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Abstract

Semantic attachments improve the applicability of symbolic planning systems to real world
problems, by incorporation low-level algorithms directly into the high-level reasoning pro-
cess. The Temporal Fast Downward (TFD) planning system implements this concept by
providing a generic interface for data exchange between its internal state and external
modules. However, due to its generic nature, the interface is ine�cient and cumbersome
to use.

In this Thesis we present the Object-oriented Planning Language. We demonstrate how
a domain-speci�c module interface can be generated from a planning task described in
OPL. We show, how the domain-speci�c interface is integrated into the planning system,
without compromising the domain-independence of the TFD. We conduct experiments to
show compare the e�ciency of our novel approach to the current TFD module interface.

Abstrakt (German)

Semantische Anhänge erhöhen den Nutzen von Symbolischen Planungssystemen beim
Einsatz in realistischen Planungsproblemen, indem sie spezialisierte low-level Algorith-
men direkt in die symbolische Planung mit einbeziehen. Das Temporal Fast Downward
(TFD) Planungssystem implementiert dieses Konzept: es stellt eine Schnittstelle zur Ver-
fügung, über die externe Prgramme mit dem Planner kommunizieren können. Jedoch
muss die Schnittstelle allgemeingültig sein und ist daher ine�zient und kompliziert in der
Verwendung.

In dieser Arbeit stellen wir die Object-oriented Planning Language (OPL) vor. Wir
demonstrieren, wie aus einer Problembeschreibung in OPL eine and das Problem angepasste
Schnittstelle automatisch generiert werden kann. Wir zeigen, wie diese Schnittstelle in das
TFD Planungssystem integriert werden kann, ohne dessen Allgemeingültigkeit in Mitlei-
denschaft zu ziehen. Wir führen experimente durch, um die E�zienz unseres neuartigen
Ansatzes mit der bestehenden Implementierung zu vergleichen.
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1 Introduction

In recent years, autonomous robots have become capable of executing increasingly complex
tasks. As the task complexity grows, it becomes more di�cult to foresee every possible
situation and encode it into the control software of the robot. Finite state automate, a
popular choice to encode the mission of an autonomous robot, are di�cult to maintain
and to modify, once a certain level of complexity is reached. A more dynamic system is
required, that can easily be extended and adopted according to the mission speci�cation.
The techniques employed in automated planning systems could o�er a solution.

The arti�cial intelligence community made signi�cant progress in the past decade. In-
ternational planning competitions have fueled the development of e�cient planning algo-
rithms that produce plans of high quality. The e�ciency of such planing systems results
from a highly abstract representation of the planning task. However, the high level of
abstraction hinders the application of AI planning systems to real world planning tasks.

For instance, consider an autonomous robot with the task to fetch an item from a di�erent
room. A symbolic planning system can easily determine the order of actions necessary
to ful�ll the task: move to the other room, �nd requested item, pick it up and return to
starting room. However, it is impossible for the planning system to determine, whether a
valid path can be found to the speci�ed room. It just assumes, that the robot is able to
�nd such a path, when the plan is executed. Therefore, the quality of the plans produced
by a symbolic planning system is often insu�cient for real world applications.

The concept of semantic attachments promises to bridge the gap between high level plan-
ning systems and real world applications. Semantic attachments allow a high-level plan-
ning system to solve sub-problems using a specialized low-level algorithm during the
planning process. In the example discussed above, the planning system can invoke the
path planning algorithm of the robot during the planning process to determine whether
a valid path exists to the speci�ed room. This increases the quality of generated plans
signi�cantly and reduces the need for re-planning.

To demonstrate the bene�ts of semantic attachments, they were incorporated into the
Temporal Fast Downward (TFD) planning system. The TFD is capable of solving
planning problems in temporal and numeric domains. In order to preserve domain-
independence, the TFD implements a generic, domain-independent interface, which is
responsible for the exchange of data between the internal planning state and external
applications. However, the generic nature of the interface imposes restrictions on its
usability: the exchange of state information between planning system and an external
application is ine�cient and the interface is di�cult to implement to correctly.

In this Thesis we propose a solution that improves the e�ciency and usability of the
module interface. We introduce the Object-oriented Planning Language (OPL). The main
feature of OPL is an automated generation of a domain-speci�c module interface, based
on the de�nitions in the planning domain. The interface provides external applications
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with a type safe and e�cient access to the internal state of the planning system. We
integrate OPL into the TFD, without compromising the domain-independent nature of
the underlying planning system. We provide tools to translate planning task de�nitions
in OPL into the Planning Domain De�nition Language (PDDL), the de facto standard
language of the AI planning community. Therefore, OPL can be easily integrated into a
planning system capable of parsing PDDL; an OPL parser is not necessary. In addition,
we believe the object-oriented syntax of OPL lowers the learning curve for application
developers who have no prior experience with symbolic planning.

This Thesis is structured as follows: First, we brie�y discuss related work in chapter two.
Section three gives a basic introduction to planning task descriptions for classical and
temporal domains. The syntax of the Domain De�nition Language is introduced with a
focus on the integration of external algorithms into the task description. In section four we
take a look at the Temporal Fast Downward planning system, with focus on the internal
representation of the planning task and the integration of external modules into the search
process. Section �ve presents our contribution, the Object-oriented Planning Language.
In section six we discuss the generation of the domain speci�c module interfaces for the
TFD planning system. We present experimental results of our proposed module interface
and compare them to the current module interface of the TFD. In section eight, we draw
conclusion and discuss future work.

2 Related Work

In this section we brie�y examine work related to the �eld of the combination of symbolic
planning with external algorithms.

2.1 PDDL

• The Planning Domain De�nition Language (PDDL) is considered the standard lan-
guage of the AI planning community. The �rst version of PDDL was released in 1998
by [Drew McDermott, 1998], as an attempt to create a standard language for speci-
fying planning tasks. From the beginning PDDL was developed with �exibility and
extensibility in mind: individual features can be enabled as required. Planning sys-
tems are not required to implement the full PDDL speci�cation, a specialization is
possible. Initially, only Boolean predicates were supported. Moved by considerable
interest in AI planning solutions for real world problems, PDDL 2.1 was introduced
for the third International Planning Competition held in 2002 to represent temporal
and numeric planning tasks. For the IPC in 2008 PDDL 3.1 added concise �nite-
domain state variables ([Malte Helmert, 2009]), which increase the performance of
planning systems signi�cantly.

• To move AI planning methods closer to real world planning tasks, semantic attach-
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ments were proposed by [Dornhege et al., 2009]. Symbolic planning systems rely on
high-level abstractions to increase the e�ciency of the planning process. However,
the resulting plans often fail in the real world. Using semantic attachments, low-
level algorithms can be incorporated into the high-level planning planning process.
For instance, external algorithms consider geometrical constraints, which can not
be represented in the symbolic planning systems. The work in Thesis aims to im-
prove the method of integration between the symbolic planning system and external
algorithms.

2.2 Planning Systems

• The Fast Downward (FD) planning system is a classical planner, based on heuristic
forward search. Initially, it was developed according to the speci�cation of PDDL
2.2 by [Malte Helmert, 2006]. The FD combines hierarchical problem decomposition
with a causal graph heuristic. Starting a the top of the causal graph a problem is
decomposed recursively, until the resulting sub-problems are basic graph search
tasks. The FD proved its approach to be successful by winning the propositional,
non-optimization track of IPC 2004.

