Temporalizing Spatial Calculi:
On Generalized Neighborhood Graphs

Marco Ragni and Stefan Wolfl

Institut fiir Informatik, Albert-Ludwigs-Universitét Freiburg,
Georges-Kohler-Allee, 79110 Freiburg, Germany
{ragni, woelfl}@informatik.uni-freiburg.de

Abstract. To reason about geographical objects, it is not only necessary to have
more or less complete information about where these objects are located in space,
but also how they can change their position, shape, and size over time. In this
paper we investigate how calculi discussed in the field of qualitative spatial rea-
soning (QSR) can be temporalized in order to gain reasoning formalisms that can
be used to express spatial configurations and their dynamics. In a first step, we
briefly discuss temporalized spatial constraint languages. In particular, we inves-
tigate how the notion of continuous change can be expressed in such languages
and how continuous change is represented in the so-called conceptual neighbor-
hood graph of the spatial calculus at hand. In a second step, we focus on a special
reasoning problem, which occurs quite naturally in the context of temporalized
spatial calculi: Given an initial spatial scenario of some physical objects, which
scenarios are accessible if the set of all possible paths of these objects is con-
strained by some further conditions? We show that for many spatial calculi this
general problem cannot be dealt with by using the information encoded in the
classical neighborhood graphs, as usually discussed in the literature. Rather, we
introduce a generalized concept of neighborhood graph, which allows for reason-
ing about objects in such dynamic settings.

1 Introduction

To reason about geographical objects, it is not only important to have information about
where these objects are located in space, but also how they can change their position,
shape, and size over time. Some physical objects such as chairs, towers, and stars are
usually assumed to be rather robust to changes in shape and size (at least from the
point of what we can experience without using scientific instruments). Other objects
such as hurricanes, clouds, and balloons may vary their size and shape quite rapidly.
Obviously, how physical objects can change such spatial properties depends on the
physical quality structure of the respective object and its environment. A crucial notion
in this context is the notion of continuous change since it seems common-sense that
many property changes occur continuously. Topic of the paper will be to discuss how
continuity concepts can be integrated into the formal calculi discussed in the qualitative
spatial reasoning literature.

Under the heading of qualitative spatial reasoning, many formalisms for represent-
ing, and reasoning with, spatial configurations have been discussed in the past two
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decades. In recent years also the issue of how to temporalize such spatial formalisms
has gained more attention in the literature. Obviously, temporalizations of spatial calculi
can be developed by exploiting different research strategies. First, they can be embed-
ded into rich first-order theories by integrating mereotopological and temporal concepts.
For example, Muller [16] has proposed a first-order theory of spatio-temporal entities,
which is based on the first-order theory of the region connection calculus [@]. Second,
temporalizations may be discussed in the framework of temporal logics. The combi-
nation of RCC8 and linear time temporal logic, for example, has been investigated by
Wolter and Zakharyaschev [21] and Gabelaia et al. [10]. Third, spatio-temporal rep-
resentation languages can be obtained via temporalizing a spatial constraint language
(e. g., RCC8) by a suitable temporal constraint language such as Allen’s interval cal-
culus. Bennett et al. [@] proposed such a reasoning formalism, which was further in-
vestigated by Gerevini and Nebel ]. From a more philosophical perspective, Galton
] discussed various facets of continuous change, in particular, how such changes can
be consistently described at different levels of granularity and how their qualitative and
quantitative descriptions are related to each other.

In this paper we focus on the third research strategy outlined previously. In more
detail, we discuss temporal constraint languages, which are enriched by formulae ex-
pressing time-dependent spatial constraints. In these languages it is possible to express
temporally annotated spatial information as well as their temporal relationships. Then
two kinds of reasoning tasks may be distinguished: The static reasoning problem is to
determine whether such a spatio-temporal description is consistent, i. e., whether there
exists a temporal model satisfying each temporal constraint as well as each temporally
annotated spatial constraint. The dynamic reasoning problem is to determine whether,
given a set of transformation constraints, there exists a continuous transformation be-
tween two spatial configurations such that none of the transformation constraints is
violated. For example, the well-known Towers of Hanoi puzzle may be cast as such a
problem.

