub-
scripts and superscripts). There are two special predicates:
s ⊏ s′ means that situations is a proper subsequence ofs′,
andPoss(a, s) means that it is possible to perform action
a in situations. All situations excepts0 are formed with a
functiondo(a, s) meaning that actiona is performed in sit-
uations. Functions and predicates whose values vary from
one situation to the next are calledfluentsand take a situa-
tion term as their last argument, e.g.switched on(lamp, s).

In the following we will often omit leading universal
quantifiers in sentences. The convention will be that any
free variables in such expressions are implicitly universally
quantified.

For the definition of the notion of basic action theories we
need some further concepts (Reiter 2001).

Unique names axioms for actionstell us whether two ac-
tions are equal: Distinct action namesA andB define dis-
tinct actions.

A(x̄) 6= B(ȳ).

Identical actions have identical arguments:

A(x1, . . . , xn) = A(y1, . . . , yn) ⊃ x1 = y1∧. . .∧xn = yn.

A formula is calleduniform in situations if it does not
mention the predicates⊏ or Poss and the only permitted
occurrence of a situation term is the occurrence of situation
s in the situation argument position of a fluent.

Whether it is possible to perform an action is stated by so-
calledaction precondition axioms(APA), which are of the
form

Poss(A(x1, . . . , xn), s) ≡ ΠA(x1, . . . , xn, s),

whereA is an action function symbol with arityn and
ΠA(x1, . . . , xn, s) is a formula that is uniform ins and
whose free variables are amongx1, . . . , xn, s.

The value of a relational fluent after performing an action
a is given by asuccessor state axiom(SSA), which is a sen-
tence of the form

F (x1, . . . , xn, do(a, s)) ≡ ΦF (x1, . . . , xn, a, s),

whereΦF (x1, . . . , xn, a, s) is a formula uniform ins whose
free variables are amonga, s, x1, . . . , xn. Similarly, a suc-
cessor state axiom for a functional fluent is of the form

f(x1, . . . , xn, do(a, s)) = y ≡ φf (x1, . . . , xn, y, a, s)

with conditions analogous to those of the relational fluents.
The starting point of Eyerichet al.’s work is the definition

of basic action theories (BATs) from Reiter (2001):



Definition 2. A BATT is a theory of the form

T = Σ ∪ TSSA ∪ TAPA ∪ TUNA ∪ Ts0
,

where

• Σ are some foundational axioms for situations,
• TSSA is a set of successor state axioms for functional and

relational fluents,
• TAPA is a set of action precondition axioms,
• TUNA is the set of unique names axioms for actions, and
• Ts0

is a set of first-order sentences that are uniform ins0,
the initial database.

The state successor axiom for a functional fluentf must ac-
tually define a value forf in the next situation, and this value
must be unique.

Such a BATT together with a situation calculus formula
G(s) whose only free variable iss form a planning task. A
situations is a plan forG (relative toT ) iff

T |= executable(s) ∧G(s),

whereexecutable(s) means that the action sequences can
be executed with respect toPoss .

Starting from this definition Eyerichet al. added several
restrictions to gain the same expressiveness as ADL.

Restricted Basic Action Theories
A restricted basic action theory (RBAT) is a BAT with the
following restrictions:

R1 The usage of functions is restricted to those of sortǫ→
object , which are in fact constants, and to functions of sort
objectn → action , i.e. action functions take only objects
as arguments.

R2 All successor state axioms are of a certain form. The
SSA of a relational fluentF has to fit the schema

F (x1, . . . , xn, do(a, s)) ≡

p
∨

l=1

ψl (1)

for a finitep > 0, where exactly oneψl is of the form

F (x1, . . . , xn, s)
[

∧

¬
(

[∃ . . .] (a = A1 (y11, . . . , y1m1
) [∧φ1]) ∨ . . . ∨

[∃ . . .]
(

a = Aq

(

yq1, . . . , yqmq

)

[∧φq ]
)

)]

. (2)

All the otherψl are of the form

[∃ . . .] (a = A (y1, . . . , ym) [∧φl]) . (3)

The existential quantification ranges over allyi for which
there is noxj with xj = yi, and thus over all vari-
ables that are parameters of the action but not param-
eters of the fluent. The parts between square brackets
are optional. Each action may be contained in at most
one a = Ai (yi1, . . . , yimi

) in (2) and in at most one
a = Ai (yi1, . . . , yimi

) in the expressions of form (3).

