
Computing Perfect Heuristics in Polynomial Time:
On Bisimulation and Merge-and-Shrink Abstraction in Optimal Planning

Raz Nissim
Ben-Gurion University

Beer-Sheva, Israel
raznis@cs.bgu.ac.il

Jörg Hoffmann
INRIA

Nancy, France
joerg.hoffmann@inria.fr

Malte Helmert
University of Freiburg

Freiburg, Germany
helmert@informatik.uni-freiburg.de

Abstract
A∗ with admissible heuristics is a very successful approach
to optimal planning. But how to derive such heuristics auto-
matically? Merge-and-shrink abstraction (M&S) is a general
approach to heuristic design whose key advantage is its capa-
bility to make very fine-grained choices in defining abstrac-
tions. However, little is known about how to actually make
these choices. We address this via the well-known notion of
bisimulation. When aggregating only bisimilar states, M&S
yields a perfect heuristic. Alas, bisimulations are exponen-
tially large even in trivial domains. We show how to apply la-
bel reduction – not distinguishing between certain groups of
operators – without incurring any information loss, while po-
tentially reducing bisimulation size exponentially. In several
benchmark domains, the resulting algorithm computes per-
fect heuristics in polynomial time. Empirically, we show that
approximating variants of this algorithm improve the state of
the art in M&S heuristics. In particular, a hybrid of two such
variants is competitive with the leading heuristic LM-cut.

Introduction
Many optimal planning systems are based on state-space
search with A∗ and admissible heuristics. The research
question is how to derive heuristics automatically. Merge-
and-shrink abstraction (Dräger et al. 2006; Helmert et al.
2007), in short M&S, uses solution distance in smaller, ab-
stract state spaces to yield consistent, admissible heuristics.

The abstract state space is built in an incremental fash-
ion, starting with a set of atomic abstractions corresponding
to individual variables, then iteratively merging two abstrac-
tions – replacing them with their synchronized product – and
shrinking them – aggregating pairs of states into one. Thus,
despite the exponential size of the state space, M&S allows
to select individual pairs of states to aggregate. This freedom
in abstraction design comes with significant advantages.
M&S dominates most other known frameworks for comput-
ing admissible planning heuristics: for any given state, it
can with polynomial overhead compute a larger lower bound
(Helmert and Domshlak 2009). Further, in difference to
most other known frameworks, M&S is able to compute, in
polynomial time, perfect heuristics for some benchmark do-
mains where optimal planning is easy (Helmert et al. 2007;
Helmert and Mattmüller 2008).

M&S currently does not live up to its promises: (A) in
the international planning competition (IPC) benchmarks, it

gives worse empirical performance than the currently lead-
ing heuristics, in particular LM-cut (Helmert and Domshlak
2009); (B) it does not deliver perfect heuristics in the bench-
marks where it could. The theoretical power of M&S hinges
on the ability to take perfect decisions as to which pairs of
states to aggregate. Little is known about how to take such
decisions in practice. We herein address this issue, largely
solving (B), and making headway towards solving (A).

Our investigation is based on the notion of bisimulation,
a well-known criterion under which an abstract state space
“exhibits the same observable behavior” as the original state
space (Milner 1990). Two states s, t are bisimilar if: (1)
they agree on whether or not the goal is true; and (2) every
transition label, i.e., every planning operator, leads into the
same abstract state from both s and t. If we aggregate only
bisimilar states during M&S, then the heuristic is guaran-
teed to be perfect. A coarsest bisimulation can be efficiently
constructed, and thus this offers a practical strategy for se-
lecting the states to aggregate. Indeed, this was observed
already by Dräger et al. (2006) (in a model checking con-
text). However, bisimulations are exponentially big even in
trivial examples, including the aforementioned benchmarks
(B). Our key observation is that, for the purpose of com-
puting a heuristic, we can relax bisimulation significantly
without losing any information. Namely, we do not need to
distinguish the transition labels. Such a fully label-reduced
bisimulation still preserves solution distance, while often be-
ing exponentially smaller.

Unfortunately, while full label reduction does not affect
solution distances per se, its application within the M&S
framework is problematic. The merging step, in order to
synchronize transitions, needs to know which ones share the
same label, i.e., correspond to the same operator. We tackle
this by using partial label reductions, ignoring the difference
between two labels only if they are equivalent for “the rest”
of the M&S construction. We thus obtain, again, a strategy
that guarantees to deliver a perfect heuristic. This method
largely solves challenge (B), in that its runtime is polynomi-
ally bounded in most of the relevant domains.

Even label-reduced bisimulations are often prohibitively
big, thus for practicality one needs a strategy to approximate
further if required. We experiment with a variety of such
strategies, and examine their performance empirically. Each
single strategy still is inferior to LM-cut. However, the dif-

ferent strategies exhibit complementary strengths, i.e., they
work well in different domains. We thus experiment with
simple hybrid planners running two of the stragies sequen-
tially. We find that, addressing challenge (A), one of these
hybrids is competitive with LM-cut in the IPC benchmarks,
and even outperforms it when ignoring the Miconic domain.

For space reasons, we omit many details and only outline
proofs. Full details are available from the authors on request.

Background
We consider optimal sequential planning with finite-domain
variables. A planning task is a 4-tuple (V,O, s0, s?). V is a
finite set of variables, where each v ∈ V is associated with a
finite domainDv . A partial state over V is a function s on a
subset Vs of V , so that s(v) ∈ Dv for all v ∈ Vs; s is a state
if Vs = V . The initial state s0 is a state. The goal s? is a
partial state. O is a finite set of operators, each being a pair
(pre, eff) of partial states, called precondition and effect.

The semantics of planning tasks are, as usual, defined via
their state spaces, which are (labeled) transition systems.
Such a system is a 5-tuple Θ = (S,L, T, s0, S?) where S
is a finite set of states, L is a finite set of transition labels,
T ⊆ S × L × S is a set of labeled transitions, s0 ∈ S is
the start state, and S? ⊆ S is the set of solution states. In
the state space of a planning task, S is the set of all states;
s0 is identical with the initial state of the task; s ∈ S? if
s? ⊆ s; the transition labels L are the operators O; and
(s, (pre, eff), s′) ∈ T if s complies with pre, s′(v) = eff(v)
for v ∈ Veff, and s′(v) = s(v) for v ∈ V \ Veff.

A plan is a path from s0 to any s? ∈ S?. The plan is
optimal iff its length is equal to sd(s0), where sd : S → N0

assigns to s the length of a shortest path from s to any s? ∈
S?, or sd(s) =∞ if there is no such path.