A central notion in the context of temporalized spatial constraint networks is that of
a neighborhood graph. For many qualitative spatial reasoning formalisms researchers
have intensively discussed the so-called conceptual neighborhood graph, a concept
introduced first by Freksa [IQ]. The neighborhood graph is usually understood as to
describe which relation transitions be possible if the objects are subject to minimal
changes. This interpretation of neighborhood graphs is clearly temporal, that means, it
aims at describing the dynamics of the relations at hand]l Interestingly, the neighbor-
hood graph often is not uniquely determined by the underlying background theory of
the respective calculus [e. g., ﬁ, For instance, different neighborhood graphs can be
found depending on whether objects are allowed to change their size or whether one
allows two objects to be changed at the same moment. This means that, in principle,
neighborhood graphs are a suitable means for encoding spatial information about the
kind of objects that are described by the qualitative spatial calculus at hand. But in
our opinion, the traditional concept of neighborhood graph is too restricted to be really
useful for reasoning with spatio-temporal constraints. For this reason we present a gen-

! In the literature there is a further research stream, in which neighborhood graphs are discussed
in the context of conceptual neighborhoodness of relations Knauff [IEI].



66 M. Ragni and S. Wolfl

eralized concept of neighborhood graph, which may be considered a first step towards
developing a more general theory on dynamic reasoning problems.

The paper is organized as follows: In section 2 we briefly introduce the calculi that
will be of interest in the following sections. In section 3 we discuss spatio-temporalized
constraint languages and their models. Moreover, we present a precise notion of con-
tinuous change that enables us to analytically prove the correctness of neighborhood
graphs. In section 4 we explain how generalized neighborhood graphs can be applied in
order to solve dynamic reasoning problems. In more detail, we present the generalized
neighborhood graphs for the point algebra and for RCCS5. Finally, section 5 gives a short
summary of our results and a brief outlook on interesting future work.

2 Preliminaries

Let us start by briefly sketching the qualitative calculi that will be of interest in the
following sections. Readers familiar with these calculi may wish to skip this section.

Constraint Satisfaction Problems. Qualitative reasoning problems are usually cast as
constraint satisfaction problems (CSP), i.e., as a problem to determine whether a con-
straint network (a finite set of constraints) is satisfiable or entailed by another constraint
network. Typically, a qualitative constraint network is a finite set of constraints of the
form xRy where x and y are variables taking values in a given domain D, and a binary
relation R defined on D. For modelling imprecise knowledge, one usually considers
sets of relations that are closed with respect to unions. In more detail, given a specific
level of granularity chosen describing the domain at hand, one starts by identifing a
(finite) set jointly exhaustive and pairwise disjoint sets of base relations on the domain.
A composition table gives information about which constraints xRy are possible if one
has complete knowledge about how x and y are related (via base relations) to a third
object z. Speaking more algebraically, from a set of base relations (containing the iden-
tity relation) and a composition table (satisfying some requirements), one can build up
a relation algebra, i. e., a set of relations that contains the identy relation and is closed
with respect to unions, intersections, converse formation, and composition of relations.

To put these notions in a more precise context, we introduce the following terminol-
ogy: A qualitative constraint satisfaction problem is defined by a constraint language
Z and a class of (intended) models. The constraint language usually consists of an in-
finite set of variables and a finite set of (binary) base relation symbols. A constraint is
a formula of the form x{Ry,...,R,}y (meaning xR, yV --- VxR, y), where x and y are
variables and each R; is a base relation symbol. Finite sets of constraints are referred to
as constraint networks. A model is a first- or higher-order structure M = (...,D,...)
assigning an interpretation RM C D? to each base relation symbol R. A (variable) as-
signment in M is a function a that assigns an element a(x) € D to each variable x.
Given an assignment a and an element d € D, the function a(x/d) is defined as the
function that coincided with « in all variables distinct from x and assigns object d to
variable x. A constraint x{Rj,...,R,}y is said to be satisfied in M by a (denoted by
M,al=x{Ry,...,R,}y)if (a(x),a(y)) € RM for some 1 < i < n. A constraint network
C is said to be satisfiable in a class of models if there exists a model M in this class as
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well as an assignment a in M such that all constraints in C are satisfied. Furthermore,
a composition table is a map assigning to each pair of base relations R; and R; a set of
base relations R;oR; = {Ry,,..., Ry, }. A composition table is said to be extensionally
correct for M if for each pair of base relations R; and R; and each assignment a,

M,a=x(RioRj)y <= Jd e Ds.t. M,a(z/d) =xR;zand M ,a(z/d) = zR;y.