R3 The initial database must consist exactly of the follow-
ing sentences:

1. For eachn+ 1-ary relational fluentF there is either an
expression

¬F (x1, . . . , xn, s0) (4)

or an expression

F (x1, . . . , xn, s0) ≡ ((x1 = d11) ∧ . . . ∧ (xn = d1n))

∨ . . . ∨ ((x1 = dm1) ∧ . . . ∧ (xn = dmn)) . (5)

2. There are analogous expressions for all situation inde-
pendent predicates.

3. There is adomain closure axiom(x = d1) ∨ . . . ∨
(x = dn) for constants.

4. There are unique names axiomsci 6= cj for each two
constantsci andcj .

Eyerichet al.have shown that these restrictions lead to the
same expressive power as ADL, but it is still open whether
they all are really necessary. In the following two sec-
tions we will consider this question for restriction R1. We
will start with an examination of situation-independent func-
tions.

Situation-independent Functions
The restriction to constants is intimately connected with re-
striction R3.3, which excludes the existence of other, un-
known objects. Usually it should be possible that a function
denotes also new objects which cannot be accessed by the
constant symbols. If we want to permit such functions of
sort objectn → object , we also have to abandon this do-
main closure axiom. The following result is not due to this,
but also keeps its validity if we suitably generalize the do-
main closure axiom.

Theorem 1. There is no compilation scheme from RBAT to
ADL if functions of sortobjectn → object are permitted for
n > 0, even if they are restricted ton = 1.

Proof. Let (Σ, Q, δ, q0, Qacc) be a deterministic Turing ma-
chine (TM) withΣ = {∗,�} that starts on an empty tape.

We will formulate a BAT in such a way that there is a plan
iff the TM halts, and all information concerning a certain
TM is encoded in the initial database and the goal. As the
state-translation functions of a compilation scheme must be
polynomial-time computable and the plan existence problem
is decidable in ADL, we could decide the halting problem if
there were a compilation scheme.

We will exploit the absence of the restriction to repre-
sent infinitely many tape cells. Therefore, we use a sin-
gle constantp0 to denote the first tape cell and a function
succ : object → object which yields the successor of a
cell. For a reliable simulation of the TM it is required that
succ(x) = succ(y) ⊃ x = y. Due to the requirements
for the initial database we cannot simply add this sentence
there. Thus, we use an additional actioninit : ǫ → action
which is necessary in each plan and makes the goal formula
true for all models where the desired condition is not ful-
filled and the tape is flawed. As a plan must work for all



models, the existence of a plan is finally determined only by
the models where the structure interpretingsucc() contains
an infinite, linear sequence starting atp0.

We require the following constants of sortobject :

• ∗ and� encodes the alphabet of the Turing machine,

• q ∈ Q to encode the states of the Turing machine,

• ◭,H, and◮ to encode the movements of the Turing ma-
chine, and

• p0 to denote the first tape cell.

In the following we will denote the set of these constants by
C. We will use the following predicates:

• transition(c, q, c′, q′, d) to encode transition functionδ,

• state(q, s) denotes the state of the TM in situations,

• scan(p, s) denotes the tape cell the R/W-head stands on
in a situations,

• star(p, s) encodes whether cellp contains a∗,

• initialized (s) is used to enforce actioninit , and

• flawed(s) means that the structure interpretingsucc()
does not contain an infinite, linear sequence starting at
p0.

In the initial database the values of these predicates represent
the initial status of the TM:

Predicatetransition encodes the transition functionδ of
the Turing machine:

transition(c, q, c′, q′, d) ≡
∨

δ(c,q)=(c′,q′,d)
(c = c ∧

q = q ∧ c′ = c′ ∧ q′ = q′ ∧ d = d) (6)

The R/W head stands on the first tape cell, the TM is in state
q0, and all cells contain a blank.

scan(p, s0) ≡ (p = p0) (7)

state(q, s0) ≡ (q = q0) (8)

¬star(p, s0) (9)

At the beginning the task is not initialized and we assume
that the tape is not flawed. The latter will be set timely to
the correct value by the actioninit().

