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Abstract. Agents operating in the real world have to deal with a a behaviour network is “well behaved,” i.e., when it will necessarily
constantly changing and only partially predictable environment andachieve its goals—provided they are reachable at all.
are nevertheless expected to choose reasonable actions quickly. Thisin the soccer systems mentioned, the agents never ran into infinite
problem is addressed by a number of action-selection mechanismi®ops or got stuck. Instead, given enough time they were always able
Behaviour networks as proposed by Maes are one such mechanisin,score a goal against an immobilised opponent. In other words, the
which is quite popular. In general, it seems not possible to predicsoccer behaviour networks appear to be “well-behaved.” This raises
when behaviour networks are well-behaved. However, they perfornof course the question under which condition one could guarantee
quite well in the robotic soccer context. In this paper, we analyse thé¢hat.
reason for this success by identifying conditions that make behaviour In general, we are interested to find conditions that guarantee that
networksgoal convergingi.e., force them to reach the goals regard- the behaviour network will generate a successful sequence of actions
less of the details of the action selection scheme. In terms of STRIPSrovided there exists one and no exogenous events intervene. Fur-
domains one could talk afelf-solving planning domains thermore, we want this guarantee regardless of any parameter setting
and the details of how actions are selected.

Behaviour networks with this property will be callegal con-
verging. In terms of STRIPS planning domains one could classify
ysuch domains as “self-solving.” However, are there non-trivial re-

Agents operating in the real world have to deal with a constantly”" " .
changing and only partially predictable environment; and the expecStTictions on the topology of behaviour networks that would guaran-
e this? As it turns out, there exists such a condition, which indeed

tation is that the agents figure out the best suitable actions under tigﬂ’? o )
time constraints. There exist a number of techniques to address thi?!ds also of the existing robotic soccer networks. ,
so-calledaction-selectiorproblem. Optimapoliciesfor MDPs [1], The rest of the paper is structured as follows. In_the next _sectu_)n
universal pland16], situated automatL0], dual dynamicg2], and we sketch_the behaviour n_etwork approac_:h. In Section 3, we identify
behaviour networkEL2] are some of them. The latter was intended to WO conditions for a behaviour network being goal converging. Based
address the problems of “brittleness, inflexibility, and slow response©" that, we analyse in Section 4 the networks that have been used in
of classical planning approaches on one hand, and the problem §f€ Freiburg RoboCup teams and show that they satisfy one of the

“the lack of explicit goals” in reactive approaches on the other hanogo?lggilfns identified. Finally, in Section 5, we conclude and give an
[12). utiook.

1 INTRODUCTION

Compared with the other approaches, the latter approach lacks the-
oretical rigour. However, modelling a domain is easy and straight? BEHAVIOUR NETWORKS
forward, which is probably one reason for its popularity. For in- . . . .
stance, it has been used in the implementation of an intelligent ¢l the following, we describe the behaviour network formalism.
mail agen{20] and as the underlying mechanism for generating be_Sl_nce we do not nee_d the full details for our purposes, the description
haviour of autonomous characters in interactive story sysfagjs  Will be sketchy and informal at some points.
Most notably, behaviour networks have been employed in the simu-
lated robotic soccer teamagmaFreiburd5] and in the real robotic 2.1 Specifying behaviour networks
soccer (F2000 league) tea®$ Freiburg[18; 19. In both cases, the N ) )
teams were highly successful. The simulation teragmaFreiburg LetP be a sc_at of propositional atoms.stateis a truth assignment
was runner-up in 19985] andCS Freiburgwon theRoboCupworld to all a}toms inP (often also represented as the set of true atoms).
championship in 2000 and 20018; 1. Behaviour networks are tuplegP, G, M, II), where

Although Maes’ behaviour networks and variations have been. G C P is thegoal specification
analysed from several perspectives, there are nevertheless many ios'/\/l_is a finite set ofcompetence moduler actions, where
sues that have not been resolved. For example, O6tetescribes m € M is a tuple (pre, eff", eff, bel with pre C P denot-
some experiments where he used behaviour networks in order to ing the preconditions, ef’f+ ef7f’ C773 denoting the_positive and
solveblocks-world planningproblems. As it turns out, for some five- negative effects respecti\’/ely Wikt N eff- — ¢ and beh be-
block problems, the behaviour network goes into an infinite loop and ing the name ofl an executahamhaviour which is started once
does not come up with a solution, regardless of the parameter set- '