If the base relations defined by M are (a) jointly exhaustive (i.e., J, <i<n REM = D?),
(b) pairwise disjoint (i. e., RZM ﬂR;M =0 for i # j), (c) closed with respect to converses
(i.e, RM = (RjM)V ={(xy) : (hx) € R;M}), and (d) have an extensionally correct
composition table, then there exists a uniquely determined algebra of binary relations
on the domain set D.

Point Algebra. The point algebra (for linear time) may be considered the most simple
qualitative calculus. The point algebra (PA) describes the relations between instants of
linear flows of time. Hence, this algebra considers the three base relations < (“earlier”),
= (“equal”), and > (“later”), as well as unions of them. Point algebras can also be
defined for much weaker relational structures such as branching flows of time, partial
orders, etc.

Interval Algebra. Given a linear flow of time, an Allen interval is a pair of instants
(t1,12) with #; < 1. By comparing the relative positions of start and endpoints of two
intervals, one can identify thirteen jointly exhaustive and pairwise disjoint base rela-
tions between intervals, which are known in the literature as the Allen 13 relations (cf.
Table/[)).

RCCS5 and RCCS. The most prominent calculi in the domain of spatial qualitative rea-
soning are the region connection calculi RCCS5 and RCC8. These calculi allow for

Table 1. The 13 base relations of Allen’s interval algebra

Relation Converse Pictorial Representation

IbJ  Jbil ;
. I

ImJ Jmil J
ToJ  Joil !
(0] 01 J
1dJ  Jdil !

7
IsJ Tsil ’]
IfJ JRI I

7
IeJ Jel §
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X DRY X POY X EQY X PPY X PPiY

Fig. 1. The RCCS5 relations

expressing relations between regions, which often are represented as non-void, con-
nected, and regular closed (or regular open) subsets of some topological space. The set
of RCCS5 base relations consists of the relations DR (“discrete”), PO (“partially over-
lap”), PP (“proper part”), PPi (“proper part inverse”), and EQ (“equal”) (cf. Fig. [I)).
RCCS refines these relations by splitting DR into the relations DC (“disconnected”)
and EC (“externally connected”) and by splitting PP (analogously PPi) into the rela-
tions TPP (“tangential proper part”) and NTPP (“non-tangential proper part”). From
the semantical point of view, a ropological model is a tuple M = (S, O,Reg), where
(S, 0) is a topological space (O being its set of open sets) and Reg is a non-void set
of regular closed subsets of S. Topological models induce RCC5 and RCC8 models in
a natural manner: For example, for regions X and Y, the pair (X,Y) is in DR if and
onlyif XNY =0 and (X,Y) € NTPP? if and only if there exists an U € O such that
XCUucCy.

The composition table of RCC5 (cf. Table[2) is known to be correct if the relations
are interpreted on closed discs in the Euclidean plane. In this case the RCC5 relations
coincide with the relations definable in terms of the subset relation. For this reason,
RCCS is sometimes also referred to as containment algebra.

Table 2. The composition table of RCC5

EQ DR PO PP PPi
EQ EQ DR PO PP PPi
EQ, DR,
DR DR o320 DR.PO.PP DRPO.PP DR
. EQ,DR, .
PO PO DRPO.PPi 4. PO.PP DR.PO,PPi
EQ, DR,
PP PP DR DRPOPP PP RN
PPi PPi DR,PO,PPi PO, PPi EQ II;I()),’ PP, pp;
1