• The Temporal Fast Downward planning system is the adaptation of the classical
FD planning system to temporal domains by [Eyerich et al., 2009]. The TFD is
capable of performing a search in temporal search space using the context-enhanced
additive heuristic. According to the rating scheme of the IPC 2008, the TFD out
performs all other temporal planning systems. In 2009 semantic attachments were
successfully integrated into the TFD. The work in this Thesis aims to improve
the current implementation of semantic attachments, by improving the e�ciency of
information exchange between the internal planning state of the TFD and external
applications.

2.3 Applications

• [Wurm et al., 2010] present a solution to multi-robot exploration tasks with teams of
marsupial robots. They combine a classical path planner with a temporal symbolic
planner using semantic attachments. The work in this Thesis reduces the e�ort
required for the integration of external low-level algorithms with a symbolic planner.

• [Kleiner and Dornhege, 2009] solve mobile manipulation tasks, by decomposing the
manipulation problem into a geometric and a symbolic part. For the symbolic part
the TFD planning system is used, while a probabilistic road-map planner is employed
to solve the geometrical part. Both parts are tightly integrated using semantic at-
tachments. The work in this Thesis reduces the e�ort required for the integration of
geometric planner with symbolic planner, by providing tools to generate an interface
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for e�cient data exchange.

3 Domain-Independent Planning

In this chapter a short overview is given of how planning problems can be represented
in symbolic logic. Section 3.1 de�nes the basic concept of Symbolic Planing. Section
3.2 shows how these concepts are realized in the Planning Domain De�nition Language
(PDDL) and de�nes the terminology used throughout this Thesis. Section 3.3 explains
the bene�ts of including external algorithms into a symbolic planning system and how
this is handled in PDDL.

3.1 Planning Tasks

In this section the elements of a planning task are described. An example of a plan-
ning task is de�ned, to help a reader unfamiliar with symbolic planing understand the
concepts.

A planning task consist of a domain and a problem de�nition. The domain de�nition
contains general knowledge relevant to the planning scenario; it contains facts and rules:

• Facts describing properties of objects are called predicates. The state of our example
task contains two predicates:

persons are either outside or inside

doors are either open or closed

• Rules describing how facts change are called actions. An action consist of a condi-
tion and an e�ect. If the condition is ful�lled by the state, the action can be applied.
Once an action is applied to the state, it changes predicates according to its e�ect.
In our example task, we de�ne two actions:

a person moves inside through a door

condition: the door is open and the person is outside

effect: the person is inside

a person opens a door

condition: the door is closed

effect: the door is open

The problem de�nition speci�es one particular instance of the planning task; it contains
an initial state and a goal condition.
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• The initial state describes the values of facts before the planning process begins.
In our example, we create a person called Anthony and a door named FrontDoor.
Anthony is outside and the FrontDoor is closed.

Antony is a person

FrontDoor is a door

Antony is outside

FrontDoor is closed

• The goal condition describes the desired values some facts must have to solve the
planning task successfully. In our example we want Anthony to be inside.

Antony is inside

A valid plan consist of a sequence of actions that transforms the initial state into a state
satisfying the goal condition. For this example there is only one valid plan, as shown
below, but in general, there are many valid plans for one planning task.

Anthony opens FrontDoor

Anthony moves inside through FrontDoor

So far, we have no notion of time in our planning tasks. This is called Classical Symbolic
Planning. However, planning tasks in the real world often require temporal information
to �nd a good plan. To incorporate temporal information into our plan description we
add a duration to each action. The e�ects of our actions can now be applied at the
start of an action or at the end: the temporal quali�er at start and at end specify when
each e�ect occurs. Conditions can even have a third quali�er: over all signi�es, that a
condition must hold while the action is in progress. The following listing shows the two
actions from our planning task with speci�ed durations.

a person moves inside through a door

duration: 10

condition: at start: the door is open and

at start: the person is outside

effect: at end: the person is inside

a person opens a door

duration: 30

condition: at start: the door is closed

effect: at end: the door is open

In the temporal domain, a valid plan speci�es the start time of each action. The duration
of a plan is called make-span. It is a measure for the quality of the plan. For instance,
the plan shown in the following listing is valid but not optimal:
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0: Anthony opens FrontDoor

60: Anthony moves inside through FrontDoor

Anthony moves inside after 60 time units, while the open door action �nished after 30
time units. In the optimal plan, Anthony would move inside as soon as the door is open,
resulting in a make-span of 40 time units.

In temporal domains actions can also be executed in parallel. To demonstrate this we
add a second person to our initial state:

Charlie is a person

Charlie is outside

In the goal condition we want both persons to be inside. Neither Charlie nor Anthony
can get inside while the door is still closed. But as soon as Anthony opens the door, both
can go inside at the same time. The corresponding plan with a make-span of 40 time
units is shown in the following listing:

0: Anthony opens FrontDoor

30: Anthony moves inside through FrontDoor

30: Charlie moves inside through FrontDoor

This concludes the introduction to planning tasks in temporal domains.

3.2 Planning Domain De�nition Language

The Planning Domain De�nition Language (PDDL) was originally designed in 1998
[Drew McDermott, 1998] as a standard language for describing planning tasks. PDDL
is based on predicate logic. The original version supported Boolean predicates and user
de�ned types. Since then many additional features were added. Today, PDDL supports
Boolean, numeric and object �uents[Malte Helmert, 2009]. Custom object types can be
speci�ed, which can extend other types. Temporal information[Maria Fox and Derek Ling, 2003]
can be included into actions by specifying the action duration. With the temporal in-
formation, it is possible to schedule actions in parallel. The additional features can be
enabled individually and it is up to the planning system to implement them correctly. For
the remainder of this Thesis we use the term PDDL as synonym for PDDL version 3.1,
with numerical and object �uents, durative actions and external modules.

A planning task is de�ned in two separate �les. The domain �le describes relevant state-
ments and operators. A problem �le describes one speci�c instance of the planning task
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by de�ning the initial state and the goal condition. Usually, multiple problem �les are as-
sociated with one domain �le. Throughout this section PDDL examples are loosely based
on the Transport Domain, which was part of the International Planning Competition
(IPC) in 2008.

The domain de�nition begins by specifying the name of the domain. The domain �le
speci�es which PDDL extensions are required for this planning task, as shown in the
following PDDL listing:

(define (domain transport)

(:requirements :typing :durative-actions

:numeric-fluents :modules)

Custom types are de�ned in the type section. A type can extend an another type. If no
super type is speci�ed, the built-in type object is extended. The following PDDL example
shows various type de�nitions: location, target and locatable extend the built-in object
type, while vehicle and package extend the locatable type.

(:types location target locatable - object

vehicle package - locatable)

Predicates express Boolean facts about certain objects or relations between objects; for
instance whether a certain vehicle is green, or whether there is a road from location A
to location B. Predicates can have multiple parameters. Each parameter has a speci�c
type.

(:predicates

(road ?l1 ?l2 - location)

(at ?x - locatable ?y - location)

(green ?v - vehicle)

)

Functions express numerical facts or relations; for instance the size of a package or the
distance between two locations. Functions without a type speci�cation are numeric or
the type number can be used to de�ne a numeric function explicitly.

(:functions

(road_length ?l1 ?l2 - location)

(package_size ?p - package) - number

)
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Functions with a speci�ed type represent object facts. Object facts allow to encode the
relation between objects in a more restrictive manner. They can be thought of as �nite,
multivalued attributes. For instance the objects green and red of the type color are
de�ned and an object fact color_of of the same type color, as shown in the following
PDDL listing:

(:functions

(color_of ?v - vehicle) - color

)

or red as its color fact but not both at the same time. If two predicates, green and red
were de�ned instead, both of them could be true at the same time for one object.

In this Thesis, predicates, numerical functions and object functions are referred to as
Boolean, numerical and object �uents.

