
Minimizing Necessary Observations for
Nondeterministic Planning

Robert Mattmüller, Manuela Ortlieb, and Erik Wacker

Research Group Foundations of AI, University of Freiburg, Germany
{mattmuel,ortlieb,wackere}@informatik.uni-freiburg.de

Abstract. Autonomous agents interact with their environments via sen-
sors and actuators. Motivated by the observation that sensors can be
expensive, in this paper we are concerned with the problem of minimiz-
ing the amount of sensors an agent needs in order to successfully plan
and act in a partially observable nondeterministic environment. More
specifically, we present a simple greedy top-down algorithm in the space
of observation variables that returns an inclusion minimal set of state
variables sufficient to observe in order to find a plan. We enhance the
algorithm by reusing plans from earlier iterations and by the use of func-
tional dependencies between variables that allows the values of some
variables to be inferred from those of other variables. Our experimental
evaluation on a number of benchmark problems shows promising results
regarding runtime, numbers of sensors and plan quality.

Keywords: AI planning, nondeterministic planning, partial observabil-
ity, observation actions

1 Introduction

When an autonomous agent interacts with its environment, it does so via sen-
sors and actuators [8]. We consider an agent acting in a partially observable
nondeterministic environment and equipped with an appropriate offline plan-
ning component. In particular, we consider the sensors this agent needs to be
fitted with. Assuming that sensors are expensive, e.g., regarding power consump-
tion, weight, or financially, it can be worthwhile trying to minimize the set of
sensors necessary to solve a certain planning task. For example, it might turn
out that in some specific robotic application, an RGB-D camera can handle all
the observations a laser scanner would be used for, thus obviating the latter.
In this paper, we study the problem of minimizing the set of necessary sensors,
not the problem of minimizing the number of occurrences of observations in a
plan. This makes a difference, since, e.g., excluding a laser scanner from the set
of sensors makes the robot cheaper, but may lead to more complicated behav-
ior and more compensatory observations at runtime. We simplify the problem
by assuming that the amount of sensors needed is proportional to the number
of variables that may have to be observed. Given a planning domain, this re-
duces our problem to finding a minimal set of (schematic) state variables such

that every possible planning task from that domain is solvable if those and only
those (schematic) variables are observable. We further simplify our problem by
searching for sufficient sets of (grounded) state variables on the level of planning
tasks instead of the level of planning domains. Strictly speaking, the resulting
set of state variables is only sufficient for one specific planning task. But if that
task is reasonably chosen (featuring all interesting aspects of the underlying do-
main), the set of observation variables found for that task can again be lifted
to the schematic level of the underlying planning domain. Moreover, searching
for sufficient observation variables on the instantiated level has the advantage of
being more fine-grained than searching on the schematic level. This can poten-
tially show that some ground instances of a predicate are necessary observations,
whereas other ground instances of the same predicate are not necessary, possibly
leading to a more fine-grained choice of sensors. Consider for example a nondeter-
ministic version of the Blocksworld domain where the PutOnBlock(A,B)
actions can have the undesired outcome that the moved block A is dropped to the
table. All other actions are deterministic. If the initial state is completely known,
it turns out that it is sufficient to observe the values of the variables Clear(B)
for all blocks B for which an action PutOnBlock(A,B) occurs in the plan for
some other block A. This is because the initial belief state is a singleton belief
state and whenever a nondeterministic action of the form PutOnBlock(A,B)
is applied to a singleton belief state, the resulting belief state will contain exactly
two world states (one with A on B, the other with A on the table) that can be
distinguished by observing the variable Clear(B). Notice that depending on the
initial and goal state, not all instances of the Clear predicate may have to be
observed, but for all nontrivial tasks, at least one of them has to be. Lifting this
back to the domain level shows that observing the schematic Clear predicate
is sufficient to solve all tasks from this domain. Regarding sensors this means
that it is sufficient to install an overhead camera that is only able to observe
if blocks are clear, but not in which configurations they are stacked. To our
knowledge, there is little previous work on this topic. Huang et al. [5] study the
related problem of finding an approximately minimal set of observation variables
for strong planning, given a set of observation variables V (including possibly
derived variables) and a fixed strong plan π that works under the assumption
that all variables from V are observable. Their algorithm then reduces V to a
sufficient subset for π still to work by first identifying all state pairs that need
to be distinguishable for π to work and then identifying all variables from V
necessary to actually distinguish those. Unlike in their approach, here we retain
flexibility regarding the choice of the plan and allow any (strong cyclic) plan to
be found as long as the observation variables found along with it are sufficient
for the plan to be executable.

