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Abstract. Possibilistic Answer Set Programming is an extension of the standard
ASP framework that allows for attaching degrees of certainty to the rules in ASP
programs. In the literature, several semantics for such PASP-programs have been
presented, each of them having particular strengths and weaknesses. In this work
we present a new semantics that employs so-called iota-answer sets, a solution
concept introduced by Gebser et al. (2009), in order to find solutions for stan-
dard ASP programs with odd cycles or auto-blocking rules. This is achieved by
considering maximal subsets of a given ASP program for which answer sets ex-
ist. The main idea of our work is to integrate iota-semantics into the possibilistic
framework in such a way that degrees of certainty are not only assigned to atoms
mentioned in the answer sets, but also to the answer sets themselves. Our ap-
proach gives more satisfactory solutions and avoids counter-intuitive examples
arising in the other approaches. We compare our approach to existing ones and
present a translation into the standard ASP framework allowing the computation
of solutions by existing tools.

1 Introduction

Answer Set Programming (ASP) [1] is a logic programming formalism which is nowa-
days one of the main paradigms for nonmonotonic reasoning. In view of application
contexts, however, the framework has some limitations. Quite often, when a knowledge
base is to be set up, the modeler is not only aware of the nonmonotonic nature of some
general rules to be represented, but also considers some of these rules more plausible
than others. Within the standard ASP framework it is not possible to order rules ac-
cording to their certainty or plausibility in an explicit manner. Of course, the modeler
can try to modify the knowledge base by introspecting which rules are applied under
which conditions in order to obtain some expected solution to a reasoning task on the
knowledge base (see, e.g., [2]). But if the problem instance has several solution candi-
dates it is still not possible to rank them, i.e., to estimate which of them is (or should be
considered) more plausible than others.

One way to remedy this deficiency is to consider knowledge bases equipped with
probability distributions. In this context different strands of research can be found in
the literature. For the more general context of equipping conditionals with probabilities
we refer to [3], and [4]. But also in the context of logic and answer set programming,
probabilistic approaches have been discussed (see., e.g., Poole [5], Lukasiewicz [6],
Baral et al. [7]). The problem with such approaches is that most of the time exact prob-
ability values (and even lower or upper bounds of them) are not available or hard to
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argue for. A typical situation is that the modeler has just some qualitative ranking be-
tween the rules in the knowledge base in mind, and (maybe even more importantly) that
she is also only interested in an ordinal-scale ranking of the possible solutions of the
given problem.

In this situation, ideas from possibilistic logic [8] seem promising to deal with plau-
sibility degrees of general rules. Possibilistic logic is a framework for representing un-
certainty (in a propositional logic context) by using a pair of possibility and necessity
measures. These measures are understood qualitatively and are used for rank-ordering
interpretations. To combine the ideas of possibilistic logic and answer set programming
(referred to as possibilistic answer set programming) several approaches have been pro-
posed in the literature, for example, by Bauters et al. [9], and Nicolas et al. [10]. Each
of these approaches has particular strengths and weaknesses, which will be discussed
later in more detail. The reader might also consult [11] which presents a variation of
stable semantics called pstable semantics associated with possibilistic logic.

In this paper, we present a new semantics that is based on so-called ι-answer sets.
The ι-answer set semantics has been introduced by Gebser et al. [12] in order to solve
problems arising in standard logic programs, e.g., with odd cycles or with auto-blocking
rules. The main idea is to consider subsets of the program instead of the complete
program to check whether it is possible to entail a set of atoms. The semantics we
propose for possibilistic answer sets follows the ideas of ι-answer set semantics. As we
will see, the proposed semantics naturally leads to not only associating a necessity value
to each atom within a stable model, but also a possibility value to the stable models
themselves. We argue that the new semantics, while still being NP-complete, is closer
to the philosophy underlying both possibilistic logic and ASP than other semantics in
the literature.