Actions de�ne how �uent values can change. To incorporate temporal information, actions
are de�ned with the keyword durative-action. A durative action contains four lists, which
de�ne the parameters of the action, the action's duration, a condition that needs to be met
before the action can be executed and an e�ect that speci�es the �uents to be changed.
The following PDDL listing shows the action drive:

(:durative-action drive

:parameters (?v - vehicle ?l1 ?l2 - location)

:duration (= ?duration (road_length ?l1 ?l2))

:condition (and

(at start (at ?v ?l1))

(at start (road ?l1 ?l2)))

:effect (and

(at start (not (at ?v ?l1)))

(at end (at ?v ?l2)))

)

The drive action has three parameter, one of the type vehicle and two of the type location.
The duration of the action is determined by the length of the road between the two
locations. The condition term contains two terms encapsulated by the Boolean function
and, so both of them must hold the action to be applied. The temporal function at start
signi�es, that the contained predicate must hold at the start of the action. Analogous,
the temporal function at end signi�es the and of the action, as can be seen in the e�ect
statement. The drive action can only be applied, when the vehicle v is at the location
l1 and there is a road between the locations l1 and l2. As soon as the action starts, the
vehicle v leaves the location l1. When the action �nishes, the vehicle v arrives at the
location l2. In this Thesis the word action is a synonym for durative-action; all actions
are durative in temporal planning.
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That covers all elements of a domain �le.

As mentioned above, a problem �le describes one speci�c instance of the planning task.
It instantiates objects, de�nes the initial state and sets a goal condition. The problem
de�nition begins with the name of the problem and the name of the corresponding do-
main:

(define (problem p01_5nodes_2trucks_2packages)

(:domain transport)

Next, objects are instantiated. They can have any type speci�ed in the domain �le. In
the example below �ve locations, two vehicles and two packages are instantiated:

(:objects

loc1 loc2 loc3 loc4 loc5 - location

truck1 truck2 - vehicle

package1 package2 - package

)

The init statement assigns values to �uents. All �uents should be initialized, as not
doing so, leaves the initial value to be decided by the planning system implementation.
Therefore, implicit �uents initialization may vary across di�erent implementations. The
following example only show exemplary the initialization of the two Boolean �uents at
and road and the numerical �uent road_length.

(:init

(at package1 loc3)

(road loc1 loc3)

(= (road_length loc1 loc3) 23)

)

The goal condition uses a similar syntax as the condition of an action. However, temporal
functions are not permitted in the goal condition. The example below shows, that pack-
age1 is supposed to be delivered to loc2 and package2 to loc3, for this problem instance
to be considered solved.

(:goal (and

(at package1 loc2)

(at package2 loc3))

)

In this section a brief overview was given over the structure and syntax of PDDL. With
this section as reference, even readers with no prior experience with PDDL should have
knowledge to understand PDDL listings throughout the Thesis.
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3.3 Semantic Attachments in PDDL

The e�ciency of symbolic planning results for high level abstractions of the planning prob-
lem. However, real world planning tasks often require explicit low level knowledge, to be
solved successfully. Geometric relations and algorithms can not be expressed with predi-
cate logic. For such cases, a PDDL extension was developed by [Dornhege et al., 2009] to
integrate external algorithms into the domain-independent planing process via modules.

A module is de�ned with a name, a list of parameters, the module type and the names
of a function and a library, as shown below for the can_load module:

(can_load ?v - vehicle ?p - package

conditionchecker can_load@libTransport.so)

The can_load module has two parameters, a vehicle v and a package p. The module type
is conditionchecker, which signi�es, that the module is called in a condition statement of an
action. Analogous, the module type cost signi�es the duration statement and the the mod-
ule type e�ect signi�es the e�ect statement. The library string can_load@libTransport.so
speci�es the function can_load from the library libTransport.so. It is important to note,
that while PDDL in general is case insensitive, the function and library names are an
exception: here the case matters.

To distinguish module calls from �uents in PDDL domain �les, a module call is encapsu-
lated by square brackets, as shown in the load action below (other conditions and e�ects
are omitted in this example):

(:durative-action pick_up

:parameters (?v - vehicle ?l - location ?p - package)

:duration (= ?duration 1)

:condition (and

(at start ([can_load ?v ?p]) ... )

)

:effect (and ...

)

)

4 Temporal Fast Downward

In this section we take a look at a domain-independent planning system for temporal
problems. The Temporal Fast Downward (TFD) planning system was developed by
[Eyerich et al., 2009]. The TFD is able to generate low make-span plans by performing
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a heuristic search in temporal search space. It supports PDDL version 3.1 with numeric,
object �uents and modules. Based on the benchmark of the International Planning Com-
petition (IPC) in 2008, the TFD was able to produce better plans than other participants.
Its success is attributed to the context-enhanced additive heuristic, adapted to temporal
and numeric planning. TFD is based on the classical Fast Downward planning system
developed by [Malte Helmert, 2006].

The TFD planning system consist of three separate programs. The Translate program
parses the PDDL domain and problem �les and de�nes the variable mappings of the
internal state used in the search. The Preprocess program initializes the heuristic for the
search. The actual planning takes place in the search program, which performs a best
�rst search.

The focus of this Thesis lies on the interaction between the planning system and external
applications via the module interface. Therefore, we take a closer look at the Translate
program in section 4.1 and the Search program in section 4.2. In section 4.3, we examine
the module interface of the TFD.

4.1 Translate

The Translate program parses a planning task description and translates it from PDDL
into the SAS+ form as described by [Christer Bäckström and Bernhard Nebel, 1995]. It
requires the path to a domain �le and a problem �le as arguments. The supplied domain
and problem �les are parsed and checked for inconsistencies. Then begins the actual work
of the translate program: allocating variables for �uents, actions and modules.

First, the translate program grounds all �uents and modules by substituting their param-
eters with all available objects of the corresponding types. Each substitution is mapped to
a di�erent variable. For instance, the domain contains a Boolean �uent is_reachable with
two parameters of the type location. Furthermore the problem �le speci�es two location
objects: loc1 and loc2. In that case the translate program produces the following four
grounded terms and assigns each term to a separate variable:

variable1: (is_reachable loc1 loc1)

variable2: (is_reachable loc2 loc1)

variable3: (is_reachable loc1 loc2)

variable4: (is_reachable loc2 loc2)

Each variable is provided with a translation table that encodes its content as a real value.
For Boolean �uents the value 0 represents true and all other values false. Numeric �uents
do not need a table, their numeric value is used directly. Object �uents enumerate all
objects of the speci�ed type: 0 for the �rst object, 1 for the second, n-1 for the nth
object and all other values represent an invalid object.

15



The actions are grounded by the same schema. Additionally, the conditions and e�ects
of the actions are converted to the variable mapping. For instance, an action drive has
in its condition term the predicate is_reachable, so that the action is only applicable, if
is_reachable has the value true for the start and dest location, as shown in the following
PDDL listing:

(:durative-action drive

(:parameters ?start - location ?dest - location)

[...]

(:condition

(and (at start (is_reachable ?start ?dest)) [...])

)

[...]

)

of the action with loc2 as the value of start and loc1 as the value of dest.

In the next step, the Translate program iterates through the e�ects of all grounded actions.
Any �uents that are not found in any e�ect are constants and their values can not change
during the planning process. Then, the conditions of all actions are examined whether
they contain constants with the value false. These actions can not be applied during
the search, thus they are eliminated. Should any actions have constants with the value
true in its condition across all grounded instances, then the constant is removed from the
condition, since that does not change the applicability of that action. All these steps are
executed to reduce the search space of the planning instance and therefore improving the
search performance.