2 Preliminaries

We formalize partially observable nondeterministic (POND) planning tasks using
a finite-domain representation for the state variables similar to the formalization

of Ortlieb and Mattmüller [6]. A POND planning task skeleton is a tuple Π =
〈V, B0, B?,A,W〉 consisting of the following components: V is a finite set of
state variables v, each with a finite domain Dv and an extended domain D+

v =
Dv] {⊥}, where ⊥ denotes the undefined or don’t-care value. A partial state
is a function s with s(v) ∈ D+

v for all v ∈ V. We say that s is defined for
v ∈ V if s(v) 6= ⊥. A state is a partial state s such that its scope scope(s) = {v ∈
V | s(v) 6= ⊥} is V. The set of all states s over V is denoted as S, and the set of all
belief states B over V is denoted as B = 2S . Depending on the context, a partial
state sp can be interpreted either as a condition, which is satisfied in a state s
iff s agrees with sp on all variables for which sp is defined, or as an update on a
state s, resulting in a new state s′ that agrees with sp on all variables for which
sp is defined, and with s on all other variables. The initial belief state B0 and the
goal description B? of a task skeleton are both belief states. A belief state B is a
goal belief state iff B ⊆ B?. A is a finite set of actions of the form a = 〈Pre,Eff 〉,
where the precondition Pre is a partial state, and the effect Eff is a finite set
of partial states eff , the nondeterministic outcomes of a. The application of a
nondeterministic outcome eff to a state s is the state app(eff , s) that results
from updating s with eff . The application of an effect Eff to s is the set of
states app(Eff , s) = {app(eff , s) | eff ∈ Eff } that might be reached by applying
a nondeterministic outcome from Eff to s. An action is applicable in a state s
iff its precondition is satisfied in s, and it is applicable in a belief state B if it is
applicable in all s ∈ B. Actions are applied in belief states and result in belief
states. The application of an action in a belief state B is undefined if the action
is inapplicable in B. Otherwise, the application of an action a = 〈Pre,Eff 〉 to B
is the set app(a,B) = {app(eff , s) | eff ∈ Eff , s ∈ B}. Finally, W ⊆ V is the set
of variables that are possibly observable.

A POND planning task skeleton still lacks observations, which we define next.
An observation is simply a variable o ∈ W. The application of an observation o
to B is the set of nonempty belief states that result from splitting B according
to possible values of o, i.e., app(o,B) = {{s ∈ B | s(o) = d} | d ∈ Do} \ {∅}.
Now, a POND planning task is a tuple Π[O] = 〈Π,O〉 consisting of a POND
planning task skeleton Π and a finite set of observations O. All actions and
observation applications have unit cost. We will sometimes abuse notation and
refer to a planning task by Π as well. POND planning tasks as defined above
induce nondeterministic transition systems where the nodes are the (reachable)
belief states and where there is an arc from a belief state B to a belief state B′

labeled with an action a (or observation o) iff a (or o) is applicable in B and
B′ = app(a,B) (or B′ ∈ app(o,B)). Given a POND planning task, we seek a
strong cyclic plan [2] solving the task, i.e., a partial mapping π from belief states
to applicable actions or observations such that for all belief states B reachable
from the initial belief state B0 following π, B is either a goal belief state, or π is
defined for B (π is closed) and at least one goal belief state is reachable from B
following π (π is proper). For a plan π, by Bπ we denote the set of belief states
for which π is defined, i.e., the set of non-goal belief states reachable following
π, including the initial belief state.

