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Abstract. Having a robot that carriesout a task for you is certainly of some
help.Having a groupof robotsseemsto be even betterbecausein this casethe
taskmaybefinishedfasterandmorereliably. However, dealingwith a groupof
robotscanmake someproblemsmoredifficult. In this paperwe sketchsomeof
the advantagesandsomeproblemsthat comeup whendealingwith groupsof
robots.In particular, we describetechniquesas they have beendevelopedand
testedin theareaof roboticsoccer.

1 Intr oduction

Havingarobotthatcarriesoutataskfor you,e.g.,cleaningtheflooror fetchingthemail,
is certainlyof somehelp.Having a groupof robotsseemsto beevenbetterbecausein
this casethetaskmaybefinishedfasterandmorereliably. Sometimesoneevenneeds
a groupto get the taskdone.For instance,playing robotic soccerrequiresa teamof
robots.

In general,someproblemscanbe moreeasily, morereliably, or fastersolved by
a groupof robots.For example,distributing mail or messagesto many targetscanbe
donefasterwith agroupof robots,ashasbeendemonstratedby theteamof SRI robots
winning oneof therobotcompetitionsat AAAI'96 [13]. Also basictaskssuchasself-
localizationcanbemorereliablysolvedby a groupof robots.On theotherhand,deal-
ing with a groupof robotscanmake someproblemsmoredifficult. For instance,path
planningis easierfor onerobotthanfor a groupof robots.

While this soundsall very plausible,it alsoraisesthequestionwhy a scenarioof a
cooperatingteamof robotsis interestingfrom a scientificpointof view. A cooperating
groupof robotsappearssimply to bea specialcaseof a cooperatinggroupof agents.
Thisis certainlytruein thesamewayasis thestatementthatrobotsare“simply” special
casesof agents.Mobile robotsarespecialin anumberof ways.For thisreason,onehas
to dealwith problemsthatdo not arisewith otheragents,e.g.,softwareagents.Firstly,
thereis theproblemthatarobothasto perceiveandto actin aphysicalworld.Secondly,
sensingandactingis uncertain.Thirdly, connectedwith thetwo formerpoints,commu-
nicationbetweenthe robotsmight not be possible,be restrictedto low bandwidth,or
�
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possibleonly over restricteddistances.Apart from that,however, groupsof robotscan
beviewedasmulti-agentsystems.

Oneshouldnote,however, thata groupof robotsmayalsobeviewedasonecen-
trally controlledmulti-bodiedrobot.While sucha viewpoint is indeedpossible,there
area numberof argumentsagainstsucha perspective.Firstly, this multi-bodiedrobot
hasa very largenumberof degreesof freedommakingit computationallyinfeasibleto
controlit. Secondly, wemightbeunableto communicatebetweenthedifferentpartsof
therobotor thecommunicationbandwidthis very low. Thirdly, we might beunableto
estimatea globalsystemstatebecausefor somepartsof therobotwe do not know the
state.Fourthly, failuresof partsof themulti-bodiedrobotaremuchmorenaturallydealt
with whenonetakesa multi-agentperspective.

In therestof thepaper, we will presentsomecasestudiesof techniquesdeveloped
in thecontext of multi-robotsystems.In thenext section,wehavea look atcooperative
sensing. In Section3,wethenturntoaparticularformof coordinatedbehavior, namely,
cooperativemotionplanning. In orderto supportcooperativebehavior in agroup,often
rolesareassignedto thegroupmembers.How this canbedonefor a groupof robots
in a highly dynamicenvironmentwill bestudiedin Section4. Finally, in Section5, we
will discusswhatis neededto build asuccessfulroboticsoccerteamandin how far the
techniquesdescribedin thispapercanhelp.

2 Cooperative Sensing

If thereis agroupof robotsthatcancommunicatewith eachother, it seemsnaturalthat
therobotssharetheirobservationswith eachother. In thismannerthey cancompensate
for sensorlimitations that, for instance,restrict the rangein which an objectcan be
sensed.Furthermore,by combiningestimates,robotsmaybeableto narrow down their
hypothesesor to correcttheirestimates.

