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Abstract. Agents operating in the real world have to deal with a
constantly changing and only partially predictable environment and
are nevertheless expected to choose reasonable actions quickly. This
problem is addressed by a number of action-selection mechanisms.
Behaviour networks as proposed by Maes are one such mechanism,
which is quite popular. In general, it seems not possible to predict
when behaviour networks are well-behaved. However, they perform
quite well in the robotic soccer context. In this paper, we analyse the
reason for this success by identifying conditions that make behaviour
networksgoal converging, i.e., force them to reach the goals regard-
less of the details of the action selection scheme. In terms of STRIPS
domains one could talk ofself-solving planning domains.

1 INTRODUCTION

Agents operating in the real world have to deal with a constantly
changing and only partially predictable environment; and the expec-
tation is that the agents figure out the best suitable actions under tight
time constraints. There exist a number of techniques to address this
so-calledaction-selectionproblem. Optimalpolicies for MDPs [1],
universal plans[16], situated automata[10], dual dynamics[2], and
behaviour networks[12] are some of them. The latter was intended to
address the problems of “brittleness, inflexibility, and slow response”
of classical planning approaches on one hand, and the problem of
“the lack of explicit goals” in reactive approaches on the other hand
[12].

Compared with the other approaches, the latter approach lacks the-
oretical rigour. However, modelling a domain is easy and straight-
forward, which is probably one reason for its popularity. For in-
stance, it has been used in the implementation of an intelligent e-
mail agent[20] and as the underlying mechanism for generating be-
haviour of autonomous characters in interactive story systems[15].
Most notably, behaviour networks have been employed in the simu-
lated robotic soccer teammagmaFreiburg[5] and in the real robotic
soccer (F2000 league) teamCS Freiburg[18; 19]. In both cases, the
teams were highly successful. The simulation teammagmaFreiburg
was runner-up in 1999[5] andCS Freiburgwon theRoboCupworld
championship in 2000 and 2001[18; 19].

Although Maes’ behaviour networks and variations have been
analysed from several perspectives, there are nevertheless many is-
sues that have not been resolved. For example, Dorer[6] describes
some experiments where he used behaviour networks in order to
solveblocks-world planningproblems. As it turns out, for some five-
block problems, the behaviour network goes into an infinite loop and
does not come up with a solution, regardless of the parameter set-
ting. What is even worse is that there is no understanding of when
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a behaviour network is “well behaved,” i.e., when it will necessarily
achieve its goals—provided they are reachable at all.

In the soccer systems mentioned, the agents never ran into infinite
loops or got stuck. Instead, given enough time they were always able
to score a goal against an immobilised opponent. In other words, the
soccer behaviour networks appear to be “well-behaved.” This raises
of course the question under which condition one could guarantee
that.

In general, we are interested to find conditions that guarantee that
the behaviour network will generate a successful sequence of actions
provided there exists one and no exogenous events intervene. Fur-
thermore, we want this guarantee regardless of any parameter setting
and the details of how actions are selected.

Behaviour networks with this property will be calledgoal con-
verging. In terms of STRIPS planning domains one could classify
such domains as “self-solving.” However, are there non-trivial re-
strictions on the topology of behaviour networks that would guaran-
tee this? As it turns out, there exists such a condition, which indeed
holds also of the existing robotic soccer networks.

The rest of the paper is structured as follows. In the next section
we sketch the behaviour network approach. In Section 3, we identify
two conditions for a behaviour network being goal converging. Based
on that, we analyse in Section 4 the networks that have been used in
the Freiburg RoboCup teams and show that they satisfy one of the
conditions identified. Finally, in Section 5, we conclude and give an
outlook.

2 BEHAVIOUR NETWORKS

In the following, we describe the behaviour network formalism.
Since we do not need the full details for our purposes, the description
will be sketchy and informal at some points.

2.1 Specifying behaviour networks

Let P be a set of propositional atoms. Astate is a truth assignment
to all atoms inP (often also represented as the set of true atoms).
Behaviour networksare tuples(P,G,M, Π), where

• G ⊆ P is thegoal specification;
• M is a finite set ofcompetence modulesor actions, where

m ∈ M is a tuple〈pre, eff+, eff−, beh〉 with pre ⊆ P denot-
ing thepreconditions, eff+, eff− ⊆ P denoting the positive and
negative effects, respectively, witheff+ ∩ eff− = ∅ andbehbe-
ing the name of an executablebehaviour, which is started once
the module is selected for execution. If we want to refer to one of
the components of a competence modulem we use the notation
pre(m), eff+(m), etc.