3 Minimizing Necessary Observations

We can formalize the problem of finding minimal sets of observations sufficient
to solve a planning task either in terms of cardinality minimality or of inclusion
minimality. For cardinality minimality, we get the following search problem.

Problem 1 (ObserveCardMin).
Input: A POND planning task skeleton Π = 〈V, B0, B?,A,W〉.
Output: A cardinality minimal set of observations O ⊆ W for Π such that

there exists a strong cyclic plan for Π[O], or None if no such set O exists.

To classify the problem ObserveCardMin complexity theoretically, we need
a theorem by Rintanen.

Theorem 1 (Rintanen, 2004 [7]). The strong cyclic plan existence problem
for POND planning, PlanExPOND, is 2-Exptime-complete. ut

Rintanen’s formalism differs slightly from ours in that his variables are propo-
sitional instead of finite-domain, that he encodes initial and goal states symbol-
ically using formulas, and that he allows conditional effects. Neither of those
differences affects the 2-Exptime-completeness result. Using Rintanen’s result,
we can immediately prove the following theorem.

Theorem 2. ObserveCardMin is 2-Exptime-complete.

Proof. To show that ObserveCardMin is 2-Exptime-hard, we polynomially
reduce PlanExPOND to ObserveCardMin. POND planning tasks in the
sense of PlanExPOND have exactly the same form as our POND planning
tasks skeletons Π = 〈V, B0, B?,A,W〉. Viewing such a POND planning task Π
as an input to ObserveCardMin, we see that the output of ObserveCardMin
is different from None iff Π is a positive instance of PlanExPOND. To see
that ObserveCardMin ∈ 2-Exptime, we have to give a 2-Exptime algorithm
solving the problem. The näıve algorithm that iterates over all (exponentially
many) candidate subsets O ⊆ W, tests whether Π[O] is solvable, and returns
a cardinality minimal set O for which this is the case, is such an algorithm,
because each test if Π[O] is solvable is in 2-Exptime according to Theorem 1,
and at most exponentially many such tests have to be performed. ut

For inclusion instead of cardinality minimality we get a similar result.

Problem 2 (ObserveInclMin).
Input: A POND planning task skeleton Π = 〈V, B0, B?,A,W〉.
Output: An inclusion minimal set of observations O ⊆ W for Π such that

there exists a strong cyclic plan for Π[O], or None if no such set O exists.

Theorem 3. ObserveInclMin is 2-Exptime-complete.

Proof. Similar to proof that ObserveCardMin is 2-Exptime-complete. ut

Clearly, cardinality minimal solutions are also inclusion minimal, but not
every inclusion minimal solution is also cardinality minimal. Although both Ob-
serveCardMin and ObserveInclMin are 2-Exptime-complete, we expect
ObserveCardMin to be even more challenging in practice, since, in the worst
case, the complete space of subsets of W has to be exhausted, whereas for Ob-
serveInclMin a greedy top-down or bottom-up search in the space of those
subsets is sufficient. Therefore, in the following we restrict our attention to prac-
tically solving ObserveInclMin.

3.1 Greedy Top-Down Search

When looking for minimal sets of observations, we can restrict our attention to
variables that may ever need to be observed because they are either unknown
initially or for which there is an action that makes them unknown.

Definition 1. Let B be a belief state, v ∈ V a variable, and a = 〈Pre,Eff 〉 ∈ A
an action. Then
1. v is known in B iff there exists a value d ∈ Dv such that s(v) = d for all

states s ∈ B.
2. a makes v unknown iff there are two nondeterministic effects eff , eff ′ ∈ Eff

such that eff (v) = d for some value d ∈ Dv with d 6= Pre(v) and eff ′(v) 6= d.
3. v may need to be observed iff v is not known in the initial belief state B0 or

there exists an action a ∈ A that makes v unknown.