As mentionedin the Introduction,all sensormeasurementsareuncertain.Thereis
alwayssome(normallydistributed)noiseandin additiontheremight besomesystem-
atic error onecannotanticipate.For example,whenusingthe odometry– measuring
how oftena wheelhasturned– thereis a normallydistributedmeasurementerrorand
dependingon thefloor, theremaybean additionalsystematicerror. In particularcar-
petscancanleadto systematicdiversionsthatcannotbeanticipated.Finally, theremay
alsobea largedisplacementfrom timeto timewhentherobotcollideswith anobstacle
or with anotherrobot.Worseyet, theseerrorsaccumulateleadingto high uncertainty
abouttherobot'spositionaftera veryshorttime.

For thesereasons,othermeansareusedto solvetheso-calledself-localizationprob-
lem. Measurementsfrom othersensorsareusedto correcttheestimatesderived from
theodometry. Themathematicaltool that is usedto dealwith this problemis oftenthe
Kalmanfilter [17], a methodof fusing all measurementsin orderto arrive at optimal
estimates.Intuitively, it involvescomputinga weightedaverageover sensormeasure-
ments,wheresensorswhich aremoreaccuratehave a higherweight thanthosewhich
areknown to belessaccurate.

Often,known positionsof recognizedlandmarksareusedin the self-localization
processfor correctingthepositionestimates.However, whenonewantsto explorean



unknown territory, thereareno known landmarks.With a groupof robotsthat have
initially known positions,it is possibleto dosomethingsimilar to landmark-basednav-
igation,though.Someof therobotscanbeusedaslandmarks.

2.1 CooperativeSelf-Localization

Rekleitis et al. [20] proposeda schemefor multi-robot exploration with a group of
robots.In this approachit is assumedthat therobotscantrackeachotherwith reason-
ablereliability andaccuracy aslong theline of sightbetweenthemis freeof obstacles.
Underthis assumption,oneor morerobotscanmove usingoneor more(temporary)
immobile robotsas landmarks.After a while the rolesof the moving and immobile
robotscan be exchanged.Using sucha method,the odometryerror can be reduced
dramatically[20].

In mostapplications,however, we alreadyknow theenvironmentand“only” have
to solve theself-localizationproblem.In this caseit oftenhappensthatonerobotcan
comeup with multiple positionhypotheses.If we now have a groupof robotsthatare
ableto recognizeothergroupmemberswhenthey arecloseenough,it is possiblethat
therobotsnarrow down thesetof positionhypotheseswhenthey meet[8].

2.2 CooperativeObject Localization

Yet anotherscenariofor multi-robot cooperative sensingis whenwe canassumethat
positionandorientationof all robotsarealmostalwaysaccurateandreliably, but thereis
significantuncertaintyandunreliability in sensingotherobjects.This situationoccurs,
for instance,in theroboticsoccercontext.

Theplayersof theCSFreiburg team[11,18,23] uselaserrangefindersin orderto
solve the self-localizationproblem[12], andfor this reasoncanbe assumedto know
their own positionvery reliably. However, they arenot very goodin recognizingthe
ball andestimatingits positionon thefield – which is doneusinga monocularvision
camera.

Thereis a significantmeasurementerror for estimatingthedistanceto theball, an
errorwhich increaseswith thedistancebetweencameraandball. Theangularerror, on
the otherhand,is smalleranddoesnot dependon the distance.Additionally, thereis
a restrictionto themaximumdistanceover which theball canberecognized,which is
approximately4–5 meters.Finally, the robotsoften enoughrecognizefalsepositives,
i.e., phantomballs. Ignoring the latter problem,onecanagainusea Kalmanfilter to
fuseobservations(with timestamps)from differentrobotsin orderto getestimatesthat
a more accuratethan any single measurement.In fact, this givesus a sort of stereo
visionwith agroupof robots.Assumingthattheangularerroris muchsmallerthanthe
distanceerrorgivesa triangulationeffectasshown in Figure1.

As alreadypointedout, sometimestherobotsobserve phantomballs.An example
of sucha situationis displayedin Figure2. Two playersseeaball closeto thegoaland
anotherplayerseesa ball on thecenterline.

If we would now take theweightedaverageof thesensedball positions,we would
geta completelywrongestimate.For this reason,it seemspreferableto excludeobvi-
ouslywrongmeasurements.Onewayto dosowouldbeto ignoremeasurementsthatare



Fig.1.TheKalmanfilter for integratingball observationsleadsto triangulation.Grey discsdenote
positionestimatesfor singlerobots,theellipsesaroundthegrey discsdenotemeasurementerrors,
andthewhitediscdenotesthefusedestimate.