When the Translate program is �nished with the search space reduction, the results
mapping is written into a �le. The output �le contains the variable mappings for all
grounded terms, the initial state and the goal condition. The output �le also contains the
function and library name for each module. Additionally, the names of the objects, �uents
and actions are written into that �le, although the preprocess and the search program
work solely with the variables and ignore the names. The names are used to convert the
plan found by the search program into a human readable format. The names are also
necessary during module calls: when a module requests the value of a �uent, the name
of the �uent and their parameters are used to look up the value of the corresponding
variable.

4.2 Search

The actual planning process takes place in the Search program. It expects numerous
arguments, which adjust timeouts and heuristic strategies.
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During the initialization phase, the Search program reads the output �les of the Trans-
late and Preprocess programs. As speci�ed in these �les, it allocates a vector of double
variables. This vector represents the internal state throughout the planning process. The
values are initialized according to the initial state section in the Translate output �le.

Next, operators are instantiated, one operator per PDDL action. The condition of an
operator is encoded by pairing the index of a vairable with a value. The translation table
produced by the Translate program speci�es the required values for a set of variables
must have, before the action can be applied. E�ects of operators work analogous: the
translation table speci�es the new values for variables, when the operator is applied to
the state vector.

An operator can also contain a module call to let an external program determine the
value of a condition, an e�ect or the duration variable. Instead of accessing a value in
the internal state vector, the search program calls the function speci�ed in the Translate
output �le.

After the initialization process is complete, the search begins. The search program im-
plements the best �rst search algorithm. The details of the search algorithm and the
heuristic functions are beyond the scope of this Thesis.

When a valid plan is found, in most instances the plan is far from optimal. Therefore the
search program can be started in anytime mode: even when a valid plan was found the
search continues for a prede�ned amount of time or until the search space is completely
explored.

4.3 TFD Module Interface

In this section we take a look at the handling of module calls in the TFD Search program.

Module calls are de�ned in PDDL domain �les. A module de�nition consist of a name,
an arbitrary number of arguments and the speci�cation of a function and library name.
The domain �le is read by the Translate program and the module speci�cation is passed
along unchanged through the Preprocess program. The Search program then obtains a
function pointer to the speci�ed library function.

Since the TFD is domain-independent, the module interface is generic: the types and
names of the arguments are passed to the module as strings. It is up to the module
developer to parse these strings to retrieve the desired information. In addition to the
module parameters a module often requires data from the internal state. Callback function
pointer are provided to obtain values of �uents from the search engine. Again, these
functions are generic: to obtain values from state, a module developer must pass the
correct �uent names as strings to the callback function and parse the returned string lists
for the desired �uent names.
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To better understand the TFD module interface, we go through the process of imple-
menting a module step by step. For the remainder of this section, we imagine a robotic
manipulation scenario. We want to create a module that decides, whether the manipulator
can reach a certain pose in three dimensional space.

First, we take a look at the PDDL domain �le. We need to handle poses in three dimen-
sions, which we represent by a position vector (x, y, z ) and an orientation quaternion
(qx, qy, qz, qw). We want our module to have two parameters: the current pose of the
manipulator and the destination pose. In the domain �le, we de�ne the type pose3d, nu-
merical �uents for the coordinates and the module call, as shown in the following PDDL
listing:

(:types pose3d - object)

(:modules

(can_reach ?current - pose3d ?dest - pose3d

conditionchecker can_reach_module@lib_manipulation.so)

)

(:functions

(x ?pose - pose3d) - number

(y ?pose - pose3d) - number

(z ?pose - pose3d) - number

(qx ?pose - pose3d) - number

(qy ?pose - pose3d) - number

(qz ?pose - pose3d) - number

(qw ?pose - pose3d) - number

)

With the domain speci�cation, we can begin the module implementation. We declare
a function named can_reach_module according to the speci�cation of the TFD module
interface. The following C++ code listing shows the function signature:

double can_reach_module(const ParameterList& parameterList,

predicateCallbackType predicateCallback,

numericalFluentCallbackType numericalFluentCallback,

objectFluentCallbackType objectFluentCallback,

int relaxed);

is a list of module parameters, as speci�ed in the PDDL domain �le. The type, name and
value of each parameter is represented by a string. The second, third and fourth argument
are function pointers, which allow to look-up �uent values in the internal planner state.
The last argument can be used to indicate, whether a precise solution is required or an
approximate solution is su�cient. This is useful, when the heuristic value for an action
is computed. In that case, an approximate result is su�cient. A module can implement
a simpli�ed approximation function to preserve computational resources.
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Before we can perform the 3d trajectory calculations, we need to obtain the numerical
values for the two poses via the numericalFluentCallback function pointer. The parame-
terList argument contains the list of parameters for the module. From the domain �le we
know that the parameter list for the can_reach_module will have the two entries current
and dest, both of type pose3d. With the value of the dest parameter, we �ll the Param-
eterList of the �uent are interested in. In the example listing below we can see the code
to request the value of the x coordinate of the dest pose. We repeat these steps for every
coordinate of each pose, before using the callback function. The callback function will
populate our NumericalFluentList with the requested values.

string dest_value = parameterList.at(1).value;

NumericalFluentList* nfl = new NumericalFluentList();

ParameterList pl;

pl.push_back(Parameter("pose", "pose3d", dest_value));

nfl->push_back(NumericalFluent("x", pl));

[...]

numericalFluentCallback(nfl);

After obtaining the numerical values, the algorithms to perform the calculations can be
executed. After the calculation �nishes, we return the value 0, in case the pose can be
reached successfully. Otherwise, we return any value greater than 0 to signify failure.

5 Object-Oriented Planning Language

In this section we present a new language for describing planning tasks: the Object-
oriented Planning Language (OPL). OPL is developed around three core concepts:

1. Simplifying module development: Improving the integration of external algorithms
is the main motivation behind the development of OPL. Therefore, OPL provides
tools to generate a C++ module interface based on the de�nitions in the OPL
domain �le.

2. Compatibility to PDDL: a planning task description in OPL can be converted to
PDDL 3.1 syntax. Therefore, planning systems based on PDDL can be adopted to
OPL, without implementing an OPL parser.

3. Object-oriented syntax: the object-oriented syntax of OPL lowers the learning curve
for application developers that have no prior experience with symbolic planning.
Also, the object-oriented representation helps to generate an e�cient and clean
C++ module interface.

The following sections illustrate each concept in detail. Section 5.1 introduces the object-
oriented features of OPL. Section 5.2 explains how compatibility to PDDL is achieved.

19



Section 5.3 shows the advantages of the OPL module interface. The syntax and grammar
of OPL is de�ned in section 5.4.

5.1 Object Orientated Planning Task Description

The type de�nitions in PDDL are used to restrict the grounding of �uents: instead of
grounding a �uent against all objects in the domain, it is only grounded against all objects
of a speci�c type.

OPL places far greater importance on the speci�cation of custom types than PDDL. OPL
types can be regarded analogous to C++ classes. An OPL type has its own naming scope.
Fluents and actions can be de�ned in the scope of a type. These �uents and actions within
types are called member �uents and member actions. Of course, the declaration of global
�uents and actions is still possible: global �uents and actions are de�ned in the naming
scope of the domain.

Similar to PDDL, types can inherit from other types. OPL de�nes the following rules for
inheritance: a type can have only a single base type, multiple inheritance is not allowed.
If no base type is speci�ed, it defaults to Object, a built-in abstract type. Since each type
has its own naming scope, member �uents of di�erent types can share the same name.
OPL de�nes the following naming scope tree:

• The root scope is the domain scope. The names of any types, global �uents and
global actions belong to the domain scope.