Since whenever Π[O] is solvable, also Π[O∗] is solvable, where O∗ is the set
of all v ∈ O that may need to be observed, for the rest of this paper we assume
that all v ∈ W may need to be observed.

Algorithm 1 shows a simple greedy algorithm that solves ObserveInclMin.

Algorithm 1 Simple Greedy Algorithm for ObserveInclMin

1: function simpleGreedySearch(Π):
2: if Π[W] is unsolvable then
3: return None
4: Compute some plan π for Π[W]
5: Let O be the set of variables actually observed in π
6: Let O′ = O
7: for all o ∈ O′ do
8: if Π[O \ {o}] is solvable then
9: Set O to O \ {o}

10: return O

It is obvious that Algorithm 1 runs in doubly exponential time. We can also
prove correctness of the algorithm.

Theorem 4. Algorithm 1 correctly solves problem ObserveInclMin.

Proof. Clearly, Algorithm 1 returns None iff no setO ⊆ W exists such thatΠ[O]
admits a strong cyclic plan. If there is a solution, then to see that Algorithm 1
returns an inclusion minimal set O ⊆ W such that Π[O] admits a strong cyclic
plan, we have to show that Π[O] is solvable and that Π[O′] is unsolvable for
all proper subsets O′ (O. Let O0 be the set of observation variables computed
in line 5 and o1, . . . , on be the order in which O0 is traversed by the algorithm,
and let Oi be the set O after the i-th iteration, i = 1, . . . , n. The fact that
Π[O] is solvable follows inductively from the fact that Π[O0] is solvable and
that Oi+1 6= Oi only if Π[Oi+1] is still solvable. To see that Π[O′] is unsolvable
for all proper subsets O′ (On, let oi ∈ On. Then in the i-th iteration, oi
was not removed, because Π[Oi−1 \ {oi}] would have been unsolvable. But since
On ⊆ Oi−1 and hence On \ {oi} ⊆ Oi−1 \ {oi}, also Π[On \ {oi}] would be
unsolvable (since removing observations only reduces solvability). ut

Algorithm 1 is simple, but quite inefficient. Specifically, when testing if the
task remains solvable after deleting a variable (line 8), no plan information from
the previous step is reused. In the next subsection, we investigate the reuse of
portions of plans not affected by making a particular variable unobservable.

3.2 Plan Reuse

Suppose we know a plan π for Π[O] and want to test if there also exists a plan
for Π[O \ {o}] for some o ∈ O. Instead of replanning, we can try to reuse the
portions of π before the first splits of belief states with respect to o.

Let π : Bπ → A∪O be a plan forΠ[O], and let o ∈ O. Then by knownpos(π, o)
we refer to the set of all belief states B ∈ Bπ ∪ {app(π(B′), B′)) |B′ ∈ Bπ}
such that v is known in B, and by safepos(π, o) to the set of all belief states
B ∈ knownpos(π, o) that are reachable from B0 following π along paths passing
exclusively through belief states in knownpos(π, o). By gaps(π, o) we refer to
those B ∈ safepos(π, o) that (a) are not goal belief states, (b) for which the
successor belief state B′ = app(π(B), B)) following π is not in knownpos(π, o),
and (c) there exists a path from B to a goal belief state following π such that
some action along that path is the observation of o. Intuitively, gaps(π, o) is the
set of belief states that form the fringe between the portion of the plan π that
we can reuse and the portion we need to recompute. In Algorithm 2 we will
iteratively fill those gaps, starting from shallow ones and working our way down
to the deeper ones. To that end, we associate with each belief stateB ∈ gaps(π, o)
a value depth(B) that denotes the length of the shortest execution sequence of
actions (and observations) leading from B0 to B following π. By πo we denote
the part of π that lies before gaps(π, o). More formally, we can view π as a set of
pairs (B, a), where B is a belief state and a = π(B) is an action or observation.
Then such a pair from π is also contained in πo if B ∈ safepos(π, o) \ gaps(π, o).
We call πo the plan π restricted to safe prefixes with respect to o.