¬initialized (s0) (10)

¬flawed(s0) (11)

There should be a plan iff the tape is not flawed and the
TM halts or if the tape is flawed. This leads to the goal
formula

∃q
(

state(q, s) ∧
∨

q∈Qacc

(q = q)
)

∨ flawed(s). (12)

An action step(q, c, p, q′, c′, d, p′) simulates one step of
the TM: Previously the TM is in stateq and reads character
c on cellp. Then, it changes to stateq′, writes ac′ and moves

in directiond to cellp′. This results directly in the following
action precondition axiom:

Poss(step(q, c, p, q′, c′, d, p′), s) ≡ flawed(s) ∨
(

state(q, s) ∧ scan(p, s) ∧ transition(q, c, q′, c′, d) ∧
(

(c = ∗) ∧ star(p, s) ∨ (c = �) ∧ ¬star(p, s)
)

∧
(

(d = ◭) ∧ p = succ(p′) ∨ (d = H) ∧ p = p′ ∨

(d = ◮) ∧ p′ = succ(p)
)

∧ initialized (s)
)

(13)

Action init can only be used once.

Poss(init(), s) ≡ ¬initialized (s) (14)

initialized(do(a, s)) ≡ a = init() ∨ initialized (s) (15)

This action diagnoses whether the tape is flawed:

flawed(do(a, s)) ≡ flawed(s) ∨ a = init() ∧

¬
(

∀x, y(succ(x) = succ(y) ⊃ x = y) ∧

∀x(
∧

c∈C
¬succ(x) = c)

)

(16)

In the cases where the tape is not flawed, the following
successor state axioms provide a reliable simulation:

state(q′, do(a, s)) ≡ state(q′, s) ∧ ¬∃q, c, p, c′, d, p′

(a = step(q′, c, p, q, c′, d, p′) ∧ ¬q = q′) ∨

∃q, c, p, c′, d, p′ (a = step(q, c, p, q′, c′, d, p′)) (17)

scan(p′, do(a, s)) ≡ scan(p′, s) ∧ ¬∃q, c, p, q′, c′, d

(a = step(q, c, p′, q′, c′, d, p) ∧ ¬p = p′) ∨

∃q, c, p, q′, c′, d (a = step(q, c, p, q′, c′, d, p′)) (18)

star(p, do(a, s)) ≡ star(p, s) ∧

¬∃q, q′, d, p′
(

a = step(q, ∗, p, q′,�, d, p′)
)

∨

∃q, q′, d, p′
(

a = step(q,�, p, q′, ∗, d, p′)
)

(19)

As there are no axioms constrainingsucc(), there can be
arbitrary structures interpretingsucc(). If the structure is
“flawed” (not containing an infinite, linear structure starting
atp0), the actioninit() will force flawed(s) to become true,
which will make formula (12) true. Since there arealways
non-flawed structures, formula (12) can only become true in
all models ifs is a halting computation on the non-flawed
structures and, thus, the simulated TM halts. Conversely,
it is obvious that a halting computation translates into a se-
quence of actions making formula (12) true.

We have presented a reduction where all information con-
cerning a certain TM is encoded in the initial database and
the goal. Thus, according to the argumentation above, there
cannot be any compilation scheme at all – not even with an
exponential blow-up of the plan size.

Reiter (2001) also allows functions of sort(action ∪
object)n → object and (action ∪ object)n → action in
basic action theories. Let us start with the functions of sort
(action ∪ object)n → object . The caseobjectn → object
has been addressed in Theorem 1. Thus, we only have to
consideractionn → object .



Theorem 2. There is no compilation scheme from RBAT to
ADL if functions of sortactionn → object are permitted,
even if they are restricted ton = 1.

Proof. Basically, this can be prooved the same way as The-
orem 1. We only need some minor changes to represent the
infinitely many tape cells.

Action succ now takes one argument of sortaction . An
additional actionobj2act (x) : object → action is used to
do the necessary conversion of the arguments. This action
may never appear in a plan and, hence, its APA is always
false. The correlation between the movements of the R/W
head and the position on the tape has been formulated in
the action precondition axiom ofstep. Thus, one has to
change this precondition axiom and the SSA offlawed (be-
causesucc takes now anaction as argument) accordingly.

With these modifications the basic action theory behaves
as in the proof of Theorem 1 and, hence, the same argumen-
tation holds.

Theorem 1 and 2 lead to the following corollary.

Corollary 1. There is no compilation scheme from RBAT to
ADL if functions of sort(action ∪ object)n → object are
permitted forn > 0.

The only remaining situation-independent functions are
those of sort(action ∪ object)n → action . As functions of
sortobjectn → action are permitted (see restriction R1), it
suffices to consider only those of sortactionn → action .

Theorem 3. There is no compilation scheme from RBAT to
ADL if functions of sortactionn → action are permitted,
even if they are restricted ton = 1.

Proof. This is again a variation of the proof of Theorem 1.
We only need to change the representation of the tape cells
and associate them with actions. Due to the unique names
axioms for actions we can omit everything concerning mod-
els where the tape is flawed.