• Each type has its own scope. The names of their respective member �uents and
actions belong to that scope. These scopes are contained in the domain scope.

• Each action has its own scope. The names of their arguments belong to that scope.
These scopes are either contained in the domain scope (in case the are global actions)
or in a type scope (in case they are member actions).

• The task has its own scope. The names of instantiated objects belong to this scope.
It is contained in the domain scope.

A name must be unique within a scope, e.g. a type must not de�ne a �uent and an action
with the same name. When referencing a �uent name, the look-up process begins in the
scope where the reference is located. If the �uent is not found within that scope, the
search continues in its super scope, until the domain scope is reached.

The scope of a type is a special case. Before extending the name look-up to the domain
scope, the scope of the super type is searched. This allows sub types to access the inherited
�uents of their super type. Therefore, when inheriting from a base type, a type must not
de�ne �uents or actions with a name already de�ned in its base type.
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The dot . acts as the scope operator in OPL. Using the scope operator a speci�c scope
can be addressed: a member �uent of a certain type can be referenced by obtaining a
reference to an object �uent of that type and then applying the scope operator with the
name of the �uent. It is possible to chain scope operations, if the referenced member
�uent happens to be an object �uent. The key word this can be used to address the scope
of the current object. The global scope can be addressed by pre�xing the �uent name
with the scope operator.

For instance, we have the type Robot with the Boolean member �uent busy and the
member action drive. The drive action has as precondition, such that the robot must not
be busy. To reference the busy �uent, the condition of the drive action uses the following
term:

this.busy

busy

This will obtain a reference to the busy �uent for the current instance of the Robot type.
Part of this term can be omitted: simply writing busy without this will obtain the same
reference. If we have a global Boolean �uent busy, it can be referenced by writing:

.busy

The look up process would begin at the global scope in that case.

5.2 Compatibility to PDDL

OPL is intended as an extension to a PDDL planning system. Therefore it is based on the
same concepts as PDDL. A domain �le de�nes types, �uents and actions. A problem �le
de�nes an initial state and a goal condition. This similarity in structure allows an OPL
domain to be easily converted to a PDDL domain. With the conversion tools provided
with OPL, a PDDL planning system can be modi�ed to understand OPL with little
e�ort.

The conversion process adheres to the following rules:

First, each capital letter in any name is converted to lower case and su�xed with a minus
-, to account for case insensitivity in PDDL. The minus sign was chosen, because OPL
does not allow minus signs in its names, so accidental name collision cannot occur. For
instance assume we have a type with the name Robot. After conversion the PDDL type
has the name r-obot.

PDDL does neither have member �uents nor actions. In OPL these have their own
naming scope. In order to convert from OPL to PDDL, the name of each member �uent
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and action is pre�xed with the name of the type they belong to, followed by an underscore
_. For instance we assume the type Robot from the example in the previous section has
a Boolean member �uent busy and a member action drive. When converted, the names
change to r-obot_busy and r-obot_drive. The same reasoning is applied to the scopes
of actions. Assuming the drive member action has one argument destination, the name
of that argument is converted to r-obot_drive_destination. Analogous, the names of
objects declared in a problem are pre�xed with problem_ when converted. If we have
two instances of the type Robot, rob1 and rob2, they are converted to problem_rob1 and
problem_rob2.

Furthermore, member �uents and actions belong to one speci�c object. If we have two
instances of the type Robot � rob1 and rob2 � the values of the member �uent busy have
individual values for each object instance. When converting from OPL to PDDL this is
resolved by adding one parameter to each member �uent and action: the object it belongs
to. In our example the busy member �uent has no arguments. After the conversion, it will
have one argument with the name this and the type r-obot. Analogous, the drive member
action has one destination argument, it will have two arguments after the conversion: �rst
one of the type r-obot followed by the r-obot_drive_destination argument.

Finally, some function names in OPL di�er from their PDDL counterpart. The temporal
functions at start, at end and over all are written as atStart, atEnd and overAll in OPL.
This renaming was done for reasons of consistency: all OPL functions consist of a single
word.

After the conversion the PDDL �les might be more di�cult to read for the human eye.
However, this is not a disadvantage, since the converted �les are intended only to be read
by a PDDL parser.

5.3 Domain-Speci�c Module Interface

The TFD planning system is domain-independent; it can be applied to any planning
task de�ned in PDDL. Therefore, the TFD module interface can not incorporate domain-
speci�c information. As a result of its generic nature, the module interface is cumbersome
to implement for a module developer. The information exchange between the module and
the internal state of the TFD is encoded in plain strings. Obviously, the compiler can not
be utilized to mismatched names in strings. Figure 1 illustrates the situation.

OPL provides a solution to this problem. When a OPL domain is translated, a domain-
speci�c module interface is generated. The generated interface acts as an adapter between
the domain-speci�c module implementation and the domain-independent TFD interface.
Figure 2 visualizes the concept. Throughout the remainder of this Thesis, we call modules
implementing the generic TFD interface TFD modules to distinguish them from OPL
modules, which implement the generated OPL interface.
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Figure 1: The domain-speci�c content (orange) of the PDDL planning task speci�ca-
tion and module implementation transfer state information via the domain-
independent (blue) module interface of the TFD. The exchange process (red) is
complex and error prone.

Figure 2: A domain-speci�c interface is generated from an OPL domain. It bridges the
gap between the domain-independent (blue) TFD interface and the domain-
speci�c (orange) module implementation. The generated OPL module interface
provides e�cient and safe state access to the module.
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The generation process takes advantage of the structural similarities between OPL and
C++. For each type de�ned in the domain, a corresponding class is generated. These
classes provide methods to request �uent values for every member �uent of the associated
type. In the internal state of the TFD, all �uents are represented by double variables.
The generated methods convert these values into the appropriate data type, depending
on the �uent. A State class is generated, which provides access to global �uents in the
same manner. In addition, the state class provides methods to iterate through all objects
of a type that were speci�ed in the problem �le. Each module de�nition in the domain �le
produces a skeleton C++ implementation for the module. With this interface accessing
the planner state in an type safe manner becomes as easy as calling the provided methods.
A module developer can focus his full attention on the functionality of the module.

The details of the generation process are presented in chapter 6.1.

5.4 Syntax of OPL

When comparing the syntax of OPL to PDDL, little resemblance is visible. Instead, the
syntax is intended to resemble object oriented programming languages, like C++ or Java.
The similarity is supposed to lower the learning curve for application developer who have
no prior experience with PDDL.

In this section, we de�ne each element of OPL with an EBNF representation, followed by
a brief explanation and several syntax examples. The EBNF representation is intended to
help understand the OPL syntax structure; some of the formalism might be not completely
accurate.

• Names in OPL are de�ned as shown in the following EBNF listing:

name = letter,{digit|letter|"_"}*;

number = digit[.{digit}*];

where a letter stands any lower or upper case letter and digit stands for a natural
number from 0 to 9. All expressions in OPL are case sensitive. Additionally, a valid
name must not be one of the following key words: Domain, Type, Task, Object,
boolean, number, DurativeAction, CostModule, ConditionModule, E�ectModule, and,
or, not, atStart, atEnd, overAll or any other PDDL function name.

• domain = "Domain", name, "{", {type | fluent | action | module}*, "}";

The Domain element encompasses any fact types, object types, relations and oper-
ators available in the world. It must be the root element in the domain �le. Domain
elements can not be contained in any other element and only one domain element
is allowed per �le. It has two identi�ers: �rst the key word Domain followed by the
name of the domain. A Domain element can contain the following elements: Type,
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Fluent, Module and DurativeAction elements. The example below de�nes a domain
with the name RoomScanning :

Domain RoomScanning

{

[...]