For all gap belief states B ∈ gaps(π, o), in order to replan for B we need to
solve the planning task that is like Π[O \ {o}], but with its initial belief state
replaced by B. We refer to a planning task skeleton (or a planning task) Π with

initial belief state replaced by B as Π〈B〉. Therefore, the task we have to replan
for is Π[O \ {o}]〈B〉. Algorithm 2 shows a greedy algorithm with plan reuse to
(approximately) solve ObserveInclMin.

Algorithm 2 Greedy Algorithm with Plan Reuse for ObserveInclMin

1: function greedySearchWithPlanReuse(Π):
2: if Π[W] is unsolvable then
3: return None
4: Compute some plan π for Π[W]
5: Let O be the set of variables actually observed in π
6: Let O′ = O
7: for all o ∈ O′ do
8: Let G be gaps(π, o)
9: Let πo be the plan π restricted to safe prefixes with respect to o

10: Set allGapsFillable to true
11: while G 6= ∅ and allGapsFillable do
12: Pick B ∈ G with minimal depth(B) and remove it from G
13: if Π[O \ {o}]〈B〉 is solvable with plan πB

−o then
14: Merge πB

−o into πo (resulting in updated πo)
15: Trace πo and retain in G only those belief states that are non-goal
16: belief states reachable following πo for which πo is undefined.
17: if G = ∅ then
18: Set O to O \ {o}
19: Set π to πo

20: else
21: Set allGapsFillable to false

22: return O

Like Algorithm 1, Algorithm 2 first tests for solvability, computes an initial
plan, and then iteratively tries to remove variables from the observation set O.
Unlike Algorithm 1, when testing if o can be removed, it determines the gaps
in π that arise if o is no longer observable and that need to be filled using
new subplans. It also identifies the portion πo of π that can be reused as it
does not depend on o. If at least one gap cannot be filled, o is retained and
the next observation variable is considered (line 21). In order to fill one gap
B, a plan πB−o for Π[O \ {o}]〈B〉 is computed. This plan πB−o is then merged
into πo (line 14), which means that all entries from πB−o are added to πo, and if
both πo and πB−o contain an entry for the same belief state B′, then the entry
from πB−o is used and that from πo is overridden. More formally, in line 14 we
set πo to πo ⊕ πB−o, where (πo ⊕ πB−o)(B′) = πB−o(B

′) if πB−o(B
′) is defined, and

(πo⊕πB−o)(B′) = πo(B
′), otherwise. In line 15/16, the algorithm removes from G

all gaps that were “accidentally” closed by πB−o and need not be considered any
longer, i.e., all gaps B′ for which πB−o is defined, as well as all gaps “accidentally”
circumvented by πB−o by a different choice further up in the plan. Finally, if no
gaps are left, o is removed from O, π is set to πo, and the next observation

variable is considered. Notice that traversing the gaps from shallow to deep is
only used as a heuristic and not strictly necessary for the algorithm.

Regarding runtime, it is obvious that the POND planning steps that take
doubly exponential time in the worst case still dominate the overall runtime,
and that at most exponentially many such planning steps are necessary. All
other computations are cheaper than 2-Exptime. Therefore, Algorithm 2 runs
in doubly exponential time. We still need to show that the final plan π is really
a strong cyclic plan for the task Π[O] with the final set O, and we have to
reason about inclusion minimality of O. We first give an example showing that
the returned set O is in general not inclusion minimal, and that the fact that we
consider the removal of each observation variable only once is not the culprit.
Instead, the reason is that some gap B might not be fillable without observing
variable o, but completely replanning without observing o is possible and B
simply does not occur in a completely replanned solution.