Structure of the paper. We start by presenting in the next section the necessary back-
ground and notations, and discuss in more detail the mentioned other semantic ap-
proaches for possibilistic logic programs. We then present our new semantics, and dis-
cuss its formal properties. Finally, we present a translation of possibilistic answer set
programs into classic answer set programs which allows to use existing tools for com-
puting solutions.

2 Background and Notations

2.1 Answer Set Programming

A logic program (or normal logic program) is a (finite) set of rules of the form

r : a← b1, . . . , bm, not c1, . . . , not cn.

where a, bi and cj are propositional atoms. The keyword not denotes negation as fail-
ure. The atom a is called the head of the rule (denoted by head(r)) and b1, . . . , bm,
not c1, . . . , not cn is called the body of the rule. The set of all atoms bi and cj that make
up the body of the rule is denoted by body(r). The body can be divided into a positive
and negative part. Atoms bi represent the positive body, denoted by body+(r), and atoms
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cj represent the negative body, denoted by body−(r). Thus, body(r) = body+(r) ∪
body−(r) and we sometimes write r as head(r)← body+(r), not body−(r). Further,
we extend this notation to logic programs P in the obvious way: body+(P ) = {a | a ∈
body+(r) for some r ∈ P} and body−(P ) = {a | a ∈ body−(r) for some r ∈ P}.
We denote by atoms(P ) the set of atoms that occur in P .

Intuitively, a rule can be understood as follows: if each of the atoms bi of the positive
body of the rule is true and none of the atoms cj of the negative body is true, then the
head of the rule can be inferred. Given rule r, we denote by r+ the rule head(r) ←
body+(r). A rule r with empty head is called an integrity constraint (we often write
such rules in the form ⊥ ← . . . ). Similarly, the body of a rule can be empty, thus
stating that the head is a fact.

Atoms a as well as their default negation not a are called literals. A basic program
is a logic program where all rules are of the form r : a ← b1, . . . , bm, i.e., with an
empty negative body and thus without negation as failure.

Definition 1. A set of atoms A is said to be closed under a basic program P if for each
rule r ∈ P , head(r) ∈ A whenever body(r) ⊆ A. The smallest set closed under a
basic program P is denoted by CN(P ), and referred to as the set of consequences of
the program. For arbitrary programs we write CN+(P ) for the set CN({r+ | r ∈ P}).

A stable model of a program is a set of atoms that represents a set of consequences
consistent with the beliefs expressed by the program, but also has the property that the
presence of each of the atoms in the set is justified. In other words, a stable model is
necessarily minimal with respect to set inclusion, that is, a proper subset of a stable
model cannot be a stable model. More formally, stable models can be defined in terms
of the so-called Gelfond-Lifschitz reduct [13]:

Definition 2. The Gelfond-Lifschitz reduct of a program P by a set of atoms A is
defined as the following set of rules: PA =

{
r+ | r ∈ P and body−(r) ∩ A = ∅} .

Given a logic program P , a set of atoms A is called a stable model of P if and only if
CN(PA) = A.

In the literature, the terms answer set and stable model are mostly used in an equiv-
alent way. For a more comprehensive introduction to answer set semantics we refer
to [14,1].

2.2 ι-Answer Sets

Gebser et al. [12] introduce the notion of ι-answer sets. This concept allows for incre-
mentally constructing solutions to a given normal logic program. Contrary to standard
answer set semantics, the ι-answer set semantics has the advantage that we can always
talk about solutions of a program, even when stable models do not exist.

Definition 3. Let P be a logic program and A be a set of atoms. Then A is called
an ι-answer set of P if A = CN+(Q) for some ⊆-maximal Q ⊆ P such that (i)
body+(Q) ⊆ CN+(Q) and (ii) body−(Q) ∩ CN+(Q) = ∅.

It is also possible to characterize the ι-answer sets in terms of applied rules.
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Definition 4. Let P be a logic program and A be a set of atoms. Then the set of applied
rules of P for A is defined as:

AppP (A) =
{
r ∈ P | body+(r) ⊆ A, body−(r) ∩ A = ∅, head(r) ∈ A

}
.