i What i is that th . derstandi  wh the module is selected for execution. If we want to refer to one of
Ing. atis even worse Is that there 1S no understanding ot when components of a competence modulave use the notation
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Depending on the type of behaviour networks, some variations areameterdll. After the process has ended, the utility of a module is
possible. For example, in Doreffd] extended behaviour networks determined by combining activation values with executability values
the state is an assignment of fuzzy values, the goals can have an irfdepending on the satisfaction of preconditions), and then the module
portance measure and an additional relevance condition. Further, ef4th the highest utility value is chosen for execution (ties are broken
fects have an expectation value describing how likely it is that thearbitrarily).
effect proposition becomes true after executing the competence mod- From the description above it follows that there are only a few
ule. All these details will not be important for us, though. things one can be sure of when using a behaviour network for action
selection. First of all, only executable actions are chosen. Second,
if an action selection scheme is employed that does not use forward
activation spreading, for instance Dord@8 scheme, then it follows
Competence modules are connected in a network so that they cahat if an action is chosen, it “contributes” to one of the goals, since
send and receive “activation energy.’pAsitive effect linkkonnectsa the competence module can receive activation only from the goal
positive effectp of a competence module to the preconditioof an- through a chain of unsatisfied preconditions.
other competence module.rfegative effect linkonnects a negative
effectp of one competence module to the preconditionf another
competence modufeAn example of a small behaviour network is
given in Figure 1. If we want to guarantee properties of a network regardless of the de-

tails of the action selection scheme and the parameter settings, we
have to make a number of simplifying assumptions. We will assume
- that the state is always correctly observable (with Boolean state vari-

2.2 Activation spreading and action selection

2.3 ldeal abstract behaviour networks

AN AN ables), that the competence modules describe all relevant effects cor-
f 1 Y rectly, that the execution of the behaviour of a competence module is
baIIKickabIe/ \ always successful, and that no exogenous event will intervene. Based
RN RN 7,' on these assumptions, we define an abstract version of behaviour net-
I N works, which from a formal point of view are identical to STRIPS
N PO domain descriptions.
haveNoBall  closeToBall ' An ideal, abstract behaviour network is a tuple B =
i (P,G, M), whereP,G and M are defined as in Section 2.1. In
/ the stateS C P, the network can choose any competence module
L/ m for execution such that the preconditiom®(m) are satisfied in
haveNoBall < S, i.e.,pre(m) C S, and not all positive effects are satisfied, i.e.,

efft (m) — S # (). Whenm is executed in staté, the resulting state

) ) ) . Resul{S, m) is given by
Figure 1. Example of a behaviour network: Solid arrows denote positive

effect links and dashed arrows denote negative effect links. ResulS, m) = 5 — eff (m) U offt (m).

In this example, the competence modGietoBallhas the precon- o o
dition haveNoBalland the effectloseToBallenabling the compe- We say that the netwo® cangeneratea (finite or infinite) sequence
tence moduléSetBall This, in turn, has the negative effect of delet- Of actionsma, ma, ..., m, ... in a statesS; if
ing haveNoBalland the positive effect of makingallKickabletrue.
The latter enables thghootmodule, which then (hopefully) leads to

scoring gg_oal, the ultimate goal of thi; bghaviour network. We sayB canreach the goalsG from a stateS if it can generate a
Unsatisfied goals send some activation energy to competenqg;ite sequence of actions iiisuch that the last stafé, satisfies the

Si+1 = ResuI(Si,mi).

modules that could make the goals true and, in turn, each activate :
. 2 . L als, i.e.S, 2 G.
module sends some of its activation through its unsatisfied precondi-
tions to modules which can make the precondition true. In the orig-
inal version of behaviour networks, there is also a “forward spread3 GOAL-CONVERGING BEHAVIOUR

ing” of activation energy, i.e., activation energy flows from proposi- NETWORKS

tions true in a situation towards competence modules that have the?fe nt rantee that a behaviour network | -
propositions as preconditions. However, this forward spreading o we want to guarantee that a behaviour nNetwork 1s successiul re-
ardless of the details of the action selection scheme and the param-

activation does not seem to increase the quality of the action sele y tting h i id Il acti th twork
tion [4; 7] and for this reason this kind of activation is not presente er setling, we have fo consider all action sequences the networ

in Dorer’s [4] extended behaviour networks. While positive effect can generate. Although this appears to be a fairly strong requirement,

links are used for spreading activation, negative links are used to irfnere are indeed realistic networks for which we can show that they

hibit the activation of other modules. Modules that have the negativéflre always successful—if the goal is reachable at all.

effectp € eff” are inhibited by modules that hayeas a satisfied

precondition. 3.1 Terminating and dead-end free networks
The process of sending activation energy and inhibitions is iter-

ative and the number of iterations is controlled by the global pa-Ve callla.t.)ghaviour networie.rminqti.ng if for "?‘” states and un.de.r ,
all possibilities to choose actions, it is impossible to generate infinite

3 Although negative self-links are usually not considered, we will draw them
in depictions of behaviour networks in order to describe the actions com# The only restriction is that we never consider actions such that all their
pletely. positive effects are already satisfied (see Section 2.3).