3 Temporalizing Spatial Calculi

The general method for temporalizing the language of a given spatial calculus is the
following: Let (Vr, Rr) be the language of a temporal calculus T and (Vs, Rs) be the
language of a spatial calculus G, that is, V1 and Vs are disjoint sets of variables and Ks
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and Ry are the sets of base relation symbols of the respective calculi. In general, the
temporal calculus will be the point algebra or the interval algebra for linear time (but,
of course, the method is not restricted to these calculi). In what follows, constraints of
the temporal calculus, i. e., formulae of the form

i{Rl,...,Rn}j (i,jEVT,Rl,...,RnGRT)

are referred to as temporal constraints. We now enrich the language of ¥ by temporal-
ized spatial constraints, namely formulae of the form:

i:x{Sl,...,S,,}y (iEVT,x,yEVs, Sl,...,SnEiRs).

In the sequel, the combined calculus will be referred to as T: &.

How can we define models for this language in terms of respective models for the
temporal and spatial languages? To illustrate this, let us start by defining the models
of a spatial calculus chosen from the RCC-family (denoted by RCCx), which is tem-
poralized by PA. The key concept for defining such models is that of a temporalized
topological model (note that the concept used here presents a modified version of the
concept introduced by Wolter and Zakharyaschev 21)):

Definition 1. A temporalized topological model (abbr. by tt-model) is a tuple M =
(T,<,S,0,Reg,I), where (T, <) is a linear flow of time, (S, O) is a topological space,
Reg is a set of regions (i. e., non-void, connected, and regular closed subsets of S), and
I1 is a non-void set of (object) paths t: T — Reg.

The idea on which the definition is based is the following: We assume that at each
instant, an object occupies a specific region in a fixed topological space. Since we are
only interested in the path of an object, i. e., in the sequence of regions occupied by the
object, it is reasonable to represent objects as functions assigning regions to instants.

Obviously, each temporalized topological model H induces a (temporal) model for
PA (denoted by M) and a (spatial) model for RCCx (denoted by Ms). A PA:RCCx
(variable) assignment in a tt-model is a pair a = (ar,as), where at: Vp — T is a
function assigning instants to temporal variables and ag: Vs x T — Reg is a function
assigning a region to each spatial variable at each instant ¢ such that as x(¢) := as(z,x)
defines an object path of % . Note that for each instant ¢, as also defines an RCC5
assignment by as ((x) := as(z,x). The model relation is then introduced as follows: For
temporal PA : RCCx constraints we set

Maa >: I{Rlaan}.] — MTaaT }Z i{Rla"'an}ja
and for temporalized spatial constraints we define
M,al=i:x{Si,....S.}y <= Ms,as; =x{S1,...,S.}y,

where t = ar(i).

In the case that a spatial calculus is temporalized with respect to the interval algebra,
we need to modify this semantics as follows: An /A : RCC5 assignment in a tt-model
is a pair a = (ar,as), where ar assigns an ordered pair (ar(i)~,ar(i)") € T? with
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ar(i)” < at(i)" to each interval variable and as is defined as above. Here the model
relation is defined as follows:

M,al=i:x{Si,...,S.}y <= Ms,as = x{S1,...,Sn}y, for each
teT withar(i)” <t <ar(i)".

Note that we only require that the spatial constraints hold in the interior of the interval.
This is necessary since if these spatial constraints need to hold at starting and endpoints
of the interval as well, then it would not be possible that a base relation holding between
objects X and Y in interval / changes to a different base relation between these objects
in any interval met by /. Hence, it would follow that a base relation holding between
two object would remain the same all the time, which is apparently unacceptable.

Let us illustrate these notions by some examples: If we temporalize the region con-
nection calculus RCC5 with respect to the point algebra, we can express that two ob-
jects X and Y are disjoint at some instant ¢, but overlap at some later instant ¢’ by the
following constraints:

t: XDRY,t<t,t': XPOY.

If we temporalize RCC8 with respect to the interval algebra, we obtain the calculus
STCC introduced by Gerevini and Nebel ]. Here we can state constraints such as

I{m,b}J, 1:XDCY, I:YDCZ, J:X{NTPP,TPP}Y, J:Y PO Z,

which express that interval / (weakly) precedes interval J, that during / region X is
disconnected from region Y and Y is disconnected from region Z, that during J region
X is proper part of region Y, and so on.