It can be shown that a set of atoms A is an ι-answer set of P if and only if A =
CN+(AppP (A)) and if for each r ∈ P \ AppP (A), at least one of the following con-
ditions holds true: (i) body+(r) 	⊆ A, (ii) body−(r) ∩ A 	= ∅, or (iii) head(r) ∈
body−(AppP (A) ∪ {r}).

2.3 Possibilistic Logic

We consider a finite propositional language L. The set of all interpretations over L is
denoted by Ω. Possibilistic logic [8] is defined in terms of a possibility distribution
π : Ω → [0, 1] representing how plausible an interpretation is with regard to the avail-
able knowledge. For an interpretation ω ∈ Ω, π(ω) = 0 means that ω is considered
impossible and π(ω) = 1 means that there is no contradiction with assuming ω to be
true. The possibility distribution only represents a preordering over the interpretations,
i.e., π(ω) > π(ω′) expresses that ω is considered more plausible than ω′. A possibility
distribution allows to define two functions Π and N from the set of formulae over L to
[0, 1] as follows:

Π(ϕ) := max {π(ω) | ω ∈ Ω, ω |= ϕ} and N(ϕ) := 1−Π(¬ϕ).
The function Π is called possibility measure and N is called necessity measure: Π(ϕ)
measures to what extent the formula ϕ is compatible with the available knowledge,
while N(ϕ) measures to what extent it is entailed. Given a possibility distribution π, a
formula ϕ is said to be a consequence of π if and only if Π(ϕ) > Π(¬ϕ). Intuitively,ϕ
is a consequence of π if the best models of ϕ (namely the models of ϕ having a highest
degree) are more plausible (or more preferred) than the best models of ¬ϕ.

A possibilistic formula is a tuple 〈ϕ, α〉 where ϕ ∈ L and α ∈ (0, 1] expresses
that ϕ is considered certain at least to the level α. Thus, given a necessity measure
N , it holds N(ϕ) ≥ α. A possibilistic knowledge base is a set K of possibilistic for-
mulas. The strict α-cut Kα of K is defined as Kα = {ϕ | 〈ϕ, β〉 ∈ K and β > α}.
From the strict α-cut, we define the inconsistency value of K Inc(K) = max{α |
Kα is inconsistent or α = 0} which is the necessity degree under which information is
ignored. We thus define Core(K) = KInc(K) and say that a formula is a consequence
of K (denoted by K �π ϕ) if Core(K) � ϕ.

3 Possibilistic Logic Programs

We define the possibilistic extension of classic logic programs following [10]. These
are logic programs where each rule is augmented with a necessity value.

A possibilistic rule is a pair r = 〈r∗, α〉 where r∗ is some rule in the sense of ASP
and α denotes the rule’s necessity degree in the range (0, 1]. The ASP rule r∗ is called
the projection of the possibilistic rule r, i.e., the rule obtained by ignoring the attached
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necessity degree. A possibilistic logic program Q is a set of possibilistic rules. The
projection of a possibilistic program Q∗ is the set of rules {r∗ | r ∈ Q}, i.e., a logic
program in the sense of ASP.

Given a set A of propositional atoms, a possibilistic atom is a pair p = 〈a, α〉 ∈
A× (0, 1] where α denotes the necessity degree of a. A possibilistic atom set is a set of
possibilistic atoms in which every propositional atom occurs in at most one possibilistic
atom. Projections are defined as before, that is p∗ = a and {p1, . . . }∗ = {p∗1, . . . }.
Because stable models are sets of atoms, it seems intuitively appropriate to consider
“possibilistic answer sets” of a possibilistic program as possibilistic atom sets. Indeed
in [10] the projection of a possibilistic stable model of a possibilistic program is always
a stable model of the projection of the program. However, in our opinion this is not
adequate for reasons discussed in the following.

Before we introduce our new semantics of possibilistic logic programs we review
the differnet semantics discussed in the literature.