action sequences—provided the goal was reachable initidlly- verging. There are possible states and action selections such that ei-

ure 2 gives a simple example of a non-terminating netfork. ther a loop or a dead end, respectively, are chosen although there is
the possibility of reaching the goal. For the “if” direction observe
that a non-goal-converging network must either produce an infinite
sequence or end up in a dead end although there is a action sequence
ce leading to a goal stat®.
pl  p2
\
Z
e @ 3.2 Monotone networks
Az One particularly simple type of goal-converging networks are net-

works with only positive effects, which we will cathonotone net-
works. Since a propositional atom can never be made false in a
monotone network, one can reach any desired goal after any initial

Provided thapl, p2, q1, ¢2 and theGoal are false initially, then it ~ Sedquence of actions, provided the goal was initially reachable. This
is possible that the sequendd, 42, A1, A2, ... is chosen. Hence, implies that it is impossible to run into a dead end. Since each action
the network is not terminating. Note that there is a successful secan be executed at most once, there is additionally an upper bound to
guence consisting ofi1, B1, A2, B2, C. However, the action se- the length of any action sequence generated by the network.
lection mechanism might not necessarily find it. An example for a
terminating network is the one in Figure 1, as is easy to vérify.

We say that a network is intdlocked statewhen no action is exe-

cutable and the goal is not satisfied. Such a blocked state may occ Monotone behawogr networks appear har_dly o be interesting.
. . owever, they are equivalent to STRIPS planning problems that have
because there was no way to reach the goal in the first place. How- . " SR
nly positive preconditions and effects, for which it is well known

ever, it may be possible that the goal was reachable in the beginninﬁiat generating a shortest plan is still an NP-hard prod@imFur-

We call a networldead-end freeif it never leads to a blocked state . .
o - . hermore, such planning problems have become popular as the basis
when it is possible to reach the goal. Consider, for example, the ne or computing heuristic estimates in action lanriély For our pur

work in Figure 3. This network contains a dead end. Provided one puting P P

starts withp1, p2, ¢2 andGoal as false ang1 as true, the execution poses, however, the restriction to purely positive effects is not feasi-

of A2, B2 leads to a blocked state. However, obviously, the sequencgle'

B1, A2, B2, C would have led to the goal. In other words, this net-

work is not dead-end free. An example of a dead-end free networl8.3  Acyclic networks with restricted negative links
is again the one in Figure 1. Although in this network one can mak
propositions false, this can only happen in the course of satisfyi
the goal and it will never prohibit reaching the goal.

Figure 2. A non-terminatingoehaviour network

Proposition 2 Monotone behaviour networks are goal converging.

qn order to specify a more interesting class of goal-convergent net-
nd., - ) .
orks, let us view these networks from a slightly different angle. Let
us consider directed graphs with two kinds of nodegion nodes
andfact nodesand two kinds of directed edggspsitive andnega-
tive ones, such that

pl  p2 e there is a positive (precondition) edge from fact npde action

\ i A . .
B2 > nodeaq if p is a precondition of action;
@

<. o there is a positive (effect) edge from action ned fact nodep

s é if p is apositiveeffect ofa;
A2 e there is a negative (effect) edge from action nade fact nodep
if p is anegativeeffect ofa.

Figure 3. A behaviour network with alead end The resulting graph is calledction-fact graph.® In what follows,

Finally, we call a behaviour netwodoal convergingwhen it will we identify behaviour networks with their corresponding action-fact
necessarily generate a finite action sequence leading to the goal, prgraphs to simplify matters. Furthermore, we say that an action-fact
vided the goal is reachable at all. When viewing the behaviour netgraph contains aaffect cycleif there exists a directed cycle formed
works as specifications of STRIPS planning problems, we would talkout of positive effect edges and reversed negative effect edges. In ad-
of self-solvingplanning domains, because regardless of the order wélition, we say that an action-fact graptsisictly acyclic if it neither
would choose for the executable actions, one would always reach trgontains an effect cycle nor a cycle formed by positive edges.
goal—provided the goal was initially reachable at all.

Theorem 3 Action-fact graphs without effect cycles are terminating.
Proposition 1 A behaviour network igoal convergingf and only if
it is dead-end freandterminating Proof: In order to prove the theorem, we assign as a first step values
B e . . , to the atoms in the action-fact graph. For each agaime value ofp
Proof: The “only if dlrgct|on is obvious since networks with dead should bel plus the sum of values of the fact nodes that are incident
ends and networks which are non-terminating cannot be goal congg 5 negative edge to an action havinas a positive effect. Since the

5 If the goal is unreachable, we do not care about the behaviour of the neg@raph formed by the positive effects edges and the reversed negative
work. effect edges is acyclic, this value assignment is well-defined.