The semantical definitions presented so far do not impose any restrictions on how
objects can change their size, shape, or position. But how can we introduce such con-
ditions on the semantic level? To explain this, let us focus on the condition that objects
need to change their position, size, and shape continuously. For the sake of simplic-
ity, we will assume that each region in a tt-model is a homeomorphic image of the
n-dimensional closed unit circle E, (for n = 2,3) —these circles provide typical exam-
ples of connected, regular closed subsets. This means that for each region X € Reg, we
have a continuous function €y : E, — § induced by a fixed homeomorphism between
E, and X. We will be refer to such models as simple tt-models.

Definition 2. Let M be a simple tt-model. A path m: T — Reg of M is said to be
continuous if the function

T E,xT —S, 1(p,t):= €n(r) (p)

is continuous (in both variables, think of T as equipped with the order topology). A
simple tt-model is said to be continuous if each of its object paths is continuous, and
it is strictly continuous if I1 consists exactly of all continuous object paths possible for
the regions of M.

Apparently, this concept of continuous object paths is closely related to the topologi-
cal notion of homotopic functions, i. e., continuous transformations between continuous
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functions. In fact, a continuous object path 1t defines homotopies between arbitrary re-
gions 7t(¢) and 7t(¢’). The important point is not that 7t(¢) and 7t(z") are homotopic (which
is trivial since both are homeomorphic to E,), but that the object path itself defines such
a homotopy. For example, let T be an object path from R into a suitable set of all subsets
of R” assigning the unit circle to each 7 0 and the unit cube at # = 0. Then obviously
this object path cannot be continuous.

Prepared with these notions, we can define a precise notion of the neighborhood
graph of a spatial calculus. For this let M be a simple tt-model. We define the RCCx
neighborhood graph associated to M as follows: Let S be an RCCx base relation. The
set of M -neighbors of S is defined as the smallest set of base relations, N(S), satisfying
the following two conditions:

- S¢N(S);

— For each pair of object paths 7,1’ and each pair of instants #y < #; of M with
(10)S™ 1 (19) and not m(t;)SM 1/ (1), there exists a relation 8’ € N(S) and an instant
to <t < 11 such that ©(r) S (¢).

Thus the RCCx neighborhood graph w.r. t. M is defined as the directed graph Grecy ar
that has the RCCx base relations as vertices and for each base relation an edge to each
of its M -neighbors. A graph G with vertex set Rrccy is said to be correct for a class of
models if G is the neighborhood graphs w.r. t. all models of that class.

Lemma 3. The neighborhood graph of RCC5 (cf. Fig.[Q) is correct for each class of
strictly continuous tt-models that instantiate all RCC5 base relations.

PP

DC PO/ \EQ
N

P

Fig. 2. The neighborhood graph of RCC5

Given a neighborhood graph G, we define the neighborhood distance between spa-
tial relations as follows: For base relations B and B, Ag(B,B’) is defined as the length
of the shortest path in G between B and B’. For arbitrary relations S and S’ we set

AG(S,8') = min Ag(B,B').
BeS,B'eS'
Obviously, Ag(S,S’) =0 if and only if S intersects with S, and Ag(S,S’) = 1 if and only
if § and S’ are disjoint, but contain base relations B and B’ respectively such that B is a
neighbor of B in G.

Finally, let us turn to the question whether continuity is expressible in the tempo-

ralized spatial constraint language presented here. The quick answer is that continuity
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is not expressible by formulae, but is expressible via rules in the language 1A :RCCx.
To see this, suppose that we have a constraint set, which contains the temporalized spa-
tial constraint / : X{DC,PP,EQ}Y. This constraint is satisfied by an assignment in a
continuous tt-model if and only if either 7 : X DCY or I : X{PP,EQ}Y is satisfied by
that assignment. To show this, let #y be an instant such that I~ <ty < I and X DCY
is false at 7, and let #; be an arbitrary instant in the interior of /. Then we obtain that
at 11 X{DC,PP,EQ}Y is true. Without restriction we may assume that 7; < fo. Now if
X{DC}Y holds at #;, there must be an instant #; < ¢ < #p such that X{PO}Y is true at z.
But this cannot be since at ¢ one of the constraints X DCY, X PP Y, or X EQ Y must be
true.