A heuristic is a function h : S → N0 ∪{∞}. The heuris-
tic is admissible iff, for every s ∈ S, h(s) ≤ sd(s); it is
consistent iff, for every (s, l, s′) ∈ T , h(s) ≤ h(s′) + 1.
As is well known, A∗ with an admissible heuristic returns
an optimal solution, and does not need to re-open any nodes
if the heuristic is consistent. We will also consider perfect
heuristics, that coincide with sd . If we know that h is per-
fect, then we can extract an optimal plan without any search.

How to automatically compute a heuristic, given a plan-
ning task as input? Our approach is based on designing an
abstraction. This is a function α mapping S to a set of ab-
stract states Sα. The abstract state space Θα is defined
as (Sα, L, Tα, sα0 , S

α
?), where Tα := {(α(s), l, α(s′)) |

(s, l, s′) ∈ T}, sα0 := α(s0), and Sα? := {α(s?) | s? ∈ S?}.
The abstraction heuristic hα maps each s ∈ S to the solu-
tion distance of α(s) in Θα; hα is admissible and consistent.
We will sometimes consider the induced equivalence rela-
tion ∼α, defined by setting s ∼α t iff α(s) = α(t).

AAA

BAA ARA BRA BBA ABA ABR BBR

BBB

ABBAAR BAR BAB AAB ARB BRB

s

t

Figure 1: An abstraction of (simplified) Gripper.

To illustrate abstractions, Figure 1 gives an example. In
the Gripper benchmark, one needs to transport n objects
from a room A into a room B, with a robot R that can
carry two objects at a time. We show here the state space for
n = 2, in the simplified situation where the robot can carry
only a single object. The planning task has 4 variables, R
with DR = {A,B}, F with DF = {0, 1} (hand free?), Oi
with DOi

= {A,B,R} for i = 1, 2. States in Figure 1 are
shown as triples giving the value of R, O1, and O2 in this
order (omitting F , whose value is implied). For example, in
the state marked “s”, the robot is at A, O1 is at B, O2 is at
A (and F = 1). The abstraction α is indicated by the (blue)
dashed boxes. This abstraction aggregates states – assigns
them to the same abstract state – iff they agree on the status
of the robot and on the number of objects in each room. Thus
the abstraction does not distinguish the upper solution path
(transporting O1 first) from the lower one (transporting O2

first). This does not affect solution length, so hα is perfect.
The same applies for arbitrary n, yielding perfect heuristics
and polynomial-sized (measured in |Sα|) abstractions.

How to choose a good α in general? Pattern databases
(PDBs) (Edelkamp 2001) simplify this question by limiting
α to be a projection. Given V ⊆ V , the projection πV onto
V is defined by setting πV (s) to be the restriction of s onto
V . πV can be computed very efficiently, and the solution
distances in ΘπV can be pre-computed and stored in a table
(the PDB) prior to search.

The downside of PDBs is their lack of flexibility in ab-
straction design. To be computationally efficient, any PDB
can consider only a small subset of variables. Thus, even in
trivial domains, PDBs cannot compactly represent the per-
fect heuristic (Helmert et al. 2007). For example, in Grip-
per, any polynomial-sized PDB considers only a logarithmic
number of objects. The position of the other objects will be
abstracted away, thus under-estimating sd to an arbitrarily
large extent. For example, in Figure 1, if V = {R,O1},
then s and its right neighbor are aggregated, shortening the
upper solution path. Summing over “additive PDBs” doesn’t
help, since at most one PDB considers the robot position.

Inspired by work in the context of model checking au-
tomata networks (Dräger et al. 2006), Helmert et al. (2007)
propose M&S abstraction as an alternative allowing more
fine-grained abstraction design, selecting individual pairs of
states to aggregate. To make such selection feasible in expo-
nentially large state spaces, the approach builds the abstrac-
tion incrementally, iterating between merging and shrinking
steps. In detail, an abstraction α is a M&S abstraction over
V ⊆ V if it can be constructed using these rules:

(i) For v ∈ V , π{v} is an M&S abstraction over {v}.
(ii) If β is an M&S abstraction over V and γ is a function

on Sβ , then γ ◦ β is an M&S abstraction over V .
(iii) If α1 and α2 are M&S abstractions over disjoint sets

V1 and V2, then α1 ⊗ α2 is an M&S abstraction over
V1 ∪ V2.

It is important to keep these rules in mind since we will
be referring back to them throughout the paper. Rule (i)
allows to start from atomic projections, i.e., projections
π{v} onto a single variable, also written πv in the rest of

this paper. Rule (ii), the shrinking step, allows to itera-
tively aggregate an arbitrary number of state pairs, in ab-
straction β. Formally, this simply means to apply an ad-
ditional abstraction γ to the image of β. In rule (iii), the
merging step, the merged abstraction α1⊗α2 is defined by
(α1 ⊗ α2)(s) := (α1(s), α2(s)). It is easy to see that this
definition generalizes PDBs:1

Proposition 1 (Helmert et al., 2007) Let Θ be the state
space of a planning task with variables V , and let α be an
M&S abstraction over V ⊆ V constructed using only rules
(i) and (iii). Then Θα is isomorphic to ΘπV .

Moreover, as Helmert et al. (2007) show, M&S strictly
generalizes PDBs in that it can compactly represent the per-
fect heuristic in domains where PDBs cannot. For exam-
ple, in Gripper we obtain the perfect heuristic by aggregating
states as exemplified in Figure 1.

Proposition 1 holds even if we drop the constraint V1 ∩
V2 = ∅ in rule (iii). That constraint plays an important role
in the computation of hα. Note that, a priori, this issue is
separate from the design of α. We follow Helmert et al.
(2007) in that, while designing α, we maintain also the ab-
stract state space Θα (and are thus able to compute hα). In
a little more detail, we maintain a transition system Θα, in
a way so that Θα is identical with the (mathematically de-
fined) abstract state space Θα of α; note the use of α as
a subscript respectively superscript to distinguish these two.
The correct maintenance of Θα is trivial for rules (i) and (ii),
but is a bit tricky for rule (iii). We need to compute the ab-
stract state space Θα1⊗α2 of α1⊗α2, based on the transition
systems Θα1

and Θα2
computed for α1 and α2 beforehand.

As an induction hypothesis, assume that Θα1
= Θα1 and

Θα2
= Θα2 . We compute Θα1⊗α2 as the synchronized

product Θα1 ⊗ Θα2 . This is a standard operation, its state
space being Sα1 × Sα2 , with a transition from (s1, s2) to
(s′1, s

′
2) via label l iff (s1, l, s

′
1) ∈ Tα1 and (s2, l, s

′
2) ∈ Tα2 .