6 It becomes terminating if one of the negative edges is removed

7 Note again that we are not interested in initial states from which the goal i$ Such graphs correspond to what has been catiednectivity grapt9] in
unreachable. the planning literature.




With this value assignment to atoms, each action application willsince all positive paths fromto a goal go through and actions with
strictly increase the overall value of the state (as the sum over tha subset 0ff" (a) as their positive effects. Hence, the negative link
values of all true propositions), because an action is only executeftom a to ¢ cannot create a dead end, which completes the induction
when one of its positive effects is not true. This implies, however,stepm

that it is impossible to generate infinite action sequertes. While it might seem to be the case that such networks are only

While it was easy to find a condition for termination, it appearsgood for trivial (self-solving) domains, one should keep in mind that
to be much more difficult to find a criterion that guarantees that thdinding a shortest sequence of actions is still an NP-hard problem.
network is dead-end free, something we address next. This follows from the fact that precondition-free, monotone networks

are a special case of modular action-fact graphs, for which the prob-

3.4 Modular action-fact graphs lem is already NP-hars].

One way to guarantee that there are no dead ends is to make sure tQat ROBOCUP BEHAVIOUR NETWORKS
it is always possible to make falsifiable propositions true without af-

fecting other propositions, which has to be guaranteed independentys mentioned in the Introduction, the analysis of behaviour networks
of the initial state[8]. While this condition is often true in classical Was motivated by the observation that the behaviour networks of the
planning tasks, it seems very unlikely that we can guarantee this illagmaFreiburgandCS Freiburgrobotic soccer players work so ro-
our case. Hoffmanf8] gives a number of other sufficient conditions bustly. When one now analyses the networks with the tools developed
for the absence of dead ends, but none appears to be applicable hdrethis paper, it turns out that they indeed satisfy the condition of be-
For this reason, we will look into an alternative condition. We will ing modula—modulo some qualifications. In Figure 5 the main part
try to make sure that any proposition that can be falsified needs nevéf the CS Freiburg[14] behaviour network is displayed as an action-
be used again after it has been falsified. For example, this condition
is satisfied in Figure 1. One way to guarantee thisstactly acyclic
action-fact graphss to require the followingnodularity condition.

For all atomsg that can be falsified by an actian each positive [FronClea] (Moveshoy
path fromg to a goal atom must go through an acti@hsuch that

eff" (a) D efff(a’) # 0. This condition is, for example, satisfied
by the action-fact graph in Figure 4 and the action-fact graph deriv-

able from the network in Figure 1. We call strictly acyclic action-fact
graphs satisfying this conditiamodular action-fact graphs.

GoodShootDid

NegShootLastAct
GoodFlipperPos

GoodShootAngle

DribbleFrontClear

EnemyHasBall

BallNearOwnGoal

Figure 4. An action-fact graph satisfying thaodularitycondition

Theorem 4 Modular action-fact graphs are goal converging.

Proof: Termination follows from Theorem 3. The proof that the
action-fact graphs are dead-end free is by induction on the number
of negative links. Fok = 0 negative links, the claim follows from
Proposition 2. Assume now that the claim is true for modular action-
fact graphs withk or fewer negative links. Consider a graph with
k+1 negative links. Now choose one action nad#at is the source

of a negative link and which has no positive path to any other action
node with such a property. Because of the acyclicity of the graph
formed from positive links, such a node must exist. Assume ghat
is amongst the negative effects@ofind that the positive effects are
p1,. .., Pk If we remove the negative link fromto ¢, we can apply

the induction hypothesis férnegative links and know that the graph
is dead-end free.

Assume now for contradiction that the original network is not fact graph. Obviously, the few negative links satisfy thedular-
dead-end free. This must be connected with the possibility of fality condition. However, one may wonder, why there are no negative
sifying ¢ by a. However, once all the positive effects@have been  links from the actions havinglaveBallas a precondition télave-
made true by executing, the truth value of; is not of any concern  Ball? Although these negative links should have been there in order

Figure 5. Part of the Action-Fact Graph of th@&S Freiburgbehaviour
network([14]



to describe the action effects correctly, their absence is not problemnte all kinds of domains that can be captured using STRIPS-like for-
atic, since we assumed that all actions are successful—and the pasalisms. The property of goal convergence (or almost goal conver-
itive effect of all the actions is the ultimate goal. In any case, whengence) can be used to understand a given domain and how it shall be

adding the negative effects, we still would havaadularaction-fact
graph. A similar comment applies to the missing positive links back
to NegHaveBall

Often it is necessary to take more than one goal into account. Th

dealt with.
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Finally, it should be noted that there are levels in the decision makREFERENCES
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