
Finding Errors of Hybrid Systems by Optimising an
Abstraction-Based Quality Estimate

Stefan Ratschan1 and Jan-Georg Smaus2

1 Academy of Sciences of the Czech Republic, stefan.ratschan@cs.cas.cz
2 University of Freiburg, Germany, smaus@informatik.uni-freiburg.de

1 Introduction

Hybrid systems are a formalism for modelling embedded systems. An important problem is
to ensure correctness, i.e., verification. However, during the design process, hybrid systems
are usually not correct yet, and hence error detection is equally important. We address
here the problem of automatically finding error trajectories that lead the system from an
initial to an unsafe state. In contrast to previous works [1, 3], we consider systems with
deterministic evolution. Moreover, we do not assume a-priori that our system is incorrect,
but rather, we interleave verification, using abstractions of the system [4], and falsification
attempts.

We define a real-valued function (the quality estimate) that approximates the notion of
a given point being close to an initial point of an error trajectory. Then we use numerical
optimisation to search for an optimum of this function. The function is computed from a
simulation of the hybrid system, using information from the abstraction. For each simula-
tion, the point at which it is cancelled depends on a quality estimate computed on-the-fly.
The accuracy of the quality estimate improves as the abstraction is refined.

Analysing the related work, one sees that methods designed for non-deterministic sys-
tems [1, 3] try to fill the state space as much as possible (according to some measure) with
simulations. As a result, they would start a huge number of simulations in parallel—either
from a grid (similar to our näıve algorithm from Sec. 3) or from random sample points.
In the case of highly non-deterministic systems, such a strategy is promising since the
probability of hitting upon an error trajectory is high. However, for systems with only a
small amount of non-determinism, and especially, completely deterministic evolution, this
creates a huge number of useless simulations. We avoid this by guiding our search using
abstractions in order to quickly arrive at a simulation close to an error trajectory.

Our work has some resemblance with pure optimisation problems in artificial intelli-
gence [5]. It is distinctive of our work that the objective function itself improves over time.
Our work also resembles reinforcement learning [6], because we compute the quality as
we do the simulation, and depending on this quality we will do other simulations in the
neighbourhood.

2 Hybrid Systems and Abstractions

Hybrid systems are systems with both continuous and discrete state. A hybrid system
has a finite set S of modes and n continuous variables. In each mode, the behaviour of
the variables is controlled by an arithmetic expression involving the variables and their
derivatives, called the Flow constraint. Each possible transition between modes is controlled
by a Jump constraint, and there are constraints specifying the initial and unsafe states,
respectively. A trajectory is a sequence of flows connected by jumps. An error trajectory is
a trajectory starting in an initial state and ending in an error state. A system is safe if it
does not have an error trajectory.

An abstraction of a hybrid system H is a directed graph whose nodes (the abstract
states) are subsets of the state-space of H. The transition relation of the abstraction is
defined so that each concrete error trajectory corresponds to an abstract error trajectory.



Abstractions are useful for verification because if the abstraction is safe, the original system
is necessarily also safe. Abstractions can be useful for falsification because the abstract error
trajectories narrow down the search space for concrete error trajectories.

We use here a technique that decomposes the state space into hyper-rectangles (boxes),
as implemented in the tool HSolver [4]. In HSolver, an abstraction that is not fine
enough yet to verify the desired property is refined by splitting a box.

A simulation is an explicitly constructed sequence of points in Φ corresponding to the
points of a trajectory at discrete moments in time.

3 The Search Algorithm

We want to find an error trajectory of a hybrid system. Since we focus on deterministic
systems, the problem reduces to determining the startpoint of an error trajectory among the
initial states. A näıve solution to our problem would be obtained by running simulations of
a certain length starting at points lying on a grid covering the entire state space. If no error
trajectory is found, the grid width should be reduced and the simulation length increased.

The aim of our work is to find an error trajectory with as little simulation effort as
possible. More precisely, we want to: (a) interleave falsification with verification; (b) start
simulations at the most promising points; (c) cancel simulations when they do not look
promising enough anymore. To address these three aims we designed a search procedure
that exploits information available from verification. The procedure uses a quality estimate
for simulations to determine which startpoints are the most promising, and when to cancel
a simulation.

The quality estimate measures how close the simulation eventually gets to an unsafe
state. We compute the closeness of all individual simulation points to an unsafe state, and
take the optimum of these. Note that this optimum can be easily computed on-the-fly.