For this to be correct, i.e., to have Θα1 ⊗ Θα2 = Θα1⊗α2 ,
the constraint V1 ∩ V2 = ∅ is required. Namely, this con-
straint ensures that α1 and α2 are orthogonal in the sense of
Helmert et al. (2007), meaning basically that there exists no
variable on whose value both abstractions depend. Then:

Theorem 2 (Helmert et al., 2007) Let Θ be the state space
of a planning task, and let α1 and α2 be orthogonal abstrac-
tions of Θ. Then Θα1 ⊗Θα2 = Θα1⊗α2 .

In practice, we need a merging strategy deciding which
abstractions to merge in (iii), and a shrinking strategy de-
ciding which (and how many) states to aggregate in (ii).
Helmert et al. do not investigate this in detail. Our main
issue herein is with their shrinking strategy. This aggre-
gates states until a size limit N – an input parameter – is
reached. The strategy is based exclusively on the initial state
and goal distances in the abstract state space at hand; it is f -
preserving in that (if possible) it aggregates states only if
they agree on these distances. This strategy preserves dis-
tances locally – in the abstraction at hand – but does not take
into account at all the global impact of aggregating states.

1Helmert et al. do not state Proposition 1 (or Theorem 2 below)
in this form, but they follow trivially from their discussion.

v1, . . . , vn := an ordering of V
α := πv1 , Θα := Θπv1 /* rule (i) */
σ1 := function projecting operators onto {v2, . . . , vn}
apply σ1 to transition labels in Θα

for i := 2, . . . , n do
α′ := πvi , Θα′ := Θπvi /* rule (i) */
apply σi−1 to transition labels in Θα′

α := α⊗ α′, Θα := Θα ⊗Θα′ /* rule (iii) */
σi := function projecting operators onto {vi+1, . . . , vn}
apply σi to transition labels in Θα

∼:= coarsest bisimulation for Θα

aggregate all states s, t in α and Θα where s ∼ t /* rule (ii) */
endfor
return α and Θα

Figure 2: Overview of M&S-bop algorithm.

For example, in a transportation domain, if we consider only
the position of a truck, then any states s, t equally distant
from the truck’s initial and target position can be aggregated:
locally, the difference is irrelevant. Globally, however, there
are transportable objects to which the difference in truck po-
sitions does matter, and thus aggregating s and t results in
information loss. Therefore, the heuristic computed is not
perfect although, theoretically, it could be.

M&S-bop Overview
Figure 2 outlines our algorithm computing perfect heuris-
tics, M&S-bop (M&S with bisimulation and operator prun-
ing).

The variable ordering v1, . . . , vn will be defined by the
merging strategy (a simple heuristic, cf. Section). Note that
the merging strategy is linear, i.e., α′ is always atomic in
the application of rule (iii). Iterating over v1, . . . , vn, the
algorithm maintains an abstraction α, along with the transi-
tion system Θα, as described earlier. In this way, M&S-bop
is a straightforward instance of the M&S framework. Its
distinguishing features are (a) the label reduction functions
σi that remove operator preconditions/effects pertaining to
variables indexed≤ i, and (b) coarsest bisimulation over the
label-reduced abstract state spaces. (b) defines the shrinking
strategy, which is influenced by (a) because reducing labels
changes the bisimulation. Reducing labels may also change
the outcome of the synchronized product (rule (iii)), there-
fore (a) endangers correctness of Θα relative to Θα.

In the following three sections, we fill in the formal details
on (a) and (b), proving (in particular) that the abstraction
heuristic hα of α as returned by M&S-bop is perfect, and
can be extracted from the returned transition system Θα. We
begin by defining bisimulation, and pointing out some basic
facts about its behavior in the M&S framework. We then for-
mally define label reduction and the conditions under which
it preserves the correctness of Θα. We finally point out that
the two techniques can be combined fruitfully.

Bisimulation
Bisimulation is a well-known criterion under which abstrac-
tion does not significantly change the system behavior. Let
Θ = (S,L, T, s0, S?) be a transition system. An equiva-
lence relation ∼ on S is a bisimulation for Θ if: (1) s ∼ t
implies that either s, t ∈ S? or s, t 6∈ S?; (2) for every pair

of states s, t ∈ S so that s ∼ t, and for every transition label
l ∈ L, if (s, l, s′) ∈ T then there exists t′ s.t. (t, l, t′) ∈ T
and s′ ∼ t′. Intuitively, (1) s and t agree on the status of
the goal, and (2) whatever operator applies to s applies also
to t, leading into equivalent states. An abstraction α is a
bisimulation iff the induced equivalence relation ∼α is.

We first consider a well-known criterion under which ab-
straction does not significantly change the system behavior.
Let Θ = (S,L, T, s0, S?) be a transition system. An equiv-
alence relation ∼ on S is a bisimulation for Θ if: (1) s ∼ t
implies that either s, t ∈ S? or s, t 6∈ S?; (2) for every pair
of states s, t ∈ S so that s ∼ t, and for every transition label
l ∈ L, if (s, l, s′) ∈ T then there exists t′ s.t. (t, l, t′) ∈ T
and s′ ∼ t′. If α is an abstraction, then we say that α is a
bisimulation iff the induced equivalence relation ∼α is.

For a comprehensive treatment of bisimulation, see the
work by Milner (1990). There always exists a unique coars-
est bisimulation, i.e., a bisimulation that contains all other
bisimulations. The coarsest bisimulation can be computed
efficiently, in a bottom-up process starting with a single
equivalence class containing all states, then iteratively sepa-
rating non-bisimilar states. Using this process as a shrinking
strategy preserves solution distance at the local level:

Proposition 3 Let Θ be a transition system, and let α be a
bisimulation for Θ. Then hα is perfect.

This holds because abstract solution paths are real so-
lution paths. Consider some state t, and an abstract solu-
tion for t. Say the abstract solution starts with the transi-
tion (A, l, A′), where A and A′ are abstract states. Since
(A, l, A′) is a transition in Θα, there exist states s ∈ A and
s′ ∈ A′ so that (s, l, s′) is a transition in Θ. By construction,
we have α(t) = A = α(s) and thus s ∼α t. Thus, by bisim-
ulation property (2), we have a transition (t, l, t′) in Θ where
s′ ∼α t′, i.e., α(t′) = α(s′) = A′. In other words, there ex-
ists a transition from t taking us into the desired state subset
A′. Iterating the argument, we can execute all transitions on
the abstract solution for t. The last state t′ reached this way
must be a solution state because of bisimulation property (1)
and the fact that α(t′) is a solution state in Θα.

Note that the argument we just made is much stronger
than what is needed to prove that hα is perfect – we preserve
the actual solutions, not only their length. That is exactly
what we will exploit further below. First, note that Proposi-
tion 3 tells us nothing about what happens if we interleave
bisimulation with merging steps. This works, too:

Corollary 4 Let Θ be the state space of a planning task with
variables V . Let α be an M&S abstraction over V ⊆ V
constructed so that, in any application of rule (ii), γ is a
bisimulation for Θβ . Then α is a bisimulation for ΘπV .