Constantp0 is now of sortaction instead of sortobject
and functionsucc changes tosucc : action → action but
keeps its meaning. Also all variables denoting tape cells,
e.g.p, p′, . . ., change their sort toaction . Additional action
precondition axioms for these new functions declare them to
be unexecutable. With these modifications of the reduction
we can use the same argumentation as before.

We have seen that situation-independent functions which
can denote other objects than the constants add additional
expressive power to RBATs and, thus, lead to a different ex-
pressiveness than ADL. If we had not abandoned the domain
closure axiom, the functions had only been synonyms for the
known constants. As this case is only a special case of the
considerations in the next section, we do not discuss this fur-
ther.

Functional Fluents
As opposed to the previous section we require for func-
tional fluents, i.e. functions of sort(action ∪ object)n ×
situation → (object∪action) that they always have known
constants or situation-independent actions as values. We

have several reasons for this: First of all, if these functions
could introduce new objects (this implies that we use the re-
laxed domain closure axiom from the previous section) and
we pass on SSAs for these functions, we would face the
same difficulties as before. If they, in principle, can intro-
duce new objects, but there must be a SSA for each fluent,
this would lead to the following situation: Assume a SSA
which in a certain situation assigns a previously unknown
object to a functional fluent. As in each situation the value of
a functional fluent must be unique and the unknown objects
cannot be distinguished by a uniform expression, there can
be at most one additional object. In fact, this is not a mat-
ter of functions, but rather a matter of the initial database.
If we would drop restriction R3.3, we could easily compile
these tasks by means of one additional constant. Thus, it
makes sense to restrict the values of the functional fluents to
constants and situation-independent actions. Furthermore,
in the book of Reiter we have found only examples that cor-
roborate this assumption.

Why do we accept such a restriction for functional flu-
ents, but not for situation-independent functions? Situation-
independent functions that are restricted to such an extent
are in practice only synonyms for constants or other known
actions, and, thus, add only marginal benefit. By contrast,
functional fluents, which can change their value from situa-
tion to situation, are more like pointers in programming lan-
guages and can provide the possibility of a more brief and
elegant formulation of a planning task.

Before we consider functional fluents, we have to deter-
mine what a reasonable extrapolation of the restrictions of
Eyerichet al. to functional fluents looks like. If we omit
such restrictions, the basic action theories are undecidable
with similar proofs as above.

Obviously the following is a reasonable extension of re-
striction R2: There is a successor state axiom for each func-
tional fluent. TheSSA of a functional fluentf has to fit the
schema

f(x1, . . . , xn, do(a, s)) = y ≡

p
∨

l=1

ψl (20)

for a finitep > 0, where exactly oneψl is of the form

f(x1, . . . , xn, s) = y
[

∧

¬
(

[∃ . . .] (a = A1 (y11, . . . , y1m1
) [∧φ1]) ∨ . . . ∨

[∃ . . .]
(

a = Aq

(

yq1, . . . , yqmq

)

[∧φq ]
)

)]

. (21)

All the otherψl are of the form

[∃ . . .] (a = A (y1, . . . , ym) [∧φl]) . (22)

The conditions that hold for the SSAs of relational fluents
must also hold for those of functional fluents.

Restriction R3 of Eyerichet al. leads to a unique model
in the initial database, in which the truth-values of the pred-
icates are explicitly specified. Analogously we require that
the value of each functional fluent ins0 is explicitly speci-
fied:



For each(n + 1)-ary functional fluentf there is an ex-
pression

f(x1, . . . , xn, s0) = y ≡

((x1 = d11) ∧ . . . ∧ (xn = d1n) ∧ (y = d1)) ∨ . . . ∨

((x1 = dm1) ∧ . . . ∧ (xn = dmn) ∧ (y = dm)) . (23)

We begin our considerations with the functions of sort
(action ∪ object)n × situation → object .

Theorem 4. There is a compilation scheme from RBATs
which are extended by fluents of sort

(action ∪ object)n × situation → object (24)

to ADL preserving plan size exactly.

Proof. We will sketch a compilation scheme from the ex-
tended RBATs to ordinary RBATs. If one combines this
compilation scheme with the one presented by Eyerichet al.,
one receives a compilation scheme from extended RBATs to
ADL.

For each functionf : (action ∪ object)n × situation →
object we introduce a predicate

Pf : (action ∪ object)n × object × situation . (25)

We substitute the sentencef(x1, . . . , xn, s0) = y ≡ φf

in the initial database by an expression

P (x1, . . . , xn, y, s0) ≡ φf . (26)

The SSAf(x1, . . . , xn, do(a, s)) = y ≡ ψf analogously
becomesPf (x1, . . . , xn, y, do(a, s)) ≡ ψf .