Example 1. Consider the planning task skeleton Π = 〈V, B0, B?,A,W〉 with
V = {a, b, c} and Dv = {0, 1} for all v ∈ V. For ease of notation, we write (belief)
states and preconditions as Boolean formulas over V, and nondeterministic effects
as sets of such formulas. Furthermore, B0 = ¬a∧¬b∧¬c, B? = c,W = {b}, and
A = {a1, a2, a3, a4}, where a1 = 〈¬a, {a}〉, a2 = 〈¬b, {b,>}〉, a3 = 〈b, {c}〉, and
a4 = 〈¬a ∧ ¬b ∧ ¬c, {c}〉. A solution π for Π[W] is depicted on the left below.

¬a ∧ ¬b ∧ ¬c

a ∧ ¬b ∧ ¬c

a∧¬b∧¬c∨
a∧ b∧¬c

a ∧ b ∧ ¬c

a ∧ b ∧ c

a1

a2

obs b

obs b

a3

¬a ∧ ¬b ∧ ¬c

¬a ∧ ¬b ∧ c

a4

When b is made unobservable, we seek a plan for Π[∅]. We can reuse the first
two belief states from π up to the (only) gap state marked in gray. However,
replanning with initial belief state a∧¬b∧¬c without observing b will fail, since
each action that makes c true needs b to be known or a to be false, neither
of which can be accomplished from a ∧ ¬b ∧ ¬c without observing b. Therefore,
Algorithm 2 will return O = {b}, whereas O∗ = ∅ would be an inclusion minimal
solution, as witnessed by the plan in the right-hand part of the figure above. ut

Therefore, in order to find inclusion minimal observation sets, one would still
have to run Algorithm 1 initialized with the output of Algorithm 2. Next, we
show that Algorithm 2 returns a valid solution.

Theorem 5. Assume Π[W] is solvable and let π and O be the plan and the set
of observation variables at termination of Algorithm 2. Then π is a strong cyclic
plan for Π[O].

Proof. Let O0 be the set of observation variables used in the initial plan π0, let
o1, . . . , on be the order in which O0 is traversed by the algorithm, let Oi be the
set O after the i-th iteration, i = 1, . . . , n, and πi the corresponding plan.

We show the claim by induction over i. The induction base is obvious, since
π0 is a strong cyclic plan for Π[O0] by construction. For the inductive step
from i to i + 1, there are two cases. If Oi+1 = Oi, then also πi+1 = πi and
vice versa. Since πi is a plan for Π[Oi], also πi+1 is a plan for Π[Oi+1]. The
more interesting case is the one where Oi+1 = Oi \ {oi+1}. We have to show
that after all gaps are filled, the resulting composite plan solves Π[Oi+1]. Let
B1
i , . . . , B

k
i ∈ G be the set of all gaps that actually get filled, in that order

(some gaps might be skipped if they are accidentally filled or avoided before the

algorithm would explicitly take care of them). Let πij := π
Bj

i
−oi+1

, j = 1, . . . , k, be

the corresponding plans to fill the gaps, and let πio := πioi+1
. Then the resulting

plan πi+1 is (. . . (πio⊕πi1)⊕. . .)⊕πik. We have to show that πi+1 is a strong cyclic
plan for Π[Oi+1]. It is clear that πi+1 does not observe any variable outside Oi,
and also it does not observe oi+1 by construction. What is left is showing that
πi+1 is closed and proper. To see this, notice that by construction each execution
of πi+1 starts out as an execution of πio (for zero or more steps), then possibly
executes πi1 (for zero or more steps), then πi2 and so on, with lower indices j of
the executed subplan πij only increasing. Eventually, it only follows πio or πij for

some maximal j ≤ k. Since πi and all πij , j = 1, . . . , k, are closed and proper,

the same holds for πi+1. This concludes the proof. ut

3.3 Use of Functional Dependencies

We discuss one more way to speed up Algorithm 1 or 2, a preprocessing step
that discards potential observation variables o whose value can be derived from
the values of other observation variables. For our purpose, in order to discard
o, it is sufficient that there are observation variables o1, . . . , on that are not
discarded and a function f :