• Π is a set ofglobal parametersused to control the action selec-
tion process.



Depending on the type of behaviour networks, some variations are
possible. For example, in Dorer’s[4] extended behaviour networks,
the state is an assignment of fuzzy values, the goals can have an im-
portance measure and an additional relevance condition. Further, ef-
fects have an expectation value describing how likely it is that the
effect proposition becomes true after executing the competence mod-
ule. All these details will not be important for us, though.

2.2 Activation spreading and action selection

Competence modules are connected in a network so that they can
send and receive “activation energy.” Apositive effect linkconnects a
positive effectp of a competence module to the preconditionp of an-
other competence module. Anegative effect linkconnects a negative
effectp of one competence module to the preconditionp of another
competence module.3 An example of a small behaviour network is
given in Figure 1.

Soccer Goal

Shoot

GetBall

haveNoBall closeToBall

GotoBall

haveNoBall

ballKickable

Figure 1. Example of a behaviour network: Solid arrows denote positive
effect links and dashed arrows denote negative effect links.

In this example, the competence moduleGotoBallhas the precon-
dition haveNoBalland the effectcloseToBallenabling the compe-
tence moduleGetBall. This, in turn, has the negative effect of delet-
ing haveNoBalland the positive effect of makingballKickabletrue.
The latter enables theShootmodule, which then (hopefully) leads to
scoring a goal, the ultimate goal of this behaviour network.

Unsatisfied goals send some activation energy to competence
modules that could make the goals true and, in turn, each activated
module sends some of its activation through its unsatisfied precondi-
tions to modules which can make the precondition true. In the orig-
inal version of behaviour networks, there is also a “forward spread-
ing” of activation energy, i.e., activation energy flows from proposi-
tions true in a situation towards competence modules that have these
propositions as preconditions. However, this forward spreading of
activation does not seem to increase the quality of the action selec-
tion [4; 7] and for this reason this kind of activation is not present
in Dorer’s [4] extended behaviour networks. While positive effect
links are used for spreading activation, negative links are used to in-
hibit the activation of other modules. Modules that have the negative
effect p ∈ eff− are inhibited by modules that havep as a satisfied
precondition.

The process of sending activation energy and inhibitions is iter-
ative and the number of iterations is controlled by the global pa-

3 Although negative self-links are usually not considered, we will draw them
in depictions of behaviour networks in order to describe the actions com-
pletely.

rametersΠ. After the process has ended, the utility of a module is
determined by combining activation values with executability values
(depending on the satisfaction of preconditions), and then the module
with the highest utility value is chosen for execution (ties are broken
arbitrarily).

From the description above it follows that there are only a few
things one can be sure of when using a behaviour network for action
selection. First of all, only executable actions are chosen. Second,
if an action selection scheme is employed that does not use forward
activation spreading, for instance Dorer’s[4] scheme, then it follows
that if an action is chosen, it “contributes” to one of the goals, since
the competence module can receive activation only from the goal
through a chain of unsatisfied preconditions.

2.3 Ideal abstract behaviour networks

If we want to guarantee properties of a network regardless of the de-
tails of the action selection scheme and the parameter settings, we
have to make a number of simplifying assumptions. We will assume
that the state is always correctly observable (with Boolean state vari-
ables), that the competence modules describe all relevant effects cor-
rectly, that the execution of the behaviour of a competence module is
always successful, and that no exogenous event will intervene. Based
on these assumptions, we define an abstract version of behaviour net-
works, which from a formal point of view are identical to STRIPS
domain descriptions.

An ideal, abstract behaviour network is a tuple B =
(P,G,M), whereP,G andM are defined as in Section 2.1. In
the stateS ⊆ P, the network can choose any competence module
m for execution such that the preconditionspre(m) are satisfied in
S, i.e., pre(m) ⊆ S, and not all positive effects are satisfied, i.e.,
eff+(m)−S 6= ∅. Whenm is executed in stateS, the resulting state
Result(S, m) is given by

Result(S, m) = S − eff−(m) ∪ eff+(m).