Fig.2. Player2 observes a phantomball, which may lead to an incorrectestimateof the ball
position.

implausiblegiventhecurrentestimate.This,however, couldleadto asituationwherea
robottracksa phantomball andtheotherrobotsareall divertedfrom sensingtheright
ball becausethey believe thehallucinatingrobot.

The best(andmostdemocraticway) to dealwith sucha situationis to believe in
whatthemajorityof robotssense.In theexampledepictedin Figure2 wewould rather
believetheplayers1 and3 thanplayer2.Onewaytoputsuchavotingschemeintoeffect
is to usetheso-calledMarkov localizationapproach[9] for theball. In this approach
onebasicallymaintains(a discrete)probabilitydistribution for thepositionprobability
of theobjectof interest.Usually, this is therobot itself. In our case,however, it is the
ball. Eachobservationupdatesthepositionprobabilityby increasingtheprobabilityat
thelocationwheretheball hasbeenobservedandlowerstheprobabilitywhereno ob-
servationhasbeenmade(usingconditionalobservationprobabilitiesandBayes'rule).
In addition,thepositionprobabilityis flattenedout for eachtimestepto modeltheloss



of certaintyover time. Usingsuchanapproach,it appearsmoreprobablethat theball
is aroundthe locationswhereit hasbeenobservedby two robotsthanat the location
whereit hasbeenobserved only by onerobot. CombiningMarkov localizationasa
plausibilityfilter with a Kalmanfilter, onegetsa quitereliableandaccurateglobalball
estimationmechanism[6].

While all thesemethodsmight not appearto beoverly sophisticated,therealvalue
of theseapproachesis thatthey arebasedona solid theoreticalbasisandwork in prac-
tice.Almost all of of theseapproaches,however, arestill passive in thesensethatthey
donot involvetheinterplaybetweensensingandacting,i.e.,activesensing[3].

3 Cooperative Path and Motion Planning

Latombestartshisbook[16] with thefollowing remark:

“This capability[motionplanning]is eminentlynecessarysince,by definition,
a robotaccomplishestasksby moving in therealworld.”

And whatis truefor singlerobotsis, of course,alsotruefor teamsof robots.
Thebasicmotionplanningproblemis usuallystated[16] astheproblemof mov-

ing a single rigid object – the robot – in an Euclidian (2- or 3-dimensional)space,
theso-calledwork spacefrom an initial position(andorientation)to a targetposition
(andorientation).Of course,therecanbeobstaclesin theworkspace,whichhave to be
avoided.Theproblemis usuallysolvedby mappingtheproblemto theso-calledcon-
figuration space. This spaceis generatedby the degreesof freedomthe robot has.In
the2-dimensionalcase,thesedegreesof freedomare

�������	��
�
, i.e., the

�
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�
coordi-

natesof therobotpositionaswell asits heading


. In this 3-dimensionalconfiguration

space,the robot is just a point andwe have to find a pathfrom the start to the target
configurationavoiding obstacles.In thespecialcasethatwe have disk-shapedrobots,
theconfigurationspacecanbe describedby the

�
and

�
coordinatesaloneandso the

configurationspaceis only 2-dimensional.
In theprevioussection,wehaveseenhow sensingcanleadto moreaccurateandre-

liableestimatesif wehaveagroupof robots.Furthermore,theadditionalcomputational
costsarereasonable.In contrastto that,pathandmotionplanningis computationally
muchmoredifficult if a groupof robotsis involved.This becomesobviouswhenone
generalizestheconfigurationspaceplanningmethoddescribedabove to a multi-robot
system.In this case,for eachrobot3 dimensionshave to beaddedto theconfiguration
space.Of course,this might be an indicationthat the configurationspaceapproachis
not appropriate.However, the multi-robotpathplanningproblemis indeedinherently
difficult. It is PSPACE-hardin thenumberof robots,asfollowsfromresultsbyHopcroft
etal. [14].