This can be shown by induction over rules (i)-(iii). The
claim is obvious for atomic α. Induction over rule (ii) is
easy by exploiting a transitivity property of bisimulations.
For rule (iii), assume that α1 is a bisimulation for ΘπV1 , and
α2 is a bisimulation for ΘπV2 . Since ΘπV1 and ΘπV2 are or-
thogonal, by Theorem 2 their synchronized product is equal
to ΘπV1

⊗πV2 which is isomorphic with ΘπV1∪V2 . We can ap-
ply α1 and α2 to the states in ΘπV1∪V2 (applying their com-

ponent atomic projections to partial states), and it is easy to
see that the bisimulation property is preserved.2

By Corollary 4 and Proposition 3, if we always stick to
bisimulation during step (ii), then we obtain a perfect heuris-
tic. Alas, in practical examples there rarely exist compact
bisimulations. For example, in Gripper, the perfect abstrac-
tion of Figure 1 is not a bisimulation. If s and t agree on the
number of objects in a room, this does not imply that they
agree on the operators needed to transport them. For exam-
ple, s and t as indicated in Figure 1 require to pick up O2

(s) vs. O1 (t). Thus the transition labels into the equivalent
states (right neighbors in Figure 1) are different, violating
property (2). Indeed, it is easy to see that the size of bisimu-
lations in Gripper is exponential in the number of objects.

Motivated by the size of bisimulations, Dräger et al.
(2006) propose a more approximate shrinking strategy that
we will call the DFP shrinking strategy. When building the
coarsest bisimulation, the strategy keeps separating states
until the size limit N is reached. The latter may happen be-
fore a bisimulation is obtained, in which case we may lose
information. The strategy prefers to separate states close to
the goal, thus attempting to make errors only in more distant
states where the errors will hopefully not be as relevant.

The DFP shrinking strategy is not a bad idea; some of
the strategies we experiment with herein are variants of it.
However, before resorting to approximations, there is a more
fundamental issue we can improve. As noted in the proof
of Proposition 3, bisimulation preserves solution paths ex-
actly. This suits its traditional purpose in model checking.
For computing a perfect heuristic, however, it suffices to pre-
serve solution length. In bisimulation property (2), we can
completely ignore the transition labels. This makes all the
difference in Gripper. States s and t in Figure 1 can reach the
same equivalence classes, but using different labels. Ignor-
ing the latter, s and t are bisimilar. The perfect abstraction
of Figure 1 is such a fully label-reduced bisimulation.

Label Reduction
Unfortunately, full label reduction cannot be applied within
the M&S framework, at least not without significant infor-
mation loss during the merging step. Figure 3 shows the
atomic projections of our running example from Figure 1.
For simplicity, we omit F and show the two variables O1

and O2 in terms of a single generic variable O. Consider the
transition label l = ({R = A,O = A}, {O = R}) picking
up the object in room A. This transitions O from A to R in
ΘπO (right hand side), but does not affectR and hence labels
only a self-loop in ΘπR (left hand side). Hence, in the syn-
chronized system ΘπR ⊗ΘπO , as desired the robot does not
move while loading the object. If we ignore the difference
between l and the label l′ = ({R = A}, {R = B}) moving
R, however, then the synchronized system may apply l and
l′ together, acting as if they were the result of applying the
same operator. Thus we may move and pick-up at the same
time – a spurious transition not present in the original task.

2Dräger et al. (2006) mention a result similar to Corollary 4.
The result is simpler in their context because, there, the overall state
space is defined in terms of the synchronized product operation.

R=A,O=A O=R

R=A,O=R O=A

R=A R=B

R=A,O=A O=R

O=A R=A,O=R

R=B,O=R

R=B,O=B

R=B R=A

R=A R=B

R=B R=A

R=A R=B

R=B R=A

R=A R=B

A R B
O=B

O=R

O

A BR=A R=B

R
R=B,O=B O=R

R=B,O=R O=B

Figure 3: Atomic projections in (simplified) Gripper.

We now derive a way of reducing subsets of labels dur-
ing M&S, so that no spurious transitions are introduced, and
thus the correctness of Θα relative to Θα is preserved. We
remark that a simpler version of the technique, pertaining
only to linear merging strategies, was implemented already
in the initial version of M&S reported by Helmert et al.
(2007); the technique has not yet been described anywhere.

Let Θ = (S,L, T, s0, S?) be a transition system. A la-
bel reduction is a function τ mapping L to a label set
Lτ . We associate τ with the reduced transition system
Θ|τ := (S,Lτ , T |τ , s0, S?) where T |τ := {(s, τ(l), s′) |
(s, l, s′) ∈ T}. Labels l1, l2 ∈ L are equivalent in Θ if, for
every pair of states s, s′ ∈ S, (s, l1, s′) ∈ T if and only if
(s, l2, s′) ∈ T . We say that τ is conservative for Θ if, for
all l1, l2 ∈ L, τ(l1) = τ(l2) only if l1 and l2 are equivalent.
Such label reduction is distributive with the synchronized
product:

Lemma 5 Let L be a set of labels, let Θ1 and Θ2 be transi-
tion systems using L, and let τ be a label reduction on L. If
τ is conservative for Θ2, then Θ1|τ ⊗Θ2|τ = (Θ1⊗Θ2)|τ .

For illustration, consider the labels l = ({R = A,O =
A}, {O = R}) and l′ = ({R = A}, {R = B}) discussed at
the start of this section. These are not equivalent in ΘπO

(Figure 3 right), and if τ(l) = τ(l′) then, as discussed,
ΘπR |τ ⊗ΘπO |τ 6= (ΘπR ⊗ΘπO)|τ in contrast to Lemma 5.

We apply conservative label reduction within M&S by,
when considering an abstraction over variable subset V , ap-
plying a label reduction conservative for the other variables
V \ V . A key issue here is that one cannot “reduce in op-
posite directions”. To illustrate, say Θ1 (variables V) has
the single label l1 and Θ2 (variables V \ V) has the single
label l2 6= l1. Then Θ1 ⊗ Θ2 contains no transitions at all.
However, mapping all labels to some unique symbol r is
conservative for each of Θ1 and Θ2. If we synchronize the
systems after this reduction, we obtain a transition between
every pair of states.

To avoid said difficulties, we apply label reduction up-
wards in a sequential ordering of the variables (given by the
merging strategy). Let V ⊆ V , and let v1, . . . , vn be an or-
dering of V . We say that an M&S abstraction α over V al-
lows v1, . . . , vn if α is constructed so that, in any application
of rule (iii), there exist i, j, k so that V1 = {vi, . . . , vj} and
V2 = {vj+1, . . . , vk}. In other words, the construction of α
corresponds to a tree whose leaves are ordered v1, . . . , vn.