In fact, continuity rules could be applied in tableau algorithms as well as in natural
deduction systems. But this goes beyond the scope of this paper.

4 Generalized Neighborhood Graphs

In the previous section we presented a precise notion of continuous change in spatial
settings, which can be described in terms of the RCC relations. In this section we will
deal with the question whether there exists a continuous transformation from an initial
spatial scenario to a final spatial scenario, even when the set of all possible transforma-
tions is restricted by some further constraints (so-called transformation constraints).

In the following, we will argue within concrete models (i.e., within the reals as
flow of time and a fixed topological model such as as the Euclidean plane or the three-
dimensional Euclidean space). Then the reasoning problems we are now concerned
with have the following form: Let 65 and 6 be two spatial scenarios, each describing
the same set of objects Xi,...X,, i.e., 05 and G are sets of “interpreted” constraints
where between each pair of objects a spatial base relation holds. Furthermore, let Z be
a set of constraints in which at most variables for X, ...,X,, occur. Now the question
is whether these objects can be continuously transformed from the first into the second
scenario so that none of the constraints in X is violated. In terms of Definition 1, we
may reformulate this as follows: Are there continuous paths for the objects Xi,...,X,
so that the constraints of 6, and 6 hold at the starting and the endpoint, respectively,
and the constraints of X hold everywhere in the closed interval defined by starting and
endpoint.

It is clear that this problem can also be expressed in terms of the temporalized
spatial constraint language presented in the previous section since a problem instance
<Z, C;,0 f> is satisfiable in a fixed topological model if and only if the constraint set

IimJ, Jmly, I;:0,UX, J:Z, If:0,UX

is satisfiable in a suitably chosen strictly continuous tt-model based on the reals and the
topological model at hand (here I, I, and J denote intervals: I is an interval in which
the start scenario holds, Iy an interval in which the final scenario is true, and J is the
interval in which the transformation occurs).

Transformation problems <Z, 65,6f> can easily be solved by using the informa-
tion encoded in the classical neighborhood graph of the spatial calculus at hand (e. g.,
Fig. @) if transformations of at most two objects are considered. But, in general, this
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method already fails for more than two objects. As an examples consider the scenario
{X EQY,Y EQ Z,X EQ Z}. By only applying the information encoded in the classi-
cal neighborhood graph, we cannot conclude that every change of the first constraint
X EQY results in a change of at least one of the other two constraints [cf. B].

The main idea to solve transformation problems is the following: Try to find a parti-
tioning of the transformation interval into subintervals such that in each of these subin-
tervals only a minimal number of objects has to be transformed, but the sequence of
subintervals describes for all objects a continuous transformation from the start into the
final scenario. This means that a transformation problem is satisfiable if there exists a se-
quence of satisfiable transformation problems (X, 6;,0}), ..., (Z,0}',0%) with 6] = G,
G;’.’ =0y, and G’JE. = G’S‘“. This means, there is a chance to solve large and complicated
transformation problems by solving transformation problems for a restricted number of
objects.

For such restricted problems it is interesting to precompute a generalized neighbor-
hood graph, which encodes possible transformations for a fixed number of objects. For
this we represent possible scenarios for n objects X1, ..., X, as (;) -tuples of spatial base
relations (S;;)1<i< j<n Where S;; is the spatial base relation that holds between X; and X;
in that scenario. Note that not each such tuple is a consistent representation of a spatial
configuration, but when it does, we will refer to it as an n-scenario. Note that, for a

spatial calculus with k relations, usually only a subset of all k() many tuples represents
a scenario. For RCCS5, for example, only 54 from 53=125 possible triples are scenarios
of three objects.

Definition 4. The (n,l)-neighborhood graph (for a fixed spatial model of some spatial
calculus) is the directed graph G = (V,E) defined by the following data: V is the set
of all n-scenarios and E contains a directed edge from an n-scenario s to a distinct
n-scenario s' if and only if s can be continuously transformed to s' by changing at most
l objects.

