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Abstract
The point algebra is a fundamental formal calcu-
lus for spatial and temporal reasoning. We present
a new generalization that meets all requirements to
describe dependencies on networks. Applications
range from traffic networks to medical diagnostics.
We investigate satisfaction problems, tractable sub-
classses, embeddings into other relation algebras,
and the associated interval algebra.

1 The Dependency Calculus
Reasoning about complex dependencies between events is a
crucial task. However, qualitative reasoning has so far con-
centrated on spatial and temporal issues. In contrast, we
present a calculus [Ragni and Scivos, 2005], a proper gener-
alization of the nonlinear relation algebra, created for specific
questions of reasoning about consequences.

This algebra, called dependency calculus (DC), meets all
requirements to describe dependencies in networks. There
are two aspects: dependencies of points are described by the
point algebra PAdc, and of intervals by the associated interval
algebra IAdc. For these we analyze questions concerning the
satisfaction problems, and show the correspondence to other
relation algebras. For this, we use an isomorphism preserving
the tractability of subclasses. This method promises to struc-
ture the field of relation algebras and to transfer algebraic as-
pects and complexity results from one algebra to another.

If we observe pollution in an ecosystem of flowing water,
we can draw conclusions about pollution at other points (cf.
Fig. 1). If pollution is found at D, F is polluted as well. It
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Figure 1: A pipe network. Flow occurs along the ”pipes” from left
to right. Is there a difference between the pairs (A,B) and (D,E)?

might be caused from a source at A, but not B, C, or E. If C
is polluted, D probably is also polluted. Does the same hold
true for B and D? No: they have no common point upstream.
DC directly represents such differences. For pairs like (C,D)
or (D,E), we have the new “fork” relation (f). The relations

”fork”, ”before”, ”equal”, and ”after” are called ”dependent”.
The other case, like (A,B), is called ”independent” (�). A
medical problem is given in Fig. 2.
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Figure 2: A virus transmittance scheme. Arrows indicate direction
of assured, dashed of unassured donorship, dotted lines mean that
both persons carry the same virus. No lines means that we do not
have prior knowledge. The situation on the left must be incomplete.
The existence of a fourth person D accounts for this. PAdc concludes
that indeed there was indirect transmittance from D to A.

If x, y are points in a partial order 〈T,≤〉, then we define
these relations in terms of the partial order as follows:

x ≺ y iff x ≤ y and not y ≤ x.
x = y iff x ≤ y and y ≤ x.
x � y iff y ≤ x and not x ≤ y.
x f y iff ∃z z ≤ y∧ z ≤ x and neither x ≤ y nor y ≤ x.
x � y iff neither ∃z z ≤ y∧ z ≤ x nor x ≤ y nor y ≤ x .

All relations between nodes in Fig. 1 can be described by
these five basic relations.

2 Computational Complexity
Assume that a set of constraints between some points is given.
One question is whether this set is consistent. Is it possible
to construct a network in which all constraints are satisfied?
This problem is called PAdc-SAT. What is the computational
effort to construct such a network?
Definition 1. For two relation algebras Γ ,Γ′ a homomor-
phism is a function γ from Γ to Γ′ such that γ preserves all
operations of the boolean algebra and for all relations R, S:
• (converse): γ(R−1) = γ(R)−1

• (composition): γ(R◦S) = γ(R)◦ γ(S)

Definition 2. For two relation algebras Γ,Γ′ a tractability-
preserving-homomorphism (tph) is a homomorphism γ from
Γ to Γ′ such that each subset β ⊆ Γ is tractable iff γ(β) ⊆ Γ′

is tractable. An isomorphic tph is called tpi.

Lemma 1. A tpi γ from PAdc to RCC-5 (Fig. 3) is given by:

γ : ≺ 7→ PP = 7→ EQ � 7→ PP−1

f 7→ PO � 7→ DR
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Figure 3: The RCC-5 Relations

Table 1: The tractable subclasses of PAdc.
τ28 τ20 τ17 τ14

⊥ • • • •
{�} • •
{f} • •

{�,f} • •
{≺} • •

{�,≺} • •
{f,≺} •

{�,f,≺} • •
{�} • •

{�,�} • •
{f,�} •

{�,f,�} • •
{≺,�} •

{�,≺,�} • •
{f,≺,�} • •

{�,f,≺,�} • • •

The relations including {=} are contained in τ28, τ20, τ14 iff R\{=}
is in τ28 (τ20,τ14). All relations including {=} are in τ17.