Let σn ◦ · · · ◦ σ1 be a chain of label reductions for Θ. We
denote τ>i := σi ◦ · · · ◦ σ1. We say that σn ◦ · · · ◦ σ1 is
conservative for v1, . . . , vn if, for each 1 ≤ i < n, τ>i
is conservative for each of Θπvi+1 , . . . ,Θπvn . Note that the
last reduction σn is not restricted at all, and may thus be a
full label reduction mapping all labels to the same symbol.

In practice, the label reductions σi we use are those
from M&S-bop (cf. Figure 2), projecting operators onto
{vi+1, . . . , vn}, i.e., removing any preconditions/effects
pertaining to the variables v1, . . . , vi that have already been
merged. This chain of label reductions is conservative:

Proposition 6 Let Θ be the state space of a planning task
with variables V . Let V ⊆ V , and let v1, . . . , vn be an or-
dering of V . Then operator projection is conservative for
v1, . . . , vn, and is maximal among all chained label reduc-
tions with this property.

For the first part of the claim, we need τ>i = σi to be con-
servative – map only equivalent labels (pre, eff), (pre′, eff′)
to the same label – for each of Θπvi+1 , . . . ,Θπvn . This holds
because (*) (pre, eff) and (pre′, eff′) are equivalent in Θπvj

if and only if their projection onto vj is identical. The sec-
ond part of the claim, maximality, holds in that τ>i maps all
equivalent labels to the same label. This follows from the
“only if” direction in (*).

Say that in our running example (omitting F) the vari-
able order is R,O1, O2, . . . , On. Consider again the labels
l = ({R = A,O = A}, {O = R}) and l′ = ({R =
A}, {R = B}). For i = 1, the robot move l′ is projected
onto τ>1(l′) = (∅, ∅), ignoring the robot’s position. How-
ever, τ>1(l) = ({O = A}, {O = R}), so τ>1(l) 6= τ>1(l′)
as desired. On the other hand, for i > 1 and every j ≤ i, all
labels in ΘπOj will be mapped to (∅, ∅) (compare Figure 3
right), so the differences between any “already merged” ob-
jects will effectively be ignored. For i = n, all labels are
mapped to (∅, ∅) so the label reduction is full.

With conservative label reductions, for α that allows
v1, . . . , vn, we can maintain Θα during M&S similarly as
before. Namely, the label-reduced transition system asso-
ciated with α, written Θτ

α, is constructed using these rules:
(i) If α = πvi for a variable vi ∈ V , then Θτ

α := Θπvi if
i 6= 1, and Θτ

α := Θπvi |τ>i if i = 1.
(ii) If α = γ ◦ β where β is an M&S abstraction and γ is a

function on Sβ , then Θτ
α := (Θτ

β)γ .

(iii) If α = α1 ⊗ α2 where α1 (α2) is an M&S abstraction
of Θ over V1 = {vi, . . . , vj} (V2 = {vj+1, . . . , vk}),
then Θτ

α := Θτ
α1
⊗ Θτ

α2
if i 6= 1, and Θτ

α := (Θτ
α1
⊗

Θτ
α2
|τ>j)|σk◦···◦σj+1 if i = 1.

In words, we apply label reduction only if the underlying
variable set V starts at the first variable v1, and we choose
the reduction pertaining to the last variable in V . This con-
struction is correct relative to Θα, in the following sense:

Theorem 7 Let Θ be the state space of a planning task with
variables V . Let V ⊆ V , and let v1, . . . , vn be an ordering
of V . Let σn◦· · ·◦σ1 be a chained label reduction for Θ that
is conservative for v1, . . . , vn, and let α be an M&S abstrac-
tion over V that allows v1, . . . , vn. Then Θτ

α = Θα|τ>n .

Note here that “the correctness of Θα relative to Θα” is
now interpreted in a different way. The transition system Θτ

α
we maintain is no longer equal to the abstract state space Θα,
but instead to the label-reduced version Θα|τ>n of that ab-
stract state space. Since, obviously, the labels are irrelevant
for hα, the heuristic computed is the same.

The proof of Theorem 7 is a bit technical, but essentially
simple. We prove by induction over the construction of α
that, for any intermediate abstraction β over {vi, . . . , vj},
Θτ
β = Θβ if i 6= 1, and Θτ

β = Θβ |τ>j if i = 1. The key
step is induction over rule (iii) when i = 1. Since τ>j is
conservative for each of Θπvj+1 , . . . ,Θπvk , we can easily
conclude that τ>j is conservative for Θτ

α2
. The claim then

follows by applying Lemma 5 and Theorem 2.
Summing up, when during M&S we face an abstraction

over variables v1, . . . , vj , we can project the operators la-
beling the transitions onto remaining variables vj+1, . . . , vn.
We then still obtain the correct (label-reduced) abstract state
space. In the initial implementation of Helmert et al. (2007),
the motivation for doing so was the reduced number of la-
bels – planning tasks often contain many operators, so this
was time- and space-critical. Here, we observe that label
reduction favorably interacts with bisimulation.

Bisimulation and Label Reduction
Label reduction obviously preserves Proposition 3:

Proposition 8 Let Θ be a transition system, τ be a label
reduction, and α a bisimulation for Θ|τ . Then hα is perfect.

Proposition 8 is important because, as shown by our run-
ning example, label reduction may make a big difference:

Proposition 9 There exist families F of transition systems
Θ with associated label reductions τ so that the coarsest
bisimulation for Θ|τ is exponentially smaller than the coars-
est bisimulation for Θ.

Corollary 4 tells us that, if the shrinking strategy sticks
to bisimulation of the original (non label-reduced) abstract
state spaces, then the final outcome will be a bisimulation.
Does a similar result hold if we stick to bisimulation of the
label-reduced abstract state spaces? Unsurprisingly, the an-
swer is “yes”. Given variables v1, . . . , vn and a chained la-
bel reduction σn ◦ · · · ◦ σ1, we say that α is constructed
by label-reduced bisimulation if it is constructed so that,
in any application of rule (ii) where β is over the variables
{vi, . . . , vj}: if i 6= 1 then γ is a bisimulation for Θβ ; if
i = 1 then γ is a bisimulation for Θβ |τ>j . By combining
the proofs of Corollary 4 and Theorem 7, we get:

Theorem 10 Let Θ be the state space of a planning task
with variables V . Let V ⊆ V , and let v1, . . . , vn be an order-
ing of V . Let σn◦· · ·◦σ1 be a chained label reduction for Θ
that is conservative for v1, . . . , vn, and let α be an M&S ab-
straction constructed by label-reduced bisimulation. Then α
is a bisimulation for ΘπV |τ>n .