Nicolas et al. [10]. Possibilistic answer sets are here defined as possibilistic atom sets
whose projection is a classic answer set of the projection of the possibilistic program.
The attached necessity values are determined according to the grounding sequence1. As
a consequence, it does not capture all possible solutions of a possibilistic logic program
with respect to possibilistic logic.

Example 1. Consider the possibilistic program Pn = {〈concert← not canceled., 0.8〉,
〈canceled., 0.6〉}. The only possibilistic answer set (in the sense of [10]) of this program
is {〈canceled, 0.6〉}.

In this example the necessity value of canceled indicates that there exists some rea-
son to believe it was not canceled. However, this is not reflected in the concept of
possibilistic answer set by [10].

Moreover, Nicolas et al. define possibility distributions for possibilistic logic pro-
grams (although without providing an algorithm for computing it). The possibility of
a set of atoms A given a logic program P is π̃P (A) = πPA(A) with πPA(A) being
defined as 0 if A is not grounded, 1 if it is a least model of the consequence operator
applied to PA, and 1 − α otherwise (where α is the maximal possibility value among
the non-satisfied rules).

Another issue with this semantics is the way how integrity constraints are treated. A
violated integrity constraint prevents a set of atoms to be a possibilistic stable model
independently of its necessity value, and a non-violated integrity constraint is ignored
just as its necessity value. For example, the program {〈concert ← not canceled ., 1〉,
〈⊥ ← concert ., α〉} has no solution for any α ∈ (0, 1] even if α is very low.

Bauters et al. [9]. This approach starts from a different paradigm in order to overcome
the issue described above. Bauters et al. identify that the possibilistic answer sets in
the sense of Nicolas et al. [10] are computed based on the Gelfond-Lifschitz reduct of
the program, which excludes any information about the necessity or possibility value

1 A grounding sequence is the ordered set of rules involved in the deduction of an answer set.
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that could have been drawn from the negative atoms. Bauters et al. also use possibilistic
atom sets, but propose to consider and enforce the equalities N(a) = Π(not a) and
thus N(not a) = 1−N(a). In our opinion, this leads to some counter-intuitive results.
Let us consider two examples to illustrate this (the first one has already been discussed
by Bauters et al. [9]).

Example 2. Consider the possibilistic logic program: Pb1 = { 〈a← not a., 1〉 }. The
only answer set in the sense of Bauters et al. [9] is {〈a, 0.5〉}.

The rule a ← not a. used in this example is a self-contradiction which carries the
maximal necessity value and, in the classic possibilistic logic context, would bring the
inconsistency value of the program to 1.

Example 3. Consider the following possibilistic logic programs:

Pb2 =
{ 〈a← not a., 1〉, 〈b., 0.7〉} Pb3 =

{ 〈a← not a., 1〉, 〈b., 0.3〉}

The only answer set for Pb2 is {〈a, 0.5〉, 〈b, 0.7〉} and for Pb3 {〈a, 0.5〉, 〈b, 0.3〉}. The
rank-ordering of the atoms a and b in the answer set is no longer only governed by the
rank-ordering of the grounding sequence allowing their deduction. Here b is considered
more certain than a if the necessity of the rule b. is more than half the necessity of
a← not a.

We think that the point made in the last example is in opposition to the philosophy
of possibilistic logic where the necessity values only define a preordering between the
formulas. It seems that the definition by Bauters et al. [9] introduces some logarithmic
scale within the semantics which is not suitable from our point of view.

Bauters et al. [15]. The same authors proposed another approach for dealing with
possibilistic logic and answer sets which is based on subsets of a program. This work
differs from our approach in several aspects: first they consider every possible subset
of the program which is harmful for the complexity and entails a different semantics.
Also they do not consider answer sets properly speaking but only the brave and cautious
consequences of the program. Moreover, this approach has a higher complexity, at the
second level of the polynomial hierarchy [16].

Discussion. All of the approaches presented so far have problems. One of them is
the inability to give an overall possibility value of the answer set as the possibilities
are only attached to atoms. They are, for example, unable to measure the certainty of
the empty set as a solution, e.g, to make the difference between 〈a← not a., 0.1〉 and
〈a← not a., 1〉. The semantics presented in the next section addresses these issues.