3.1 CooperativePath Planning with Global Communication

If we assumethat all robotscan communicatewith eachother, the multi-robot path
planningproblemcanbe solved centrally, e.g.,by using the configurationspaceap-
proachsketchedabove.While thisguaranteesoptimalityandcompleteness, it is usually
notefficientenoughfor evenonly a moderatenumberof robots.



Insteadof a centralized approach,one can usedecoupledplanning [16]. In this
approach,oneplansfirst independenttrajectoriesfor all robotsandthencombinesthem,
resolvingconflictswhenthey arise.This reducesthecomplexity, but it alsosacrifices
optimalityandcompleteness.

Therearetwo decoupledplanningmethodsthathave beenconsideredin the liter-
ature.First, thereis theprioritized planningapproach[7], which considersthemulti-
robotpathplanningproblemasa sequenceof pathplanningproblems.Onestartswith
thefirst robotandall theimmobileobstacles.Thenoneaddsanotherrobotandplansa
pathavoiding all immobilerobotandthemoving robotfrom thefirst phase,andsoon.
Thecritical decisionis whatorderoneshoulduse.Dependingon this order, it is quite
possiblethatnosolutionis foundalthoughthereexistsone.

The other decoupledapproachis the so-calledpath coordination method[19],
wherethe robotsplan their pathsindependently(seeFigure3), andafterwardscoor-

Fig.3. Pathsplannedin adecoupledapproach

dinatetheir movementswithout leaving their plannedpaths.As is obvious from this
example,thereis achancethatthetwo robotscollide if they follow theirplannedpaths
without coordination.What we needhereis a collision-freeschedulethe robotscan
follow. For two robots,this problemcanbe solved usingso-calledcoordination dia-
grams, astheoneshown in Figure4. While this coordinationdiagramshows thatwith
two robotstheproblemcanbeeasilysolved,it alsogivesa hint thattheproblemmight
becomecomputationallydifficult whenthenumberof robotsincrease.Thegeneralized
coordinationdiagramwould containasmany dimensionsastherearerobots.For this
reason,oftenprioritizationschemesareused[1].

Pathcoordinationis, of course,evenmorerestrictive thantheprioritizedplanning
approachandfor thisreasonmayfind fewersolutions,whichmaybelesscost-effective.
This is indeedthecaseevenin naturalenvironments,ashasbeenshown by Bennewitz
andBurgard[2].
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Fig.4. Coordinationdiagram.The ��� and ��� axesrepresentthelengthrobot1 or robot2, respec-
tively, hasalreadytraveledon therespective plannedpath.Black cells representcollisions.The
bold line shows acollision-freeschedule.

3.2 CooperativePath Planning with only Local Communication

Althoughthedecoupledpathplanningmethodsdo not attemptto control thegroupof
robotsasoneentity– andreducethealgorithmiccomplexity by that– theseapproaches
still presupposethatthereis acentral coordinatorandaglobalcommunicationnetwork.
If oneassumesthatonly local communicationbetweenpairsof physicallycloserobots
is possible,thenthedecoupledapproachesdonotwork.

Similar to the decoupledapproaches,we will assumethat the pathsare planned
independentlyby eachrobot.However, insteadof relying on a centralcomponentthat
dealswith conflicts,wewill now assumethatonly localcoordinationis possible[15].

If two robotsarecloseto eachother, they establishacoordinationlink, whichmeans
that they createa coordinationdiagram,which determinestheir schedule.It now can
happenthat onerobot ( � ) hasto wait for the otherone( � ). Unfortunately, it might
happenthat alsorobot � may have to wait for anotherrobot � , which in turn waits
for � , i.e., we have a deadlock. Thesedeadlockshave, of course,to be detectedand
resolved.Resolutionof a deadlockcanheremeanthat onetries to find an alternative
pathin thecoordinationdiagramor thatanew path(segment)is planned[15]. Theright
tool to useherearedistributedalgorithmsfor deadlockdetectionandresolution[5].

4 RoleAssignmentin Dynamic Envir onments

Theprevioustwo sectionshavefocusedonproblemssuchassensingandpathplanning.
In thesecases,thesolutionsappearedto bevery roboticsspecificandtheoverlapwith
multi-agentsystemseemsto be minimal. However, thereare,of course,othermulti-
robotproblemsthathavea truemulti-agentflavor.