In the case of RCC3, both the (2, 1)- and the (2,2)-neighborhood graph coincide
with the classical neighborhood graph presented in Fig. 2B But as previously argued,
a necessary condition for solving transformation problems is to solve for each triple of
objects X;, X, X, the transformation problem restricted to these three objects. Hence in
what follows we focus on the (3, 1)-neighborhood graph. In this graph an edge from
one vertex to another edge represents that exactly one object is subject to a continuous
transformation, while all others are considered fixed (i. e., their object paths are (locally)
constant functions). If, for instance, the first object changes its position with respect to
the second object, then a scenario (r1,r2,r3) can be connected to (r},r5,r;) only if (in
the classical neighborhood graph) A(ri,r}) = 1, A(r2,r5) = 0, and A(r3,r5) < 1.

The (3, 1)-neighborhood has the nice feature that it can be computed easily by ex-
tensively using the information encoded in the classical neighborhood graph and in the
composition table of the spatial calculus at hand. More precisely, the algorithm GNG
presented in Fig. Bl takes as input a list of base relations (denoted by rel [list[]) and an
array representing the composition table (compTable[i][j] refers to the set of base re-

2 Note that the (2,1)- and the (2,2)-neighborhood are not necessarily identical [cf.[18].
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lations obtained by composing relations i and j). The function neighbor(i) assigns to
each base relation its set of neighbors w. . t. the classical neighborhood graph.

The algorithm GNG works as follows: First, it generates a possible scenario (i, j, k),
checks if it is consistent. If so, it calls a function that generates a list of all continu-
ous successors of the scenario (i, j, k). Finally, this list is returned. In more detail, the
Boolean function isConsistent() checks for a triple (i, j, k), whether & is contained in
compTable[i][j], in other words, whether relation k can hold between objects X and Y if
there exists an object Z such that XiZ and Z jY are true. The function Succ() generates
for a triple (i, j, k) all consistent successors into which the scenario can be transformed.
This is done in the following way: For the input (i, j, k) the algorithm successively gen-
erates a neighbor relation for each relation of the triple. If, for instance, / is a neighbor
relation of i, the algorithm checks if (I, j, k) is consistent. If so, the relation is added to
the list of possible successors. This models the qualitative change of object X in relation
to some fixed objects ¥ and Z. By changing object X, its qualitative relation to Z can
also be affected. Since in this case object Y and Z are considered fixed, the relation j
cannot change. The same is analogously done for the second and third relation of the
triple.

Proposition 5. The (3, 1)-neighborhood graph computed by the algorithm GNG is (se-
mantically) correct, if the algorithm is applied to a correct (2,1)-neighborhood graph
and a correct composition table.

By applying this proposition to Lemma 2 we obtain that for RCCS5 the (3,1)-graph
computed by GNG is correct for each class of strictly continuous tt-models that instan-
tiate all base relations. This graph (a subgraph of it is depicted in Fig.B) has 54 vertices
and 291 edgesE We also applied this algorithm for computing the (3, 1)-neighborhood
graphs of the point algebra (PA) thought of as a spatial calculus. In this case the graph
consists of 13 vertices and 24 edges (cf. Fig. ).

To put things a little bit further, we can define a refined consistency concept for
transformation problems.

Definition 6. A transformation problem <Z,GS,(5 f> is said to be (n,l)-consistent if for

each subscenario of Gy consisting of n objects Xi,...,X,, there exists a path in the
(n,1)-neighborhood graph to the corresponding subscenario of Gy (the subscenario for
X1, ...,Xn) such that no constraint of X is violated.