By Theorem 10 and Proposition 8, if α is constructed by
label-reduced bisimulation, then hα is perfect. With Propo-
sition 6, this hold for α as returned by M&S-bop. By The-
orem 7 we can maintain the suitable abstract state spaces.
In particular, hα can be extracted from M&S-bop’s returned
transition system Θα. We will see next that M&S-bop has
polynomial runtime in quite a number of benchmarks.

Domain-Specific Performance Bounds
We measure the performance of M&S-bop in terms of
bounds on abstraction size, i.e., the number of abstract
states. Runtime is a polynomial function of abstraction size.
We express the bounds as functions of domain parameters
like the number of objects. Polynomial bounds on abstrac-
tion size are possible only in domains with polynomial-time
optimal solution algorithms. Helmert (2006) identifies six
such domains in the IPC benchmarks: Gripper, Movie, PSR,
Schedule, and two variants of Promela. Helmert et al. (2007)
state that suitable merging and shrinking strategies exist for
each of these except PSR, but do not show how to produce
such strategies automatically. We begin with an easy result:

Proposition 11 Let P = {Πn} be the family of Gripper
respectively Ext-Movie planning tasks, where n is the num-
ber of objects respectively snacks. Then, for any merging
strategy, abstraction size for M&S-bop in P is bounded by a
cubic respectively linear function in n.

Ext-Movie is an extended version of Movie, allowing to
scale the number of snacks. Both results hold because the
M&S-bop shrinking strategy aggregates states that agree on
the relevant object counts (number of objects in a room,
number of snacks already obtained). It should be noted that
label reduction is really needed here – in both domains, non-
label-reduced bisimulations are exponentially large. The
same holds true for all domains discussed below.

We next consider scheduling-like domains, where each
task consists of some machines used to change the features
f(o) of processable objects o. The relevant property is that,
for o 6= o′, f(o) and f(o′) are mutually independent, i.e.,
not affected by any common operator – processing an object
may affect the status of the machines but does not have im-
mediate consequences for any other object. It is easy to see
that the STRIPS variant Schedule-Strips of IPC’00 Schedule
is a scheduling-like domain. We thus have:

Proposition 12 Let P = {Πn} be the family of Schedule-
Strips planning tasks, where n is the number of processable
objects. There exists a merging strategy so that abstraction
size for M&S-bop in P is bounded by a polynomial in n.

For Promela, this investigation is difficult because M&S-
bop depends directly on task syntax, and the IPC’04 Promela
domains are syntactically very complicated (compiled from
Promela into an expressive PDDL dialect). For a straightfor-
ward direct encoding of one of the domains (Dining Philoso-
phers), we found that M&S-bop exhibits exponential behav-
ior. However, a variant that we tentatively named greedy
bisimulation gives a polynomial bound. Greedy bisimula-
tion demands bisimulation property (2) only for transitions
(s, l, s′) where sd(s′) ≤ sd(s). Under certain additional
conditions on the task – which hold in Dining Philosophers
– greedy bisimulation results in a perfect heuristic.

Of course, M&S-bop is not omnipotent. For example, say
we extend Gripper by scaling the number of robot hands.
Then, for any merging strategy, there exists a shrinking strat-
egy so that abstraction size is polynomially bounded. How-
ever, M&S-bop does not have such a bound. Robot hands
H appear as object-variable values (“O = H”) in the effect

of pick-up operators. So, unless all object variables were al-
ready merged, operator projection doesn’t remove these dis-
tinctions, and states using different hands are not bisimilar.

Experiments
In most benchmark domains, coarsest bisimulations are still
large even under operator projection. We thus designed a
family of (mostly) more approximate shrinking strategies.
The family is characterized by 3 parameters: (1) overall
scheme, (2) bisimulation variant, (3) label reduction on/off.
For (1), the options are DFP shrinking strategy with ab-
straction size limit N vs. coarsest bisimulation without size
limit. The former will be indicated by “DFP” in the strat-
egy’s name, the latter will be indicated by “M&S-”. For (2),
the options are bisimulation vs. greedy bisimulation. The
strategy name is extended with “b” respectively “g”. In
(3), we do vs. do not use operator projection. If we do,
“op” is attached to the name. In the DFP-g options, we
use greedy bisimulation only if bisimulation would break the
size limit. Our merging strategy is linear, and follows Fast-
Downward’s “level heuristic”. This orders variables “closest
to the root of the causal graph” up front, so that the most in-
fluential variables are projected away earlier on.

We experiment with: the previous M&S heuristic HHH
(Helmert et al. 2007); LM-cut (Helmert and Domshlak
2009), the currently leading heuristic for optimal planning;
and structural patterns (SP) (Katz and Domshlak 2009), a
competitive heuristic related to ours in that it is based on (im-
plicit) abstract state spaces. Our implementation is on top of
Fast-Downward, with the same A∗ implementation for all
heuristics. We ran all IPC benchmarks supported by LM-cut
and HHH. The experiments were performed on dual-CPU
Opteron 2384 machines, running eight experiments simul-
taneously in order to fully utilize the available (eight-core)
machines. Each planner instance ran on a single core with a
time limit of 30 minutes and a memory limit of 2 GB.

Different shrinking strategies sometimes result in comple-
mentary strengths (better performance in different domains).
Thus we experimented also with all hybrid planners running
any two of these strategies, sequentially with a 15 minute
limit for each. The best, in terms of total coverage, of these
2-option combinations runs M&S-gop, and DFP-gop with
N=200K. This is simply called “Hybrid” in what follows.

Table 1 gives the coverage data. Consider first the “no
bound on N” columns on the right hand side. Comparing
M&S-b with M&S-bop, we see that operator projection im-
proves performance significantly. Recall that the heuristic in
both cases is guaranteed to be perfect, so no actual search
is needed in the 192 tasks where M&S-bop succeeds. The
effect of using greedy bisimulation (which in general for-
feits this guarantee) is dramatic. Note in particular that the
number of instances where the abstraction can be built com-
pletely – without any size bound – goes up to 802. Interest-
ingly, the effect of the parameter changes is reversed when
using DFP: there, operator projection has a much larger im-
pact on performance than greedy bisimulation.

DFP-bop dominates DFP-b (solves at least as many tasks)
in 65 of the 66 combinations of domain and N value. DFP-
gop dominates HHH in the total, and in 50 of these com-

binations; Hybrid dominates HHH in 64 combinations. SP
is more competitive, but is inferior in the total to Hybrid as
well as to DFP-bop and DFP-gop with N = 10K. LM-
cut clearly dominates the total, but this is largely due to
Miconic-STRIPS, where LM-cut delivers an exceptionally
high-quality heuristic. Disregarding this domain, Hybrid
solves 1 more task than LM-cut. In 11 of the 22 domains,
Hybrid is one of the top performers, and in 4 more domains,
only one task separates it from the top performer.