To eliminate all remaining occurrences of functionf in a
formula, we proceed as follows:

• If f occurs asf(x1, . . . , xn, s) = y, wherey is a constant
or a variable, we substitute it byPf (x1, . . . , xn, y, s).

• If f occurs asf(x1, . . . , xn, s) = g(y1, . . . , ym, s),
we introduce a new variabley and substitute it by
∃y(Pf (x1, . . . , xn, y, s) ∧ Pg(y1, . . . , ym, y, s)).

• While f still occurs as an argument in a predicate,
we can substitute it by the introduction of a new vari-
able. For example,P (f(y1, . . . , yn, s), x2, . . . , xm, s)
becomes∃y(Pf (y1, . . . , yn, y, s)∧ P (y, x2, . . . , xm, s)).

The result obviously satisfies the requirements of a compila-
tion scheme.

Before we consider the functional fluents whose value is
of sortaction , we have to clarify some aspects.

The first aspect is the unique names axioms for fluent ac-
tions. According to Reiter, identical actions shall have iden-
tical arguments and actions with distinct action names are
not equal. Unfortunately, Reiter does not go into whether
there are UNAs for fluents, too. In our opinion it does not
make sense to postulate that, because it shall be possible that
two action fluents represent the same situation-independent
action.

The second aspect is the action precondition axioms. The
APAs for the situation-independent action functions declare
for each situation whether a certain action is executable. As

each ground fluent action represents in each situation only a
ground situation-independent action function, it is in each
situation perfectly determined whether the action is exe-
cutable. Thus, we can omit additional APAs for fluent ac-
tions.

Having these considerations in mind, it is obvious that
the compilation scheme of Theorem 4 works likewise for
functions whose value is of sortaction .

Theorem 5. There is a compilation scheme from RBATs
which are extended by fluents of sort

(action ∪ object)n × situation → action (27)

to ADL preserving plan size exactly.

A general functional fluent of sort(action ∪ object)n ×
situation → (object ∪ action) can return bothactions and
objects. As we suppose that this was not intended by Reiter
rather being a side effect of a condensed notation, we abstain
from analysing this case.

Conclusion and Outlook
We have proven that functions whose values are not re-
stricted to the constants extend the expressive power of
RBATs and, thus, have a higher expressiveness than ADL.
Further, we have shown that such a restriction preserves the
same expressive power as ADL by presenting a compilation
scheme that is efficiently computable. Therefore we have
extrapolated the restrictions of Eyerichet al. to functional
fluents. If we omit this extrapolation, the resulting prob-
lems arise not due to the usage of functions, but would also
arise if we eased the restrictions R2 and R3. What happens
in these cases, e.g. if the truth-values of predicates in the
initial database are not specified explicitly but by a fixed
point iteration, or if they are unspecified for some predi-
cates, will be the topic of our future work. Having clarified
this issue, we will consider PDDL fragments beyond ADL,
which add features such as functions, constraints, durative
actions, and preferences. The overall goal is to use the en-
tire power of efficient, state-of-the-art planning techniques
within a GOLOG interpreter.

References
Claßen, J.; Eyerich, P.; Lakemeyer, G.; and Nebel, B. 2007. To-
wards an Integration of Golog and Planning. InProc. IJCAI-07.

Eyerich, P.; Nebel, B.; Lakemeyer, G.; and Claßen, J. 2006.
GOLOG and PDDL: What is the Relative Expressiveness? In
Proc. PCAR-06.

Fox, M., and Long, D. 2003. PDDL2.1: An Extension to PDDL
for Expressing Temporal Planning Domains.JAIR20:61–124.

Gerevini, A., and Long, D. 2005. Plan Constraints and Pre-
ferences in PDDL3. Technical report, Univ. of Brescia, Italy.

Levesque, H. J.; Reiter, R.; Lesperance, Y.; Lin, F.; and Scherl,
R. B. 1997. GOLOG: A Logic Programming Language for Dy-
namic Domains.J. Log. Prog.31(1-3):59–83.
McDermott, D. 1998. PDDL—the planning domain definition
language. Tech. report, Yale Center f. Comp. Vision and Control.

Nebel, B. 2000. On the Compilability and Expressive Power of
Propositional Planning Formalisms.JAIR12:271–315.

Reiter, R. 2001.Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press.