We say that the networkB cangeneratea (finite or infinite) sequence
of actionsm1, m2, . . . , mi, . . . in a stateS1 if

Si+1 = Result(Si, mi).

We sayB canreach the goalsG from a stateS if it can generate a
finite sequence of actions inS such that the last stateSn satisfies the
goals, i.e.,Sn ⊇ G.

3 GOAL-CONVERGING BEHAVIOUR
NETWORKS

If we want to guarantee that a behaviour network is successful re-
gardless of the details of the action selection scheme and the param-
eter setting,4 we have to consider all action sequences the network
can generate. Although this appears to be a fairly strong requirement,
there are indeed realistic networks for which we can show that they
are always successful—if the goal is reachable at all.

3.1 Terminating and dead-end free networks

We call a behaviour networkterminating if for all states and under
all possibilities to choose actions, it is impossible to generate infinite

4 The only restriction is that we never consider actions such that all their
positive effects are already satisfied (see Section 2.3).



action sequences—provided the goal was reachable initially.5 Fig-
ure 2 gives a simple example of a non-terminating network.6
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Figure 2. A non-terminatingbehaviour network

Provided thatp1, p2, q1, q2 and theGoalare false initially, then it
is possible that the sequenceA1, A2, A1, A2, . . . is chosen. Hence,
the network is not terminating. Note that there is a successful se-
quence consisting ofA1, B1, A2, B2, C. However, the action se-
lection mechanism might not necessarily find it. An example for a
terminating network is the one in Figure 1, as is easy to verify.7

We say that a network is in ablocked statewhen no action is exe-
cutable and the goal is not satisfied. Such a blocked state may occur
because there was no way to reach the goal in the first place. How-
ever, it may be possible that the goal was reachable in the beginning.
We call a networkdead-end freeif it never leads to a blocked state
when it is possible to reach the goal. Consider, for example, the net-
work in Figure 3. This network contains a dead end. Provided one
starts withp1, p2, q2 andGoal as false andq1 as true, the execution
of A2, B2 leads to a blocked state. However, obviously, the sequence
B1, A2, B2, C would have led to the goal. In other words, this net-
work is not dead-end free. An example of a dead-end free network
is again the one in Figure 1. Although in this network one can make
propositions false, this can only happen in the course of satisfying
the goal and it will never prohibit reaching the goal.
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Figure 3. A behaviour network with adead end

Finally, we call a behaviour networkgoal convergingwhen it will
necessarily generate a finite action sequence leading to the goal, pro-
vided the goal is reachable at all. When viewing the behaviour net-
works as specifications of STRIPS planning problems, we would talk
of self-solvingplanning domains, because regardless of the order we
would choose for the executable actions, one would always reach the
goal—provided the goal was initially reachable at all.

Proposition 1 A behaviour network isgoal convergingif and only if
it is dead-end freeandterminating.

Proof: The “only if” direction is obvious since networks with dead
ends and networks which are non-terminating cannot be goal con-

5 If the goal is unreachable, we do not care about the behaviour of the net-
work.

6 It becomes terminating if one of the negative edges is removed
7 Note again that we are not interested in initial states from which the goal is

unreachable.

verging. There are possible states and action selections such that ei-
ther a loop or a dead end, respectively, are chosen although there is
the possibility of reaching the goal. For the “if” direction observe
that a non-goal-converging network must either produce an infinite
sequence or end up in a dead end although there is a action sequence
leading to a goal state.

3.2 Monotone networks

One particularly simple type of goal-converging networks are net-
works with only positive effects, which we will callmonotone net-
works. Since a propositional atom can never be made false in a
monotone network, one can reach any desired goal after any initial
sequence of actions, provided the goal was initially reachable. This
implies that it is impossible to run into a dead end. Since each action
can be executed at most once, there is additionally an upper bound to
the length of any action sequence generated by the network.

Proposition 2 Monotone behaviour networks are goal converging.

Monotone behaviour networks appear hardly to be interesting.
However, they are equivalent to STRIPS planning problems that have
only positive preconditions and effects, for which it is well known
that generating a shortest plan is still an NP-hard problem[3]. Fur-
thermore, such planning problems have become popular as the basis
for computing heuristic estimates in action planning[9]. For our pur-
poses, however, the restriction to purely positive effects is not feasi-
ble.