This consistency concept can be useful, when impossible transformations are to be
identified. Since a problem instance with m objects is satisfiable only if it is (n,l)-
consistent for all n,/ < m, we can apply the (n,/)-neighborhood graph in order to
find impossible transformations. To illustrate this, let us discuss the following exam-
ple for the point algebra: Consider the PA-scenarios 65 = {a < b,b < ¢,a < ¢} and
65 ={a <b,b>c,a < c}.Can oy be transformed into o if we forbid that b =, i.e.,
b{<,>}c € X? Certainly not, because a lookup in the (3, 1)-neighborhood graph shows
that there is no path between the corresponding vertices. This can of course also be used

3 A representation of the full (3, 1)-neighborhood graph for RCCS5 is available to the public at
ftp://ftp.informatik.uni-freiburg.de/documents/papers/ki/ragni-woelfl-nghood.pdf.
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def GNG (rel list [], compTable[][])
for i,j kinrel list[]:
if isConsistent (i, j,k) :
Succ(i, j, k)
else :
output “scenario (i, j,k) is inconsistent”;
output “all successors of (i, j, k)”: Succ(i, j,k);

def function isConsistent (i, j, k)
if k € compTableli]]j]:
return true;
else return false ;

def function Succ(i, j,k)
succArray|];
for e {i,jk}:
if 1 =1:
for m € neighbor(i):
if isConsistent (m, j, k) && (m, j,k) ¢ succArray|]:
succArray|] = succArray[|U (m, j,k);
for n € neighbor(k):
if isConsistent (m, j,n) && (m, j,n) ¢ succArrayl]:
succArray[] = succArray[]U (m, j,n);
if 1 =j:
for m € neighbor(j):
if isConsistent (i,m,k) && (i,m,k) ¢ succArrayl]:
succArray[] = succArray[]U (i,m,k);
for n € neighbor(i):
if isConsistent (n,m,k) && (n,m,k) ¢ succArray|:
succArray[] = succArray[|U (n,m,k);
if 1 =k:
for m € neighbor(k):
if isConsistent (i, j,m) && (i, j,m) ¢ succArray|]:
succArray|] = succArray[|U (i, j,m);
for n € neighbor(j):
if isConsistent (n, j,m) && (n, j,m) ¢ succArrayl]:
succArray|] = succArray[]U (n, j,k);
output succArray|]

Fig. 3. The algorithm GNG computes the (3, 1)-neighborhood graph from a set of base relations,
a composition table, and a classical neighborhood graph

in more complex formal calculi. For a given transformation problem, check first if for
each pair of objects X and ¥ with Xr Y € 65 and X, Y € oy, there is a path from ry
to r» in the classical neighborhood graph. Then for each triple of objects X, Y, and Z
with X Y,YrnZ,Xr3sZ € 6; and X} Y,Y ¥y Z, X i Z € &y, check if there is a path in
the (3,1)-, (3,2)-, or (3,3)-neighborhood graph from (ri,r,r3) to (r},r},r}) so that
during that none of the constraints in X is violated, and so on.
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Fig. 4. The generalized neighborhood graph of the point algebra. The relation triple r 1 r3 in the
node encode a scenario for the constraints X r; Y, Y Z, and X r3 Z.
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Fig. 5. A subgraph of the (3, 1)-neighborhood graph for RCC5

5 Summary and Outlook

We started from the question how spatial constraint calculi can be temporalized. In this
context, we presented a precise notion of continuous change that seems to be conceptu-
ally adequate for temporalized topological calculi. Such a precise concept is necessary
for a well-founded semantics of temporalized calculi dealing with continuous transfor-
mations. Moreover, it can be used to analytically prove the correctness of neighborhood
graphs.
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In a second step we considered so-called transformation problems, i. e., problems of
the kind whether some spatial configuration can be continuously transformed into an-
other configuration, even if these transformations are constrained by further conditions.
Solving such problems may be especially interesting, for instance, if we want to plan
how objects have to be moved in space in order to reach a specific goal state.

The classical neighborhood graphs discussed in the literature only represent pos-
sible continuous transformations of at most two objects. We proposed a concept that
eliminates this limitation. These generalized neighborhood graphs may also be consid-
ered an appropriate tool for solving transformation problems, because they mirror the
notion of k-consistency known from static reasoning problems. This idea is reflected in
our definition of (n,!)-consistency.

Future work will be concerned with the following questions: What is the exact rela-
tionship between (n,/)-consistency and satisfiability of transformation problems? Are
there tractable classes of these problems? How can the notion of (n,l)-consistency be
used to identify such classes? Finally, how can temporalized QSR be used to solve
spatial planning scenarios?
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