}

• type = "Type", name, [":", name], "{", {fluent | action | module}*, "}";

Type elements specify a certain type of object in the world. They can inherit from
other Type elements. If no super type is speci�ed, the super type defaults to the
abstract type Object. The super type must be speci�ed in the same Domain element
as the derived type. Type elements can only be contained in the body of a Domain
element. Types that inherit from the base type Object are de�ned with the key word
Type followed by the name of the type. Types that inherit from other types have
two additional identi�ers: the inheritance operator colon, followed by the name of
the inherited type. A Type element can contain Fluent, Module and DurativeAction
elements. The following example de�nes the type Pose that inherits directly from
the built-in type Object and a second type Target that inherits from Pose:

Type Pose

{

[...]

}

Type Target: Pose

{

[...]

}

• fluent = ("boolean" | "number" | name), name, optional arguments, ";";

optional arguments = ["(", argument,{",", argument}*, ")"];

Fluent elements represent facts in the world. They come in three �avors: predicates
to represent Boolean facts, numerical �uents to represent numbers and object �uents
to represent the relation to another object in the world. Fluent elements can be
contained in a domain element, in which case they are considered global. In addition,
they can be contained in Type elements, in which case they are member �uents.
Fluent elements of two identi�ers: the key word boolean for predicates, number for
numerical �uents and the name of the type for object �uents, followed by the name of
the �uent. Fluent elements may contain Arguments. The following example de�nes a
Boolean �uent busy without arguments, a Boolean �uent isNear with one argument,
a numerical �uent x and an object �uent of type Pose named currentPose:

boolean busy;

boolean isNear(Pose p);
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number x;

Pose currentPose;

• argument = name, name;

Argument elements specify a reference to an object. These elements can only be
contained in Fluent, Module and DurativeAction elements. They consist of two
identi�ers: the name of the object type followed by the name of the reference. The
following example shows the Boolean �uent isNear with an argument of the type
Pose named p and the numerical �uent pathLength with two arguments of type Pose
named startPose and endPose:

boolean isNear(Pose p);

number pathLengt(Pose startPose, Pose endPose);

• action = "DurativeAction", name, optional arguments,

"{", duration, condition, effect, "}";

duration = "Duration", "{", number | symbol, ";", "}";

condition = "Condition", "{", function, ";", "}";

effect = "Effect", "{", function, ";", "}";

DurativeAction elements describe actions that can be executed, when a certain con-
dition is met and can change �uents as speci�ed in their e�ect statement. Durative-
Action elements have two identi�ers: the DurativeAction keyword followed by the
name of the action. They may have optional arguments. DurativeAction elements
can be contained in Domain or in Type elements. DurativeAction elements contain
three sub-elements:

� The Duration speci�es the temporal duration of the action. It may either
contain a Number, a Symbol element pointing to a numerical �uent or a Symbol
element pointing to a duration module.

� The Condition speci�es the values for certain �uents in the state, before this
action can be applied. It must contain a Function element.

� The E�ect speci�es new values for certain �uents in the state. The new values
are applied as speci�ed by temporal functions. It must contain a Function
element. The following example de�nes a DurativeAction named scan with
one argument.

DurativeAction scan(Target t)

{

Duration{40;}

Condition{[...]}

Effect{[...]}

}
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• function = name, "(" function | symbol, ")";

Function elements are used to represent the logical relation of conditions or e�ects.
They have one identi�er: the function name. They have at least one argument,
either another Function element or a Symbol element. Functions have the same
names and functionallity as in PDDL except for the temporal functions at start, at
end and over all. For consistency they are replaced with atStart, atEnd and overAll
respectively. The following example shows the Boolean function and, which contains
further nested functions:

and(

atStart(not([...])),

atStart(not(equals([...], [...])))

)

• symbol = "this" | (name,["(", symbol, ")"]),[".", symbol];

Symbol elements provide means to reference �uents, objects or modules in the do-
main. They have a single identi�er: the name of the referenced �uent or module. If
the referenced symbol is an object �uent or an Argument element the scope opera-
tor dot can be used to reference member �uents de�ned in the corresponding Type
element. The key word this can be used instead of a name to reference the current
object. When referencing Fluent orModule elements, Symbol elements must contain
additional Symbol elements as arguments. The number and type of the arguments
must be identical to the arguments de�ned in the referenced �uent or module. The
following example shows a symbol named isNear with another symbol destination
as argument. In the second line, three symbols are shown concatenated with the
scope operator:

isNear(destination)

this.currentPose.x

• module = ("ConditionModule" | "DurationModule", name, ";") |

"EffectModule", name, "{", {symbol, ";"}* "}";

Module elements provide the means to integrate external applications into the plan-
ning process. There are three type of modules: duration modules compute the
duration of an action. Condition modules allow to check, whether an action is ap-
plicable in the current state. E�ect modules allow to change speci�ed numerical
values in the state. Module elements have two identi�ers: one of the key words
ConditionModule, CostModule or E�ectModule followed by the name of the mod-
ule. Module elements can have optional arguments. E�ectModule elements must
also contain at least one Symbol element. The symbols specify, which �uents can
be changed by the e�ect module. If a symbol points to a numerical �uent, that
�uent may be changed. If a symbol points to a object �uent, all numerical member
�uents of the corresponding type are allowed to be changed. It is not necessary to
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specify a function and library name for the module call, since the library and the
function will be generated automatically. The following example de�nes a condition
module named reachable with two arguments, a duration module named moveDu-
ration also with two arguments and an e�ect module named �ndGraspingPose with
one argument. The e�ect module speci�es that all numerical member �uents of the
gripperPose argument can be changed by the module.

ConditionModule reachable(Pose startPose, Pose endPose);

DurationModule moveDuration(Pose startPose, Pose endPose);

EffectModule findGraspingPose(Pose gripperPose)

{

gripperPose;

}

• problem = "Problem", name, "(", name, ")",

"{", {object | initialization}*, goal, "}";

The Problem element de�nes a speci�c scenario for the planner to solve. It speci�es
initial values for �uents, instantiates objects and speci�es a goal condition. The
Problem element must be the root element in the problem �le. It has two identi�ers:
the key word Problem followed by the name of the problem. It must have the name
of the corresponding OPL domain as argument. It can contain arbitrary many
Object and Initialization elements and exactly one Goal element. The example
below de�nes a problem named Scenario1 for the RoomScanning domain:

Problem Scenario1(RoomScanning)

{

[...]