With [Renz and Nebel, 1999] and Lemma 1, we get:

Theorem 1. PAdc-SAT is NP-complete.

Theorem 2. The four classes τ28,τ20,τ17,τ14 (cf. Tab. 1) are
the only maximal subclasses of PAdc.

3 The Associated Interval Algebra
There are applications in which it is not sufficient to com-
pare single points in a network. For instance, pollution in a
pipe network is not restricted to single points but extends to
whole sections, and automated planning and project manage-
ment deal with tasks that span over time intervals.

Definition 3. An interval I = [sI ,eI ] is a pair of points satisfy-
ing sI ≺ eI . The interval algebra IAdc is the relation algebra
generated by quadruples of relations as basic relations

B =

{(

Rss Rse
Res Ree

)

|Rss,Rse,Res,Ree ∈ {≺,=,�,�,f}

}

closed under ∩,∪,

−
,◦,−1. For I = [s,e] and I′ = [s′,e′], being

in relation I R I′ means sRss s′, sRse e′, eRes s′, and eRee e′.

IApo is analogically defined, based on {≺,=,�,{�,f}}.
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Figure 4: Reasoning with uncertainty. The dashed line indicates
that it is unknown if A is before A2. In contrast to IApo, IAdc con-
cludes such knowledge: Depending on the IAdc relation between A1
and A2, the obstruction B can or cannot be bypassed using A2.

If Rss = Rse = Res = Ree =: R′, we write (R′). Fig. 4 and
Fig. 5 show advantages of the new, finer interval calculus:
More situations can be distinguished and more conclusions

are possible. The situation given in Fig. 4 is described by:
A (≺) A1, A1 (≺) C, A2 (≺) C, B (≺) C,

B
(

{�,≺} ≺
{≺,≺} ≺

)

A1, B
(

{�,f} ≺
{�,f} ≺

)

A2, A1

(

{�,f} ≺
≺ =

)

A2

By specifying the latter relation, e.g. to A1

(

� ≺
≺ =

)

A2 , new
conclusions can be drawn, in this case, A (≺) A2 becomes
impossible. This means, if B is an obstacle on the path from
A to C via A1, then there is no alternative route via A2.
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Figure 5: In contrast to IApo, IAdc discerns these cases which
are specifications of the composition A({�,f})B◦B(�)C.

For a set of IAdc constraints, we define IAdc-SAT analogi-
cally to PAdc-SAT. How hard is it to decide the satisfiability?
Theorem 3. IAdc-SAT is NP-hard.
Definition 4. For a subset S ⊆ PAdc, a relation R is called
S -pointizable if it belongs to the class

PS =
{(

Rss Rse
Res Ree

)

|Res,Rse,Res,Ree ∈ S
}

A gadget for an IAdc relation R is a set of points
p1, . . . , pm (m ≥ 4) with PAdc relations that are satisfiable iff
[p1, p2]R[p3, p4] is satisfiable. For S ⊆ PAdc, an IAdc rela-
tion R is called S -gadgetable (R ∈ GS ) if all PAdc relations
between the endpoints extended with additional points are re-
lations of S . G is an abbreviation for GPAdc

and P for PPAdc
.

Theorem 4. G ,P are intractable subclasses of IAdc.
Not all gadgetable relations are pointizable. For instance,

(≺)∪ (�) is gadgetable. Hence, B ( P ( G ( IAdc. If S is
tractable (in PAdc), then PS is tractable in IAdc. What about
the larger class GS ? Is it still tractable?
Theorem 5. If R is a class of S -gadgetable IAdc relations
and the satisfiability problem over S is tractable, then the sat-
isfiability problem over R is tractable.
Corollary 1. B ,Gτ28 ,Gτ20 ,Gτ17 ,Gτ14 ( IAdc are tractable.
Corollary 2. IAdc-SAT is NP-complete.

4 Conclusion
We presented and investigated a new algebra for reasoning
about causal relations. Both PAdc and IAdc are NP-complete,
and we identified tractable subclasses. Promising ideas for
future work are introducing probabilities to this calculus to
model reasoning in Bayesian networks and the temporaliza-
tion of DC for modeling dependencies that vary over time.
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