Onesuchproblemis theassignmentof rolesto membersof a group[21]. Suchan
assignmentservesthepurposeof associatingasetof behavioralpatternswith theagents
in order to supportthe coordinationbetweenthe agents.For instance,in soccer, we
distinguishat leastbetweentherolesgoalie, defender, andforward player. Theremay
beadditionalrolessuchasmidfielderandsupporter. In general,we wantto determine
a one-to-onefunction from the setof agents� to the setof roles � . Sometimes,we



may want alsoto considerdifferentsetsof roles,i.e., differentformations. In soccer,
for instance,we may want to dealwith a 4-3-3 anda 3-3-4 formationandto switch
betweentheseformations.

A verysimpleway of dealingwith this problemis to usea fixedassignment,asfor
exampletheCSFreiburg teamdid in 1998[11]. Eachroboticsoccerplayerhasa fixed
role, which hasan associatedhomepositionandan area of competence, asshown in
Figure5.

right defender

left defender

left forward

right forward

goal   keeper

Fig.5. Roleassignmentandareasof competence

Whentheball movesinto suchanareaof competence,therespectiverobotbecomes
activeandtriestomovetheball into thedirectionof theopponentgoal– withoutleaving
its areaof competence.While this strategy doesnot appearto beoptimal,it avoidsthe
problemthata swarmof robotapproachestheball. In fact,only onerobotof theteam
canbeat theball.

However, it is alsoclearthatthis delegationof dutieshasa numberof severeprob-
lems.Firstof all, adefendingrobotscanneverrunwith theball overtheentirefield and
scoreagoal.They alwayshaveto passtheball to a forwardplayer. For thisreason,very
early on a “shouting” protocolwasimplementedthat permitsa robot with the ball to
make a run to theopponentgoalwithout beingstoppedby its own teammembers(see
Figure6).

A seconddisadvantageof the schemedescribedabove is the disjoint decomposi-
tion of thefield. It happenedthat theball wasin oneof thecompetenceareas,but the
respective playerwasunableto go for theball for somereason.Thenno otherplayer
would cometo help this player. This problemcanbe (andhasbeen)solvedby allow-
ing overlapsof the competenceareasandusingthe “shouting” protocolto avoid that
two playersblock eachotherat theball. Finally, thereis theproblemthatoncea robot
breaksdown, its role will not befilled by anotherroboton thefield, evenif therole is
very important.

Although the CSFreiburg teambecameRoboCupworld championof the F2000
leaguein 1998, this was certainly not becauseits role assignmentand coordination
methodweresuperiorto thatof theotherteams.Indeed,therearea numberof issues
onehasto addressin orderto build aflexible androbustteam:
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Fig.6. Shoutingin orderto geta freerun to theopponentgoal

– role assignmentsshouldbe changeddynamicallyto accountfor the currentposi-
tioning andto supportteamreconfigurationsafter the breakdown or removal of
individual teammembers;and

– flexible positioningthattakesinto accounttheentiresituationon thefield.

The latter point hasbeenaddressedby CMUnited's SPAR method[22], a method
that tries to find the optimal position by using a linear programmingmethodgiven
the valuesfor a numberof importantparameterssuchas ball position, position of
teammembers,etc. StoneandVeloso[21] alsoaddressedthe issueof dynamicrole
re-assignments.However, this wasapproachwasbuilt on so-calledlocker roomagree-
ments, i.e.,pre-built plans,andonfilling morepreferablerolesif they arevacant.

A moreflexible schemefor thedynamicassignmentof roleshasbeenproposedand
usedby theARTItaly teamin 1999[4]. They considerrolessuchas

– activeplayer, theplayerwhichpossessestheball or goesto theball;
– supporter, theplayerthatmovesparallelwith theactiveplayer;
– defender, theplayerstayingbehinddefendingthegoal.

Eachagentcancontribute someutility whenfilling a role. For instance,if a robot is
alreadycloseto the defendingposition,it cancontribute a high utility valuewhenit
fills thedefenderrole. If it is closeto theball, it cancontributea high utility valueif it
fills theactiveplayerrole.Eachrobotdeterminestheseutility valuesfor eachrole and
transmitsthecomputedvaluesto all otherrobots.