4 A New Definition of Possibilistic Answer Sets

In the examples presented previously, and given the non-monotonicity of the language,
we can see that we could deduce atoms by ignoring the deduction of others. Ignoring
rules as part of a definition can be helpful in two ways:
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– It allows for considering more efficiently the reason why some atoms have been
overlooked and to measure how harmful it was.

– It allows for defining possibilistic answer sets based on ι-answer sets.

As we want to represent the fact that some rules might have been ignored, we can
introduce an overall possibility value for sets of atoms from which we define the concept
of possibilistic interpretation. The possibility value is deduced from the necessity of
rules going against the set of atoms.

Definition 5. Let X be a possibilistic atom set and α ∈ (0, 1]. Then a possibilistic
interpretation is a pair 〈X,α〉 where α denotes the possibility degree of X .

In this context, a possibilistic ι-answer set can be naturally defined with the help of
an ι-answer set:

Definition 6. Let P be a possibilistic logic program and I = 〈X,α〉 be a possibilistic
interpretation. Then I is a possibilistic ι-answer set of P if there exists some Q ⊆ P
such that the following holds:

1. X∗ = CN+(Q∗),
2. body+(Q∗) ⊆ CN+(Q∗),
3. body−(Q∗) ∩ CN+(Q∗) = ∅,
4. α = 1−max {β | 〈r, β〉 ∈ P \Q} if P 	= Q, and α = 1 otherwise,
5. for each a ∈ atoms(Q∗) and r∗ ∈ Q∗ such that a = head(r∗), {b1, . . . , bm} =

body+(r∗) ⊆ X , and body−(r∗) ∩X = ∅, it holds N(a) ≥ min{α, β1, . . . , βn},
where N(r) = α and N(bi) = βi and there exists some r∗ ∈ Q∗ such that N(a) =
min{α, β1, . . . , βn},

6. there is no Q′ with Q � Q′ ⊆ P satisfying conditions 2 to 4.

On top of the necessity value of each atom, there is a possibility value for the overall
possibilistic ι-answer set, which represents its plausibility as a solution. A possibilistic
ι-answer set I = 〈X,α〉 can thus be understood as follows: X can be accepted as
a possibilistic ι-answer set but there exists a 1 − α necessity against it; in case it is
considered, the necessity of each atom is given in X .

With necessity being defined as a lower bound, classical possibilistic logic enforces
formulas in a possibilistic knowledge base not to have a necessity degree of zero be-
cause otherwise they bring no information. For possibilistic ι-answer sets we enforce
the same requirement.

Example 4. Consider the following possibilistic logic program:

P =

{ 〈rain← not sun., 1〉, 〈umbrella← rain., 1〉,
〈sun., 0.6〉, 〈glasses← sun., 1〉

}

It has two possibilistic ι-answer set 〈{〈sun, 0.6〉, 〈glasses, 0.6〉}, 1〉 with P = Q and
〈{〈rain, 1〉, 〈umbrella, 1〉}, 0.4〉 with P\Q = {〈sun., 0.6〉}.

A parallel can be established between possibilistic ι-answer sets and answer sets.
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Proposition 1. Let P be a possibilistic logic program and I = 〈X,α〉 be a possibilistic
ι-answer set of P . Then α = 1 if and only if X∗ is an answer set of P ∗ in the classical
sense.

The previous proposition follows directly from Theorem 3.6 of [12]. Moreover, this
immediately shows the NP-hardness of finding possibilistic ι-answer sets. Here, the
NP-membership is trivial as one has to guess the set of atoms X from Definition 6 and
from there one can polynomially compute the consequence. From these observations,
we obtain the following result.

Theorem 1. Let P be a possibilistic logic program. Deciding the existence of an pos-
sibilistic ι-answer set for P is NP-complete.