3.3 Acyclic networks with restricted negative links

In order to specify a more interesting class of goal-convergent net-
works, let us view these networks from a slightly different angle. Let
us consider directed graphs with two kinds of nodes,action nodes
andfact nodesand two kinds of directed edges,positive andnega-
tive ones, such that

• there is a positive (precondition) edge from fact nodep to action
nodea if p is a precondition of actiona;

• there is a positive (effect) edge from action nodea to fact nodep
if p is apositiveeffect ofa;

• there is a negative (effect) edge from action nodea to fact nodep
if p is anegativeeffect ofa.

The resulting graph is calledaction-fact graph.8 In what follows,
we identify behaviour networks with their corresponding action-fact
graphs to simplify matters. Furthermore, we say that an action-fact
graph contains aneffect cycleif there exists a directed cycle formed
out of positive effect edges and reversed negative effect edges. In ad-
dition, we say that an action-fact graph isstrictly acyclic if it neither
contains an effect cycle nor a cycle formed by positive edges.

Theorem 3 Action-fact graphs without effect cycles are terminating.

Proof: In order to prove the theorem, we assign as a first step values
to the atoms in the action-fact graph. For each atomp the value ofp
should be1 plus the sum of values of the fact nodes that are incident
via a negative edge to an action havingp as a positive effect. Since the
graph formed by the positive effects edges and the reversed negative
effect edges is acyclic, this value assignment is well-defined.

8 Such graphs correspond to what has been calledconnectivity graph[9] in
the planning literature.



With this value assignment to atoms, each action application will
strictly increase the overall value of the state (as the sum over the
values of all true propositions), because an action is only executed
when one of its positive effects is not true. This implies, however,
that it is impossible to generate infinite action sequences.

While it was easy to find a condition for termination, it appears
to be much more difficult to find a criterion that guarantees that the
network is dead-end free, something we address next.

3.4 Modular action-fact graphs

One way to guarantee that there are no dead ends is to make sure that
it is always possible to make falsifiable propositions true without af-
fecting other propositions, which has to be guaranteed independently
of the initial state[8]. While this condition is often true in classical
planning tasks, it seems very unlikely that we can guarantee this in
our case. Hoffmann[8] gives a number of other sufficient conditions
for the absence of dead ends, but none appears to be applicable here.

For this reason, we will look into an alternative condition. We will
try to make sure that any proposition that can be falsified needs never
be used again after it has been falsified. For example, this condition
is satisfied in Figure 1. One way to guarantee this forstrictly acyclic
action-fact graphsis to require the followingmodularity condition.
For all atomsq that can be falsified by an actiona, each positive
path fromq to a goal atom must go through an actiona′ such that
eff+(a) ⊇ eff+(a′) 6= ∅. This condition is, for example, satisfied
by the action-fact graph in Figure 4 and the action-fact graph deriv-
able from the network in Figure 1. We call strictly acyclic action-fact
graphs satisfying this conditionmodular action-fact graphs.

A1 A2

q r3

A3

r1

Goal

p1 p2

r2

Figure 4. An action-fact graph satisfying themodularitycondition

Theorem 4 Modular action-fact graphs are goal converging.

Proof: Termination follows from Theorem 3. The proof that the
action-fact graphs are dead-end free is by induction on the number
of negative links. Fork = 0 negative links, the claim follows from
Proposition 2. Assume now that the claim is true for modular action-
fact graphs withk or fewer negative links. Consider a graph with
k+1 negative links. Now choose one action nodea that is the source
of a negative link and which has no positive path to any other action
node with such a property. Because of the acyclicity of the graph
formed from positive links, such a node must exist. Assume thatq
is amongst the negative effects ofa and that the positive effects are
p1, . . . , pk. If we remove the negative link froma to q, we can apply
the induction hypothesis fork negative links and know that the graph
is dead-end free.

Assume now for contradiction that the original network is not
dead-end free. This must be connected with the possibility of fal-
sifying q by a. However, once all the positive effects ofa have been
made true by executinga, the truth value ofq is not of any concern

since all positive paths fromq to a goal go througha and actions with
a subset ofeff+(a) as their positive effects. Hence, the negative link
from a to q cannot create a dead end, which completes the induction
step.