∏n
i=1Doi → Do such that for all world states s in

all belief states B encountered following π, s(o) = f(s(o1), . . . , s(on)). For states
not encountered following the plan, this equality does not necessarily have to
hold. We call a tuple F = (o, {o1, . . . , on}, f) with this property a functional
dependency in π, head(F) = o the head of F , body(F) = {o1, . . . , on} the body of
F , and fun(F) = f the function of F . We call a set of functional dependencies
F acyclic if there are no F1, . . . , Fk ∈ F such that head(Fi) ∈ body(Fi+1) for
all i = 1, . . . , k − 1 and head(Fk) ∈ body(F1). Given a plan π that observes only
variables in O and an acyclic set of functional dependencies F = {F1, . . . , Fm} in
π such that (a) for all F, F ′ ∈ F , head(F) /∈ body(F ′) (if F is acyclic, this can be
assumed without loss of generality), (b) for all F 6= F ′ ∈ F , head(F) 6= head(F ′),
and (c) for all F ∈ F , body(F) ⊆ O, every occurrence of an observation o in π

such that o = head(F) for some F ∈ F can be replaced by successive observations
of (a subset of) the observation variables in body(F). This produces a new plan
πF that observes only variables in O \ {head(F) |F ∈ F}.

We can extend Algorithms 1 and 2 accordingly as follows: After comput-
ing some plan π for Π[W], find an acyclic set of functional dependencies F
in π with properties (a), (b) and (c) as above and replace π with πF . In our
implementation, we use a simplified version of this idea: We only identify sets
X of Boolean observation variables such that in each state reachable with π,
exactly one X ∈ X is true. Each such set X = {X1, . . . , Xk} induces k func-
tional dependencies F1, . . . , Fk, where Fi = (Xi,X \Xi, f), i = 1, . . . , k, where
f(x1, . . . , xk−1) = 1 if x1 = · · · = xk−1 = 0, and f(x1, . . . , xk−1) = 0, otherwise.
Regarding computation of such sets X1, . . . ,Xn, for all subsets of Boolean vari-
ables we test whether they satisfy the desired mutex property. Candidate sets
that obviously cannot satisfy it (after inspection of the reachable states) are not
generated. From the functional dependencies induced by the remaining sets X ,
we keep an acyclic (but not necessarily maximal) subcollection F as above.

4 Experiments

We implemented Algorithms 1 and 2 on top of the myND planner [6] that uses
LAO* search [3] guided the FF heuristic [4] applied to sampled world states of
the belief state to be evaluated. Belief states and transitions between them are
represented symbolically using BDDs [1]. Our benchmark domains are POND
versions of the IPC domains Blocksworld and FirstResponders as well as
the TidyUp domain concerned with a robot tidying up a number of tables in a
number of rooms.

Figure 1 shows the runtimes until the final set of observation variables has
been found. We used a memory limit of 8 GB and a time limit of 30 minutes
per task. The first six instances on the x-axis are our Blocksworld instances,
the next 15 are from the FirstResponders domain, and the remaining ones
are from the TidyUp domain, sorted by difficulty per domain. We can see that
the plan reuse from Algorithm 2 clearly pays off compared to the simple greedy
algorithm. Use of functional dependencies leads to little extra time savings, ex-
cept for some of the harder TidyUp instances. Figure 2 shows the cardinalities
of the sets of observation variables |W| before and |O| after minimization, with
the x-axis as before. In principle, different inclusion minimal sets are incompa-
rable cardinality-wise, but in our experiments the three configurations shown
in the figure agreed on the sizes of the sets found. In particular, the problem
from Example 1 does not occur here. The initial observation set cardinalities the
algorithm starts with are 36 for all Blocksworld instances, between 7 and 39
for FirstResponders, and between 7 and 25 for TidyUp.