Integrity Constraints. In the original definition of ι-answer sets, Gebser et al. had to
treat integrity constraints separately from the other rules. This distinction is necessary
because discarding a rule from the applied rules set comes with no penalty in the origi-
nal context. If there is no penalty in ignoring integrity constraints, they become useless.
For our possibilistic ι-answer sets, such a special treatment is not necessary. The possi-
bility value of an answer set reflects the importance of the discarded rules. We illustrate
this in the following.

Example 5. Consider the following classic logic program and its possibilistic variant:

P = {a← not b. b← not a. ⊥ ← a.}
P ′ = {〈a← not b., 1〉 〈b← not a., 1〉 〈⊥ ← a., 0.5〉}

In P , there is one answer set here {b} as {a} is forbidden by the constraint. The con-
straint is considered part of the applied rules according to Definition 4. The necessity
value attached to constraints can be used to rank-order the answer sets. Here we have,
for example, 〈{〈b, 1〉}, 1〉 and 〈{〈a, 1〉}, 0.5〉 where the latter is considered less possi-
ble.

5 A Translation of Possibilistic Logic Programs into ASP

Gebser et al. [12] propose a translation, called ι-completion, from classical positive-
order logic programs into SAT. We use this translation as a basis for encoding possi-
bilistic logic programs into ASP.

Let P ∗ be a classical logic program, and P ∗
C denote the set of self-blocking rules

within P ∗ given by

P ∗
C =

{
r | r ∈ P ∗ and head(r) ∩ body−(r) 	= ∅} .

The set sup(a) allows for identifying the necessary premisses to the deduction of a.

rule(a) = {r ∈ P ∗ \ P ∗
C | head(r) = a}

sup(a) =
∨

r∈rule(a)

( ∧

p+∈body+(r)

p+ ∧
∧

p−∈body−(r)

¬p−
)
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The set block(a) allows for identifying all the self blocking rules in which a is involved.
block(a) is true if one self-blocking rule is supposed to be fired in the answer set, which
is impossible. Thus, the ι-completion forces block(a) to be false.

neg(a) =
{
r ∈ P ∗ \ P ∗

C | a ∈ body−(r)
}

block(a) =
∨

r∈neg(a)

(
head(r) ∧

∧

p+∈body+(r)

p+ ∧
∧

p−∈body−(r)

¬p−
)

Let C∗ denote the set of integrity constraints of P ∗. The ι-completion is given by:

comp(P ∗, C∗) = {a↔ sup(a) ∧ ¬block(a) | a ∈ atoms(P ∗)}
Because existing answer set solvers cannot handle floating point numbers, we as-

sume in the following that both possibility and necessity values are given as integers in
the range V = {1, . . . , 100}. For example, a necessity 0.8 is written as 80. This is not
problematic as there are always only finitely many necessity values in a possibilistic
program, and thus they can be accommodated on some finite integer scale.

The translation for ι-answer sets is done in four steps. The idea is close to the one
introduced in [17]. The logic program checks for every possible interpretation whether
it is a ι-answer set. After the checking is done, another part of the program finds the
possibility value associated to the ι-answer set and to each of its atoms.

Step 1: Generating interpretations. In order to check every interpretation, we first
have to assert that each atom is assigned true of false. To this end, we introduce for
each atom a ∈ atoms(P ∗) an additional new atom na denoting not a, and the rules:
1{l(a), l(na)}1. and← l(a), l(na).

Step 2: Checking for support. The second step is a translation of the completion given
before. Namely, for each atom a ∈ atoms(P ∗) we introduce the rules:

l(a)← sup(a), not block(a). l(na)← not sup(a). l(na)← block(a).

as well as the rules corresponding to sup(a) and block(a). They can easily be translated
into ASP using labeling conversion.

Step 3: Computing necessity values. The third step computes the consequence of the
reduct. An atom must be deduced under two conditions: it needs to have a rule allowing
its deduction, and the atoms in this rule’s positive body must be justified. To achieve
this, we introduce the following for each rule 〈r∗, v〉 ∈ P and for each N ≤ v ∈ V .

vlip(head(r∗), N)← l(head(r∗)), vlip(body+(r∗), N), not body−(r∗), N ≤ v.