While it might seem to be the case that such networks are only
good for trivial (self-solving) domains, one should keep in mind that
finding a shortest sequence of actions is still an NP-hard problem.
This follows from the fact that precondition-free, monotone networks
are a special case of modular action-fact graphs, for which the prob-
lem is already NP-hard[3].

4 ROBOCUP BEHAVIOUR NETWORKS

As mentioned in the Introduction, the analysis of behaviour networks
was motivated by the observation that the behaviour networks of the
magmaFreiburgandCS Freiburgrobotic soccer players work so ro-
bustly. When one now analyses the networks with the tools developed
in this paper, it turns out that they indeed satisfy the condition of be-
ing modular—modulo some qualifications. In Figure 5 the main part
of theCS Freiburg[14] behaviour network is displayed as an action-
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Figure 5. Part of the Action-Fact Graph of theCS Freiburgbehaviour
network[14]

fact graph. Obviously, the few negative links satisfy themodular-
ity condition. However, one may wonder, why there are no negative
links from the actions havingHaveBallas a precondition toHave-
Ball? Although these negative links should have been there in order



to describe the action effects correctly, their absence is not problem-
atic, since we assumed that all actions are successful—and the pos-
itive effect of all the actions is the ultimate goal. In any case, when
adding the negative effects, we still would have amodularaction-fact
graph. A similar comment applies to the missing positive links back
to NegHaveBall.

Often it is necessary to take more than one goal into account. The
extended behaviour network may contain multiple goals which can
be selected based on the current situation. So, for example, aCS
Freiburgplayer either tries to score a goal (if it fills the role of anac-
tive player) or it has the overall goal tocooperate. In the latter case,
we would have to consider a different network, which also satisfies
the structural condition of beingmodular, though.

Finally, it should be noted that there are levels in the decision mak-
ing that influence the behaviour networks, e.g., the role assignment
and placement of players on the field[18], which are, however, not
part of the network.

Summarising, if we assume that no exogenous actions intervene
and if there occurs no change in the goals (in particular there is no
influence from the strategic component), then all the behaviour net-
works of theCS Freiburg[14] and themagmaFreiburg[6] players
satisfy the modularity condition and are therefore goal converging,
which goes somewhere in explaining why they are so robust. At least,
when players are alone on the field, they will eventually score. Al-
though this is a rather weak guarantee, it is much better than the state-
ment that the player might score a goal only when the parameters of
the network are well adjusted.

Of course, all this seems to imply that the domain as modelled in
the described RoboCup teams has a quite simple structure. However,
finding a shortest sequence of actions is still NP-hard. Furthermore,
even in the face of more complex modelling and decision making
by, e.g., integrating opponent modelling and adversary planning, we
nevertheless would like to guarantee the conditions mentioned above
on some level of the action-selection process. However, it may be
the case that it is not possible to verify the conditions using simple
syntactic tests any longer.

5 CONCLUSIONS AND OUTLOOK

We have identified a structural property of behaviour networks,
calledmodularity, that guarantees that behaviour networks are well
behaved, i.e., goal-convergent, which means that they will reach their
goals in a static environment under all circumstances—if the goals
are reachable at all. One should note that in this case the simplifying
assumptions from Section 2.3 are not any longer significant. Any er-
roneous observation or behaviour or exogenous intervention is com-
pensated for by the behaviour network. It will just start in a new state
and is guaranteed to reach the goal (provided the failure probability
is low enough).

Having shown that a network has this property means that we
never have to fear that the network leads by itself to infinite action se-
quences or blocked states. In addition, it means that tuning network
parameters[13] will not modify the principal property of reaching
the goal, but only the efficiency. On the other hand, tuning the pa-
rameters might be necessary to approximate the NP-hard optimisa-
tion problem of finding a shortest action sequence.

Interestingly, there exists a significant application of behaviour
networks where the modularity restriction is met, namely, the net-
works of the Freiburg simulation and real robot (F2000) soccer play-
ers[5; 18; 19]. The most interesting aspect of the entire analysis is,
however, that it is not restricted to behaviour networks. It applies

to all kinds of domains that can be captured using STRIPS-like for-
malisms. The property of goal convergence (or almost goal conver-
gence) can be used to understand a given domain and how it shall be
dealt with.
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