We also conducted an experiment measuring the expected numbers of actions
and observations necessary to reach a goal using the different intermediate plans
πi, expecting that plans with fewer allowed observations would tend to lead
to longer execution sequences due to the need to replace simple, but forbidden

0 5 10 15 20 25 30 35

101

102

103

Task ID

T
im

e
(s

ec
)

Gr

Gr+PR

Gr+PR+FD

Fig. 1. Overall runtime needed for finding final observation set. Legend: Gr = greedy,
PR = plan reuse, FD = functional dependencies.

0 5 10 15 20 25 30 35
0

10
20
30
40

Task ID

C
a
rd

in
a
li
ty |W|

|O|

Fig. 2. Cardinalities of the observation sets before and after minimization.

observations by longer observation sequences. In a few instances we saw evidence
supporting this (e.g., in one of the Blocksworld instance, the expected plan
steps increases from 34 to 65.5), but this is an exception, and across all instances
expected execution steps mostly stay the same or increase only minimally.

Finally, it is interesting to see which sets of variables are typically left as
observation variables having domain knowledge in mind: In Blocksworld, in
most of the runs most of the remaining predicates are instances of the OnTable
predicate, followed by occasional uses of the Clear predicate as predicted in
the example in the Introduction. Both of these predicates on their own are
sufficient. In FirstResponders, we get an even clearer picture: Fires always
need to be observed in order to make sure they are eventually extinguished.
In all but one FirstResponders instance, nothing else but Fire predicates
are observed, the only exception being the only task in which there is no road
from a victim’s location to a hospital, which necessitates treating him on scene.
For that, observing his VictimStatus is identified as being necessary. In the
TidyUp domain, we always get one sensing action for the status of the grippers,

one for whether each relevant table is clean, one for each relevant door state
(open or closed), one for the robot location, and one for each relevant cup on
any of the tables.

5 Conclusion and Future Work

We presented an asymptotically optimal greedy top-down baseline algorithm
for finding inclusion minimal observation sets and extended that algorithm by
reusing plans from earlier iterations and using functional dependencies between
observation variables. Our experiments showed superiority of the extended al-
gorithm over the baseline algorithm in terms of runtime, whereas observation
variable sets and strong cyclic plans of similar quality are generated.

For future work, we plan to complement the top-down procedure with a
bottom-up procedure and to investigate variable ordering heuristics for the it-
eration over candidate variables for removal (based on an analysis of nonde-
terministic outcomes of operators, giving preference to more volatile variables).
Moreover, we want to study the same problem on the domain instead of planning
task level.

Acknowledgments. This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative Research Cen-
ter “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS, see http://www.avacs.org).

References

1. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35(8), 677–691 (1986)

2. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic
planning via symbolic model checking. Artificial Intelligence 147(1–2), 35–84 (2003)

3. Hansen, E.A., Zilberstein, S.: LAO*: A heuristic search algorithm that finds solu-
tions with loops. Artificial Intelligence 129(1–2), 35–62 (2001)

4. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

5. Huang, W., Wen, Z., Jiang, Y., Wu, L.: Observation reduction for strong plans. In:
Proc. 20th International Joint Conference on Artificial Intelligence (IJCAI 2007).
pp. 1930–1935 (2007)

6. Ortlieb, M., Mattmüller, R.: Pattern-database heuristics for partially observable
nondeterministic planning. In: Proceedings of the 36th German Conference on Ar-
tificial Intelligence (KI 2013). pp. 140–151 (2013)

7. Rintanen, J.: Complexity of planning with partial observability. In: Proc. 14th In-
ternational Conference on Automated Planning and Scheduling (ICAPS 2004). pp.
345–354 (2004)

8. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Edu-
cation, third edn. (2010)