Therolesfor thefield playersareorderedby importanceandassigneddynamically
(in the importanceorder)to the playerthatcancontributemostby filling the role ac-
cordingto thecomputedvalues.In fact,thisassignmentis donein adistributedmanner,
i.e. eachrobotsdecideson the basisof the receivedutility valueswhich role to take.
This canleadto situations,wherea role is temporarilyfilled by two players.However,
thisdoesnothappenveryoftenandis resolvedaftera fractionof a second[4].

While this schemeappearsto work verywell, its efficiency seemsto rely on order-
ing the rolesby importance.A moregeneralschemewould view the role assignment
problemasanoptimizationproblem,wherewewantto maximizethesocialwelfareof



the entiregroup.While this soundslike a combinatorial,i.e., a computationallydiffi-
cult,problem,it is simplytheproblemof findingamaximalweightedmatch [10], which
canbesolvedin polynomialtime. In theCSFreiburg team,this moregeneralscheme
togetherwith a communicationprotocolfor changingrolesin a consistentmanneris
used[23]. This is complementedby avariantof theSPAR method[22] to find theright
positionfor eachrole.

5 Conclusionsand Discussion:Playing Robotic Soccer

As shouldhavebecomeobviousfrom whathasbeensaidsofar, roboticsocceris a rich
sourceof inspirationfor multi-robotandmulti-agentresearch.It hasalreadyled to the
developmentof a numberof interestingnew methods,andit is anattractive testbedfor
comparingdifferentmethods.

Oneof theinterestingquestionsis in how far themulti-robotandmulti-agentmeth-
odssketchedin theprevioussectionscouldcontributeto creatingacompetitiverobotic
soccerteam.An answerdepends,of course,on what leagueonehasin mind. In the
simulationleague, multi-agentconsiderationsaremostprobablyof utmostimportance.
In the real robot leagues,however, the singleagentcapabilitesaremostimportant.If
thesecapabilities(suchassensorinterpretationor ball skills) areflawed,theneventhe
bestcooperationtechniquewill nothelp.However, asmentionedin Section2.2,cooper-
ativesensingcancompensatefor theshortcomingsof sensors.In fact,anumberof goal
scoringattemptsby otherteamscould be stoppedbecauseof the global ball position
estimationtechniqueusedby theCSFreiburg team.

Furthermore,with theincreaseof thesingle-agentcapabilitiesover theyears,coop-
erativebehavior becomesmoreandmoreimportant.Thisdevelopmentis alsomirrored
in theevolution of theCSFreiburg team.While in 1998a robustandaccuratesensor
self-localizationmethodtogetherwith simpleball skills anda very basiccooperation
mechanism(seeSection4) wasenoughto win, teamplay provedto beoneof the im-
portantskills in winning theRoboCupcompetitionagainin 2000[23].
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7. M. A. ErdmannandT. Lozano-Ṕerez.Onmultiplemoving objects.Algorithmica, 2(4):477–
521,1987.

8. D. Fox, W. Burgard,H. Kruppa,andS. Thrun. Collaborative multi-robot localization. Au-
tonomousRobots, 8(3),2000.

9. D. Fox, W. Burgard,andS.Thrun. Markov localizationfor mobilerobotsin dynamicenvi-
ronments.Journalof Artificial IntelligenceResearch, 11:391–427,1999.

10. Z. Galil. Efficient algorithmsfor finding maximummatchingsin graphs.ACM Computing
Surveys, 18:23–38,1986.

11. J.-S.Gutmann,W. Hatzack,I. Herrmann,B. Nebel,F. Rittinger, A. Topor, andT. Weigel.
The CS Freiburg team:Playingrobotic soccerbasedon an explicit world model. TheAI
Magazine, 21(1):37–46,2000.

12. J.-S.Gutmann,T. Weigel,andB. Nebel.Fast,accurate,androbustself-localizationin polyg-
onalenvironments.AdvancedRoboticsJournal, 2001.To appear.

13. D. Guzzoni,A. Cheyer, L. Julia,andK. Konolige.Many robotsmake shortwork: Reportof
theSRI Internationalmobilerobotteam.TheAI Magazine, 18(1):55–64,1997.

14. J. E. Hopcroft, J. T. Schwartz, andM. Sharir. On the complexity of motion planningfor
multiple independentobjects:PSPACE-hardnessfor the`warehousman's problem'. Interna-
tional Journalof RoboticsResearch, 3(4):76–88,1984.
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