}

• object = name, name, ";" | "{", {initialization}*, "}";

Object elements allocate objects of the speci�ed type. They have two identi�ers: the
name of the Type element followed by the name of the object. The Object element
can contain Initialization elements to assign an initial value for the member �uents
of this object. The example below shows the object r1 of the type Robot without
initializations and the object p1 of the type Pose, containing one initialization:

Robot r1;

Pose p1

{

x = 1;

}

• initialization = name | name, "=", number | name, "=", name;
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Initialization elements assign an initial value to Boolean, numerical and object �u-
ents. Initialization for Boolean �uents only have one identi�er: the name of the
�uent. This will initialize the Boolean �uent to the value true. A numerical �uent
is initialized with the assign operator. The name of an instantiated object can be
assigned to an object �uent with the assign operator. If no initialization is speci�ed
for a �uent it is initialized to a default value: false for Boolean �uents, 0 for numer-
ical �uents and NULL for object �uents. Any comparison with equals between the
object �uent with the value NULL and any object has the Boolean value false. The
following example shows the initialization of the numeric �uent x and the Boolean
�uent explored :

Target t1

{

x=10;

explored;

}

• goal = "Goal", "{", function, "}";

The Goal element speci�es a state, when the current problem is considered solved.
There must be only one Goal element per task. Analogous to the conditions of
DurativeAction elements, the Goal element contains one Function element. The
example below shows a typical goal condition:

Goal

{

and(target1.explored,

target2.explored,

target3.explored);

}

The complete EBNF representation of OPL is shown below as reference:

name = letter,{digit|letter|"_"}*;

number = digit[.{digit}*];

domain = "Domain", name, "{", {type | fluent | action | module}*, "}";

type = "Type", name, [":", name], "{", {fluent | action | module}*, "}";

fluent = ("boolean" | "number" | name), name, optional arguments, ";";

optional arguments = ["(", argument,{",", argument}*, ")"];

argument = name, name;

action = "DurativeAction", name, optional arguments,

"{", duration, condition, effect, "}";

duration = "Duration", "{", number | symbol, ";", "}";

condition = "Condition", "{", function, ";", "}";
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effect = "Effect", "{", function, ";", "}";

function = name, "(" function | symbol, ")";

symbol = "this" | (name,["(", symbol, ")"]),[".", symbol];

module = ("ConditionModule" | "DurationModule", name, ";")

| "EffectModule", name, "{", {symbol, ";"}* "}";

problem = "Problem", name, "(", name, ")",

"{", {object | initialization}*, goal, "}";

object = name, name, ";" | "{", {initialization}*, "}";

initialization = name | name, "=", number | name, "=", name;

goal = "Goal", "{", function, "}";

6 OPL Module Interface

As was stated in section 4.3, the search program needs a generic module call interface.
The search engine must be domain independent. Nevertheless, from the perspective of a
module developer, that generic interface is cumbersome to use. OPL provides a solution
to this problem. When a OPL domain �le is translated to PDDL, a domain speci�c
Module interface is generated. This interface adds a layer on top of the TFD interface. It
provides type save access to all OPL objects and �uents, without the necessity to refrain
to strings based description of the desired values.

In the following sections we take a look at the C++ code generation process and the
improved variable look-up mechanisms.

6.1 Interface Generation

In this section the code generation procedure for the OPL module interface is explained.

OPL was designed to work on top of existing TFD module interface. Only a few lines of
code, for the initialization of the OPL interface, were added in the search program. When
the search program executes a module call, it uses the original interface, as described
in section 4.3. OPL provides a translation from the original module interface to the
generated OPL interface. Before explaining how the translation works, we show what
classes are generated.

Some of the required functionality of the module interface is domain independent. There
is no need to have this functionality in the generated code. Instead, it is implemented in
various classes located in the opl::interface namespace.

• The OplObject class represents the abstract base class for any custom type de�ned
in a OPL domain. It provides a public method to get the object id, which is unique
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for every object instantiated during the planning process. The object id is read form
the object name de�ned in the OPL task �le.

• The AbstractState class exposes the internal state of the search program to a mod-
ule. The state variables can only be read from the module, but not written. The
AbstractState class stores mappings from �uent names and object ids to the cor-
responding state variables. It also provides methods to obtain references to all in-
stantiated OplObjects. For each domain, a concrete State class is generated, which
subclasses the AbstractState. Most of the methods of AbstractState are intended to
be only called by the generated classes and are therefore not accessible from the
module.

• The AbstractStateFactory class initializes the �uent mappings in a State object. The
initialization process is executed only once per planning process. Since it is based
on the abstract factory design pattern, the actual instantiation of the State object
is left to a concrete, domain speci�c StateFactory subclass. The concrete subclass
also handles instantiation of OplObjects.

Each domain creates its own namespace opl::DomainName, where DomainName stands
for the name speci�ed in the OPL domain �le. This prevents naming con�icts between
the generated classes and classes included from other sources.

• A class is generated for every OPL type de�ned in the domain �le. The class is
named as speci�ed in the �le. The generated class extends either OplObject or
another OPL type, depending on the speci�cation in the domain �le. Member
�uents of the OPL type produce corresponding getter method in the generated
classes.

• A State class is generated, which subclasses the AbstractState class. In addition to
the functionality of the base class, the generated State class provides access to object
lists, one for each OPL type de�ned in the domain. Also, global �uents produce
corresponding getter method.

• Each �uent de�ned in the domain �le generates a function with the same name.
Global �uents produce getter methods in the State class. Member �uents produce
getter methods in the corresponding type class. These functions are declared con-
stant using the C++ key word const, i.e. they can not change attributes of their
class. The return value of these functions depends on the �uent: functions for
Boolean �uents return bool values, functions for numerical �uents return double val-
ues and functions for object �uents return a const pointer to the corresponding type
class.

• A StateFactory class is generated, which subclasses the AbstractStateFactory class.
The StateFactory class handles the instantiation of a State object, the instantiation
of OplObjects for each OPL type. The instantiation is executed once per planning
process. Objects are instantiated as speci�ed in the OPL task �le. The instantiated
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objects are placed in the corresponding list in the State class. Objects are also
recursively added to the list of their super type; the list for OplObjects therefore
contains all instantiated objects.

Now that we know the classes generated for the interface, we take a look at the actual
translation from the original TFD interface to the new OPL interface.

As is explained in section 5.2, module declarations in OPL do neither specify a function nor
a library name. The module function name is derived from the module name speci�ed in
the OPL domain �le after the following pattern: Scope_moduleName, where Scope stands
for the OPL type name, in case of a member module or is an empty string in case of a
global module. The library name is derived from the name of the domain as libtfd_opl_,
followed by the domain name, followed by the �le ending .so. All of the generated classes
and functions explained in this section are compiled into that library.

For each cost and condition module speci�ed in the OPL domain �le, three �les are
generated:

1. A header �le is generated, declaring the OPL module interface function to be imple-
mented by the module designer. The �le name is equal to the function name with
the C++ header su�x .h. The header declares a single function with the module
name as discussed above. The function is located in the opl::DomainName names-
pace. The return value of the function depends on the module type; Boolean for
condition modules and double for cost modules. The function declares a number of
arguments: �rst, a constant pointer to a State object. If the module is a member
of an OPL type, the next argument is a constant pointer to an object of the corre-
sponding type class. Then follow the arguments of the module as speci�ed in the
domain �le, with constant pointers to objects of the corresponding type classes. Fi-
nally, the last four arguments are the same as in the original TFD module interface.
Their purpose is not related to OPL, therefore they are not discussed here.

2. A second header �le is generated, declaring the TFD module interface function to
be called by the search program. The function name consist of the module function
name, followed by the su�x _plannerCall. Analogous, the �le is named as the
function with the C++ header �le extension .h. The function is located in a extern
�C� environment, which is necessary when calling a function via a function pointer.
As the function implements the TFD module interface, it has the generic argument
list and the �uent callback functions as arguments.

3. A .cpp �le is generated, which implements the TFD module interface function.
In this �le, the translation form the generic TFD module interface to the domain
speci�c OPL module interface takes place. First, a pointer to the State object is
obtained. Then the parameter names are extracted from the generic parameter list.
Pointers to the corresponding objects are obtained via the State object; the �uent
callback pointers are ignored. Finally, the OPL module interface function is called,
with the pointer to the State object and the other OPL type object pointers as
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arguments. The return value of the OPL module function is converted to double
and returned, according to the speci�cation of the TFD module interface.

In this section we saw the code generation process explained in detail. The actual mecha-
nisms to access the internal state of the search program is shown in the following section.