Here N represents the necessity value of the atom which has to be equal to the minimum
amongst the necessity value of the atoms in the positive body and the rule itself. Thus,
the head is deduced with a necessity v if all atoms in body+(r∗) have been deduced
with at least a necessity v and the necessity of the rule is also at least v.

We need to compute the final necessity value for each of the atoms. For each p ∈
atoms(P ∗), ∀N,O ∈ V we introduce the rules whereL is a variable representing atoms.

negvli(L,N)← vlip(L,N), vlip(L,O), N < O.

vli(L,N)← vlip(L,N), not negvli(L,N).
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Step 4: Computing the possibility value. For the possibility value, we need first to check
rules that might have been ignored. We introduce the rule:

vasp(100− v)← not head(r∗), body+(r∗), not body−(r∗).

for each rule 〈r∗, v〉 ∈ P . From all the rules ignored, the higher necessity value is
the most relevant (and thus the smaller possibility vasp(N)). The first rule marks the
values which are not minimal. Then the minimal value is the one that remains unmarked
as computed by the second rule. For each N ∈ V∪{0} this is achieved by the two rules:
negvas(N) ← vasp(N), vasp(O), N > O. vas(N) ← vasp(N), not negvas(N).
All these 4 steps together form the program τ(P ).

Theorem 2. The stable models of the translated program τ(P ) are exactly the possi-
bilistic ι-answer sets of P .

The proof comes from the separation of the program in two parts. The first part (step
1 and 2) is exactly the translation proposed in [12] and the second part (step 3 and 4)
cannot prevent a set to be a solution, but only computes the necessity and possibility
values associated.

Example 6. We present an example to illustrate the translation process. Let P be the
following possibilistic logic program:

P =

{ 〈a← not b., 1〉 〈d← a., 1〉 〈b← not c., 0.8〉
〈e← b., 1〉 〈c← not a., 0.6〉 〈f ← c., 1〉

}

Program P leads to the final translation in ASP presented in Figure 12. For the sake
of space, the sup and neg rules are given only for the atom a. Only the atoms of the
solutions which are relevant for understanding are given. This translation has 3 solutions
partially exhibited here:

⎧
⎨

⎩

{l(a), l(nb), l(nc), l(d), l(ne), l(nf), vas(20), vli(d, 100), vli(a, 100)},
{l(na), l(b), l(nc), l(nd), l(e), l(nf), vas(40), vli(e, 80), vli(b, 80)},
{l(na), l(nb), l(c), l(nd), l(ne), l(f), vas(0), vli(f, 60), vli(c, 60)}

⎫
⎬

⎭

The last solution should be ignored because its possibility is equal to zero.

Experimental Results. In order to evaluate the usability of our approach we ran a
series of tests3 with clingo [18] on an Intel Pentium with 2 GHz. The tests were per-
formed on randomly generated instances with two parameters: the number of rules nbr
and the number of atoms nba. The average running times over 1000 instances for a
pair (nbr,nba) were (500,250) in 0.34s, (1000,500) in 0.97s, (5000,2500) in 15.84s and
(10000,5000) in 58.03s. For comparison, a normal ASP (10000,5000) instance is solved
in 0.280s on average. This suggests that finding possibilistic ι-answer sets can be per-
formed on instances of acceptable size.