Coverage is a function of the trade-off between the quality
of a heuristic, and the effort needed for computing it. Due to
the multitude of domains and algorithms tested, it is beyond
the scope of this paper to give detailed data. We provide
a summary using Richter and Helmert (2009)’s expansions
score (E) and total-runtime score (T). Both range between
0 and 100, for each individual instance. E = 100 if ≤ 100
expansions were made, E = 0 if ≥ 1, 000, 000 expansions
were made. In between, E interpolates logarithmically, so
that an additive difference of 7.53 in scores corresponds to
a factor 2. Similarly, T = 100 for runtimes ≤ 1 second,
T = 0 for time-outs, and doubling the runtime decreases the
score by about 9.25. The advantage of these scores is that
they are absolute, i.e., there is no need to restrict the set of
instances considered to those solved by all planners.3

Table 2 considers 7 pairs of heuristicsX,Y . The 3 pairs in
the left part illustrate the differences between the shrinking
strategies proposed herein. We do not include M&S-b and
M&S-bop because their expansions behavior is not interest-
ing: they either have perfect expansions, or fail. Comparing
X = DFP-bop to Y = DFP-b, we clearly see the advantage
of operator projection. E(Y)−E(X) is negative for 20 of 22
domains, meaning thatX has fewer expansions. The picture
is not quite as clear for runtime because DFP-bop sometimes
generates more overhead (taking more time to reach the size
limit N). Comparing X = DFP-bop to Y = DFP-gop, we
clearly see that the performance difference is very small. By
contrast, X = DFP-bop vs. Y = M&S-gop exhibits a huge
variance, showing their complementary strengths. This re-
flects the fact that these two strategies are quite different.
M&S-gop enforces bisimulation only on “sd(s′) ≤ sd(s)”
transitions, but on all of those; DFP-variants enforce bisim-
ulation everywhere but drop it completely if N is exceeded.
The former has the edge in heuristic quality (E(Y)−E(X)
is negative for 18 domains), the latter is better in total run-
time since building the abstraction generates less overhead
(e.g., consider the pipesworld-notankage domain).

The middle and right parts of Table 2 show the competi-
tion with HHH respectively LM-cut. DFP-gop clearly beats
HHH in expansions, and it largely keeps this advantage in
runtime. M&S-gop most often produces worse heuristics
than HHH, but with less overhead and thus better runtime.
As for LM-cut, without any doubt this remains the most in-
formative heuristic here – only in a few domains does DFP-

3Experimenting with such summaries, we found that they often
misrepresented the results. For example, on instances solved by
both, M&S-gop beats LM-cut even in domains where LM-cut ac-
tually scales better – but only because M&S-gop’s cheap heuristic
solves the small tasks very quickly, timing out on larger ones.

Domain Hybrid LM-cut SP
N=10K N=100K N=200K No bound onN

DFP-b DFP-bop DFP-gop HHH DFP-b DFP-bop DFP-gop HHH DFP-b DFP-bop DFP-gop HHH M&S-b M&S-bop M&S-gop
airport 22 28 21 23 23 23 19 15 15 15 13 11 11 11 12 1 1 22
blocks 21 28 21 21 21 21 18 18 18 18 19 18 18 18 19 6 6 21
depots 7 7 7 7 7 7 7 7 7 7 3 5 6 6 3 1 1 7
driverlog 13 13 13 12 13 13 12 12 12 13 13 12 12 13 14 4 5 12
freecell 16 15 16 15 16 16 15 4 6 6 9 4 3 3 6 3 3 16
grid 3 2 1 1 2 2 2 1 3 3 2 0 3 3 0 0 0 2
gripper 20 7 7 7 11 11 7 7 20 20 7 7 20 20 7 6 20 7
logistics00 20 20 22 20 20 20 16 20 20 20 21 20 20 20 22 10 10 16
logistics98 5 6 6 4 4 4 5 5 5 5 5 5 5 5 5 2 1 4
miconic 67 141 53 55 56 56 55 55 65 65 55 55 67 67 56 40 56 50
mprime 23 22 23 18 19 19 21 8 12 12 14 4 9 9 9 1 1 23
mystery 15 16 15 13 13 13 14 7 8 8 11 6 6 6 7 2 3 15
openstacks 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
pathways 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
pipesworld-notank 15 17 14 15 17 17 9 9 9 9 2 6 6 6 0 2 2 15
pipesworld-tank 16 11 10 13 14 14 13 7 8 8 7 4 7 7 5 2 2 16
psr 50 49 49 49 49 49 50 49 49 49 50 49 49 50 50 43 45 50
rovers 8 7 6 6 7 7 7 7 8 8 7 6 8 8 7 4 4 6
satellite 7 7 6 6 6 6 6 6 7 7 6 6 7 7 6 4 6 6
tpp 7 6 6 6 6 6 6 6 7 7 6 6 7 7 6 5 5 6
trucks 7 10 7 6 7 7 6 5 7 7 6 5 7 7 6 4 4 6
zenotravel 11 13 11 9 11 11 11 9 12 12 11 8 11 11 11 5 6 9
Total 364 437 325 317 333 333 310 268 309 310 278 248 293 295 262 156 192 320
w/o miconic 297 296 272 262 277 277 255 213 244 245 223 193 226 228 206 116 136 270
Total M&S built 621 736 735 699 368 518 518 493 321 461 458 441 156 192 802

Table 1: Comparison of solved tasks over 22 IPC benchmark domains. Best results are highlighted in bold. “Total M&S built”:
total number of tasks for which computing the M&S abstraction did not exceed the available time/memory.

X = DFP-bop X = HHH X = LM-cut
Y = DFP-b Y = DFP-gop Y = M&S-gop Y = DFP-gop Y = M&S-gop Y = DFP-gop Y = M&S-gop