For an individual point p, we want to estimate how far p is from an error state along the
current simulation. To do so, we use information from
the abstraction. We interpret the HSolver abstrac-
tion in a geometrical way as illustrated in the figure
to the right. Here a0 is an initial abstract state and
a4 is an unsafe abstract state. The dashed lines are
the line segments between connected abstract states.
For the point p, the estimated distance is the length
of the solid line segment sequence. Note that the ab-

•

a0

•

a1

1

•
a2

s
•

a3

-

•
a4

9����������((((((HHHH×
p

Fig. 1: The distance estimate

straction approximates the actual trajectories, and in particular, the present abstraction
is sufficiently fine to capture the fact that the trajectories first move away from a4 before
approaching a4. Thus the quality estimate will capture that moving roughly along the solid
line leads towards the unsafe state. The quality estimate will become more faithful as the
abstraction becomes refined.

The falsification is interleaved with verification. The falsification algorithm is called
from the verification after a refinement whenever an initial abstract state is split.

We understand our search problem as the problem of optimising the quality estimate.
We use direct search methods [2], specifically the compass method. The method takes an
initial box I and an n-dimensional cross that fits exactly into I. For the midpoint and
each cross tip, we start a simulation and compute the quality estimate f . If f attains an
optimum in some cross tip, we move the cross to this cross tip and continue. Otherwise,
we halve the size of the cross and continue. The compass method terminates when either
the number of cross shrinkings or of cross moves has exceeded a threshold.

We cancel simulations when an unsafe state is hit and thus we have found an error
trajectory. Moreover, we cancel a simulation when the quality estimate has not improved
for sim cnc steps. There is of course the risk that a simulation is cancelled too early.

2



our algorithm näıve algorithm

Example time ref. sim. sim. steps jumps time sim. sim. steps

convoi 0.5 0 1 7 0 ∞ ∞ ∞
eco sim cnc=400 0.1 0 1 328 2 0.1 1 313
eco 2.8 10 87 29027 2 0.1 1 313

focus 0.1 0 9 2312 0 0.04 1 131
focus sim cnc=20 33.9 434 319 14176 0 0.04 1 131

parabola sim cnc=105 0.0 0 1 201 0 ∞ ∞ ∞
parabola sim cnc=30 18.3 353 113 7665 0 ∞ ∞ ∞

Table 1. Experiments

This risk is countered by the fact that our abstraction is refined over time so that the
quality estimate will eventually be faithful enough to tell whether a simulation is “really”
improving.

4 Implementation and Experiments

We ran experiments on modifications of various well-known benchmarks from the lit-
erature, see http://hsolver.sourceforge.net/benchmarks/falsification. Since the
benchmarks were mostly safe, we injected an error into those systems.

Table 1 shows the results for a small selection of benchmarks. The table shows the
runtime in seconds, the number of abstraction refinements, simulations, the total number
of single simulation steps, and the number of jumps of the trajectory that was found, and
some figures for the näıve algorithm of Sec. 3.

The näıve algorithm performs very well on some apparently easy examples, where the
method we propose here also performs well, but on numerous examples it does not terminate
within several hours, indicated by ∞.

We did an experiment with focus showing that even for a too small value of sim cnc,
simulations will eventually “survive” long enough thanks to the refinement of the quality
function. The example is extremely easy for HSolver, provided sim cnc is not too small,
but hard otherwise. The same effect occurred for eco. We have also created an example
where we isolate the aspect just mentioned: parabola. In this example, the error trajectory
looked for is an extremely tight parabola, i.e., at the beginning, one must move away from
the unsafe state. If sim cnc is too small and the quality function is not faithful enough yet,
then the simulations will be cancelled prematurely.

References

1. A. Bhatia and E. Frazzoli. Incremental search methods for reachability analysis of continuous
and hybrid systems. In Rajeev Alur and George J. Pappas, editors, HSCC’04, number 2993 in
LNCS. Springer, 2004.

2. Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization by direct search:
New perspectives on some classical and modern methods. SIAM Review, 45(3):385–482, 2003.

3. Erion Plaku, Lydia Kavraki, and Moshe Vardi. Hybrid systems: From verification to falsifica-
tion. In Holger Hermanns and Werner Damm, editors, Proceedings of the 19th International
Conference on Computer Aided Verification, volume 4590 of LNCS, pages 463–476. Springer-
Verlag, 2007.

4. Stefan Ratschan and Zhikun She. Safety verification of hybrid systems by constraint propaga-
tion based abstraction refinement. ACM Transactions in Embedded Computing Systems, 6(1),
2007.

5. Stuart J. Russell and Peter Norvig. Artificial Intelligence: a Modern Approach. Series in
artificial intelligence. Prentice Hall, 2003.

6. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. The MIT Press, 1998.

3