2 The statement 1{a1, ..., an}1 stands for ”exactly one atom in {a1, ..., an} is true”.
3 The script used is available at http://www.informatik.uni-freiburg.
de/ hue/translate.tar.gz

http://www.informatik.uni-freiburg.de/~hue/translate.tar.gz
http://www.informatik.uni-freiburg.de/~hue/translate.tar.gz
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1{l(a), l(na)}1 1{l(b), l(nb)}1 1{l(c), l(nc)}1 1{l(d), l(nd)}1
1{l(e), l(ne)}1 1{l(f), l(nf)}1

negvli(L,N) ← vlip(L,N), vlip(L,O), N < O. vli(L,N) ← vlip(L,N), not negvli(L,N).
vlip(a,N) ← l(a), l(nb), N <= 100. vlip(b,N) ← l(b), l(nc), N <= 80.
vlip(c,N) ← l(c), l(na), N <= 60. vlip(d,N) ← l(d), vlip(a,N), N <= 100.
vlip(e,N) ← l(e), vlip(b,N), N <= 100. vlip(f,N) ← l(f), vlip(c,N), N <= 100.
negvas(N) ← vasp(N), vasp(O), N > O. vas(N) ← vasp(N), not negvas(N).

vasp(0) ← l(na), l(nb). vasp(20) ← l(nb), l(nc). vasp(40) ← l(nc), l(na).
vasp(0) ← l(nd), l(a). vasp(0) ← l(ne), l(b). vasp(0) ← l(nf), l(c).
sup(a) ← suprule(a, r0). suprule(a, r0) ← l(nb). neg(a) ← negrule(a, r0).
negrule(a, r0) ← l(c), l(na). l(a) ← sup(a), not neg(a). l(na) ← not sup(a).

l(na) ← neg(a).

Fig. 1. ASP translation of Example 6

6 Conclusion

In this paper we considered an extension of ASP that involves possibilistic rules. Such
possibilistic logic programs allows for concisely expressing degrees of possibility and
giving a rank-ordering of the program’s rules. While the concept of possibilistic logic
programs has been considered before, previous semantics of the resulting possibilistic
answer sets are in our opinion contrary to the intuition behind possibilistic logic and
lack several expected properties.

We have here provided a new semantics for possibilistic programs based on the exist-
ing concept of ι-answer sets. Our semantics extends the original definition by Nicolas
et al. [10], overcoming its shortcomings and providing a reasonable concept of pos-
sibilistic solution that is not limited to the classic stable models of a logic program.
Moreover, our definition handles inconsistencies and integrity constraints much more
gracefully than alternative suggestions put forward by Bauters et al. [9]. The new se-
mantics is in line with and respects the original philosophy of possibilistic logic in the
sense of rank-ordering rules. This is in contrast to Bauters et al. [9] who require com-
putations on necessity values exceeding a pure rank-ordering.

Our definition of possibilistic answer sets allows for computing them using existing
answer set tools by transforming possibilistic logic programs into classic logic pro-
grams. Thus, possibilistic rules can be easily applied in existing application scenarios
based on modeling only without requiring new tools.
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170 J. Hué, M. Westphal, and S. Wölfl

References

1. Lifschitz, V.: Thirteen definitions of a stable model. In: Blass, A., Dershowitz, N., Reisig, W.
(eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 488–503. Springer, Heidelberg
(2010)

2. Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artif. Intell. 109(1-
2), 297–356 (1999)

3. Bacchus, F., Grove, A.J., Halpern, J.Y., Koller, D.: From statistical knowledge bases to de-
grees of belief. Artificial Intelligence 87(1-2), 75–143 (1996)

4. Thimm, M., Kern-Isberner, G.: On probabilistic inference in relational conditional logics.
Logic Journal of the IGPL 20(5), 872–908 (2012)

5. Poole, D.: Logic programming, abduction and probability. In: Proceedings of the Interna-
tional Conference on Fifth Generation Computer Systems (FCGS), pp. 530–538 (1992)

6. Lukasiewicz, T.: Probabilistic logic programming. In: ECAI, pp. 388–392 (1998)
7. Baral, C., Gelfond, M., Rushton, J.N.: Probabilistic reasoning with answer sets. Theory and

Practice of Logic Programming 9(1), 57–144 (2009)
8. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Handbook of Logic in Artificial Intel-

ligence and Logic Programming, vol. 3, pp. 439–513 (1994)
9. Bauters, K., Schockaert, S., De Cock, M., Vermeir, D.: Possibilistic answer set programming

revisited. In: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence
(UAI). AUAI Press (2010)
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