D E T D E T D E T D E T D E T D E T D E T

blocks 3.7 -1.7 driverlog 1.9 1.2 mystery 9.2 33.6 gripper 40.6 25.7 pipesnota 10.2 48.2 gripper 41.9 30.2 freecell 0.5 33.6
mystery 0.4 5.2 mystery 1.2 -0.2 blocks 7.9 5.5 satellite 23.7 8.8 blocks 8.6 14.7 openstack 21.9 9.7 gripper -0.7 5.3
log98 -0.6 0.1 psr 0.8 0.2 depots 1.6 10.4 pipesnota 21.7 28.1 mystery 3.5 27.0 pipesnota 8.1 14.6 psr -1.1 4.5
openstack -0.8 -0.4 rovers 0.5 0.7 mprime 1.1 38.2 pathways 13.7 3.9 airport 2.2 21.5 freecell 4.1 5.9 pipesnota -2.1 36.4
log00 -0.9 -0.9 freecell 0.5 0.4 psr -2.0 3.0 pipestank 9.3 21.5 depots 1.6 14.1 log00 3.6 2.7 openstack -6.6 11.5
psr -1.0 0.9 log98 0.4 0.7 freecell -3.1 28.1 airport 8.4 0.0 freecell -0.5 27.0 satellite 2.4 -5.8 blocks -14.0 -10.1
airport -1.0 -0.7 satellite 0.3 -0.5 airport -6.2 22.2 grid 7.3 10.3 pipestank -0.7 43.2 psr 1.6 1.7 tpp -15.3 -4.5
rovers -1.3 -5.4 pipestank 0.3 -0.8 log98 -8.4 -5.6 miconic 6.1 2.0 mprime -1.0 27.7 tpp -2.2 -9.4 pipestank -17.0 3.7
depots -1.6 0.1 pipesnota 0.2 -0.1 driverlog -9.0 4.2 zenotravel 4.9 3.0 gripper -2.0 0.8 pipestank -5.6 -16.3 depots -19.8 14.9
trucks -4.1 -4.9 tpp 0.1 0.5 rovers -9.5 -7.3 trucks 3.4 4.5 grid -3.8 5.8 driverlog -9.3 -1.8 driverlog -20.3 1.2
freecell -4.2 3.7 trucks 0.1 -0.1 pipestank -10.0 21.7 freecell 3.1 -0.6 trucks -6.8 0.1 grid -9.5 9.9 grid -20.6 5.4
tpp -4.4 -1.9 log00 0.1 -0.2 trucks -10.1 -4.5 rovers 1.1 1.9 zenotravel -6.9 -6.4 rovers -13.5 -7.7 mystery -21.5 2.5
zenotravel -6.8 -13.9 zenotravel 0.1 -0.5 grid -11.1 -4.0 blocks 0.2 8.7 miconic -7.2 -3.1 zenotravel -15.6 -1.8 mprime -23.1 9.0
driverlog -6.9 -2.4 airport 0.0 0.7 pipesnota -11.2 19.2 openstack 0.1 1.4 rovers -8.9 -6.2 pathways -15.8 -16.1 rovers -23.5 -15.8
miconic -7.7 -2.2 grid 0.0 0.6 zenotravel -11.6 -9.9 depots -0.3 4.1 pathways -12.4 8.8 depots -21.7 4.8 log00 -24.9 -9.5
pipestank -7.9 -2.3 miconic 0.0 0.1 tpp -12.9 -3.5 tpp -0.4 -0.1 psr -13.0 0.6 blocks -22.4 -16.1 zenotravel -27.4 -11.2
pipesnota -9.4 2.9 gripper 0.0 0.0 miconic -13.4 -5.0 mprime -2.1 -10.6 log98 -13.3 -8.8 mprime -24.2 -29.3 satellite -38.9 -16.5
mprime -10.4 0.2 mprime 0.0 -0.1 log00 -21.1 -12.5 driverlog -4.4 -3.6 tpp -13.4 -4.2 mystery -29.5 -31.3 airport -39.2 -15.3
pathways -11.0 -1.7 openstack 0.0 -0.1 pathways -26.1 4.7 mystery -4.5 -6.9 driverlog -15.4 -0.6 trucks -31.9 -20.6 pathways -41.9 -11.2
grid -11.2 -23.8 pathways 0.0 -0.1 openstack -28.5 1.8 log98 -4.9 -3.4 satellite -17.5 -1.9 airport -33.0 -36.8 trucks -42.1 -25.0
satellite -28.1 -10.5 depots -0.3 0.4 satellite -41.0 -11.2 log00 -6.8 4.2 log00 -28.1 -8.1 log98 -47.5 -24.4 log98 -55.9 -29.8
gripper -37.6 -25.7 blocks -0.5 -0.5 gripper -42.6 -24.9 psr -10.3 2.2 openstack -28.5 2.1 miconic -66.5 -56.8 miconic -80.0 -61.9
Total -6.9 -3.6 Total 0.3 0.1 Total -11.7 4.8 Total 5.0 4.6 Total -7.0 9.3 Total -12.4 -8.4 Total -24.3 -3.8

Table 2: Difference Y − X between per-domain averaged expansions (E) and total-runtime (T) scores (as per Richter and
Helmert, see text), for selected pairs of heuristicsX,Y . Columns ordered by decreasing E(Y)−E(X). N = 10K throughout.

gop manage to beat it. Everywhere else, the question is
whether the faster heuristic calls for M&S (amortizing the
cost for creating the abstraction in the first place) make up
for the larger search space. For DFP-gop, this is the case
only in depots. For M&S-gop, this happens in 11 of the
domains, and partly to a considerable extent (e.g. freecell,
blocks, depots, mprime).

Future Work
Our immediate future work concerns greedy bisimulation.
First results suggest that there are many other interesting
bisimulation variants along these lines, and corresponding
conditions under which they yield perfect heuristics. The
guiding idea is to test conditions on the degree and form of
interactions between the current variable and the remaining
ones, using the outcome to fine-tune the subset of transitions
for which bisimulation property (2) is demanded.

Acknowledgements
Part of this work was performed while Raz Nissim was vis-
iting INRIA, Nancy, France. The work was partially con-
ducted as part of the BARQ project, supported by the French
Agence Nationale de la Recherche (ANR), under Decision
ANR-10-CEXC-003-01. Raz Nissim was supported in part
by the Lynn and William Frankel Center for Computer Sci-
ence.

References
Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. Directed
model checking with distance-preserving abstractions. In Proc.
SPIN 2006, pages 19–34, 2006.
Stefan Edelkamp. Planning with pattern databases. In Proc. ECP
2001, pages 13–24, 2001.
Malte Helmert and Carmel Domshlak. Landmarks, critical paths
and abstractions: What’s the difference anyway? In Proc. ICAPS
2009, pages 162–169, 2009.
Malte Helmert and Robert Mattmüller. Accuracy of admissible
heuristic functions in selected planning domains. In Proc. AAAI
2008, pages 938–943, 2008.
Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flexible ab-
straction heuristics for optimal sequential planning. In Proc. ICAPS
2007, pages 176–183, 2007.
Malte Helmert. Solving Planning Tasks in Theory and Practice.
PhD thesis, University of Freiburg, 2006.
Michael Katz and Carmel Domshlak. Structural-pattern databases.
In Proc. ICAPS 2009, pages 186–193, 2009.
Robin Milner. Operational and algebraic semantics of concurrent
processes. In Handbook of TCS, pages 1201–1242. 1990.
Silvia Richter and Malte Helmert. Preferred operators and deferred
evaluation in satisficing planning. In Proc. ICAPS 2009, pages
273–280, 2009.