6.2 Planner State Access

In this section we examine how the OPL module interface exposes the internal planner
state to a module.

The internal state of the Search program is represented by a double vector, as is explained
in section 4.2. The Search program works solely on the double vector. The Translate
program maps each �uent, object and module de�ned in the domain �le to a variable in
this vector. The mapping is constant throughout the search process. The OPL module
interface takes advantage of the constant mapping. Before the search is started, a mapping
table is initialized, which translates from a �uent name to the corresponding variable in
the internal state vector.

The responsibility of tracking the �uent mappings is shared among the VarVal class, the
AbstractState class and the AbstractStateFactory class. These classes are located in the
opl::interface namespace.

• The VarVal class tracks the value of a single mapping. The Translate program
determines how many mappings a �uent requires. It can also occur that a �uent
is constant. In that case it will be eliminated from the state vector. However, a
module might still request the value of that variable. The VarVal class accounts
for both cases. Should the �uent have mappings, a VarVal object stores the index
of each corresponding variable in the internal state vector. Otherwise the VarVal
object stores the constant value of the �uent.

• The AbstractState class manages the �uent mapping table. A �uent mapping de-
pends on the values of the �uent's parameters. Therefore, the key for the mapping
table is created from the �uent name and the names of its parameter objects. The
values in the mapping table are pointer to VarVal objects. A second mapping table
is necessary to retrieve the correct object for a requested object �uent. The ob-
ject retrieval table maps from an index and the corresponding value to a OplObject
pointer. The AbstractState class also provides methods to retrieve VarVal objects
from the table and to compute the table keys. Finally, it also stores a pointer to the
internal state vector. When the internal state changes between subsequent module
calls, the pointer is redirected to the new state without additional copy operations.

• The AbstractStateFactory class initializes the �uent mappings. The mapping infor-
mation is extracted from a �le created by the translate program, which speci�es
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all mappings for variable �uents and the values for constant �uents. After a State
object is allocated, its mapping table is �lled with the mappings according to the
�le. This process is executed only once per planning process, as the mapping does
not change during the search.

The methods provided by these three classes are not intended to be used by a module
developer, and thus are only exposed to the generated classes. As explained in section 6.1,
the generated State class and the type classes provide getter methods to look up �uents.
Inside these methods, the look-up process is implemented in three steps:

1. In the �rst step, a key for the mapping table is composed. The key consist of the
�uent name and the names of all parameter objects passed to this �uent. If the
�uent is a member of a type, the �rst parameter is the name of the object it is
called on.

2. In the next step, the corresponding VarVal object is retrieved from the �uent map-
ping table in the AbstractState class using the composed key.

3. In the last step, the �uent value is retrieved using the VarVal object. The Abstract-
State class provides di�erent methods to retrieve values for Boolean, numerical and
object �uents. Thus the encoded double value from the internal state vector is con-
verted to correct data type. In case of object �uents, the AbstractState the object
pointer is obtained from the object retrieval table. With the object name a OplOb-
ject pointer is returned, which is cast to the concrete class of the object �uent,
before returning the pointer to the module.

As is explained above, the number of �uent mappings for each �uent depends on the
parameters of the �uent. Therefore, if a �uent has no parameters, only one mapping
is created. In that case the �uent look-up process becomes simpler: the corresponding
VarVal object is retrieved during the initialization. Throughout the search process, the
�rst two steps of the look-up process are omitted when the �uent value is requested.

The same caching strategy can be applied to member �uents. Usually, when a member
�uent has no parameters, it is still dependent on the name of its object. That means,
one �uent mapping is created for each instantiated object. Thus, each object caches the
corresponding VarVal object at initialization.

The following C++ listing shows the default retrieval process for the Boolean �uent in,
member of the type Package. The �uent has a parameter of the type Vehicle. To retrieve
the value of in for a speci�c vehicle, a key is created consisting of the id of the Package
object and the id of the Vehicle object. The key is used to retrieve the corresponding
VarVal object. In the �nal step, the VarVal object is interpreted as a Boolean value.

bool Package::in(const Vehicle* v) const

{

const VarVal* inVariable;
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vector<string> inArguments;

inArguments.push_back(getObjectID());

inArguments.push_back(v->getObjectID());

string inKey = ObjectLookupTable::instance

->createKey("Package_in", inArguments);

inVariable = ObjectLookupTable::instance

->getVariable(inKey);

return ObjectLookupTable::instance

->getBooleanValue(inVariable);

}

A cached �uent value retrieval is shown in the following listing. The numerical �uent
size, member of the type Package, has no parameters, therefore the VarVal object can be
fetched during initialization. Only the interpretation of the VarVal object as a numeric
value is required during the search.

double Package::size() const

{

return ObjectLookupTable::instance

->getNumericValue(sizeVariable);

}

The following listing shows the initialize method of the Package class. It contains the
code to retrieve the VarVal object for the size �uent.

void Package::initialize()

{

vector<string> sizeArguments;

sizeArguments.push_back(getObjectID());

string sizeKey = ObjectLookupTable::instance

->createKey("Package_size", sizeArguments);

sizeVariable = ObjectLookupTable::instance

->getVariable(sizeKey);

}

6.3 Room Scanning Domain

This section demonstrates, how real world data is integrated into planning process using
OPL modules.

For this demonstration, we let an autonomous robot drive through an o�ce like environ-
ment. The robot has to search a number of rooms for items. Some rooms might initially
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(a) Gazebo Simulator: A simulated PR2 robot ap-
proaches a door in order to open it. The sim-
ulation is accurate enough to let the robot use
the same motion control algorithms as a phys-
ical PR2 robot.

(b) Navigation Stack visualization: A metric 2D
map represents the environment. Sensor read-
ings of the robot are accumulated to detect ob-
stacles (red) and calculate unsafe areas (blue)
to be avoided by the robot.

Figure 3: Two views of the Room Scanning planning task: Figure (a) shows a screenshot
from the Gazebo Simulator. Figure (b) depicts the same scene visualizing the
map representation of the ROS Navigation stack.

be inaccessible due to closed doors. The robot knows the layout of the environment and
the initial state of the doors a priori. We use symbolic planning to determine the optimal
sequence of actions for the robot, to search all rooms in a minimum amount of time.

We chose ROS as the operating system for the robot in this demonstration. ROS provides
tools and algorithms to simplify the development of robot applications. The components
of ROS are organized in packages called stacks, which expose their services to other
components.

The Gazebo Simulator is integrated with ROS. It is capable of simulating the sensors and
actuators of a robot accurately in a 3D environment. As a result, a simulated robot can
use the same algorithms as its physical counterpart to navigate in the simulated world.
This is useful for developing and testing new algorithms, before deploying them on a
physical robot.

For this demonstration, a simulated PR2 robot from Willow Garage is deployed in the
Gazebo simulator. Figure 3 shows the PR2 robot in the simulated environment.

To complete the task, the PR2 needs to be able to navigate to speci�ed locations and
to open doors. The Navigation stack provides services to localize the robot in the envi-
ronment and to compute safe paths between two poses. The pr2_doors stack provides
services to enable a PR2 robot to open doors.

In the following section we iterate through the integration process. In section 6.3.1 we
create an OPL domain for our planning task. In section 6.3.2, we explain the implemen-
tation of an OPL module. In section 6.3.3 we compare the implemented OPL module to a
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TFD module with the same functionality to highlight the advantages of the OPL module
interface.

6.3.1 Room Scanning OPL Domain

We create the Room Scanning OPL domain according to our needs for the planning task.
We want to represent a robot moving through the environment, searching for items. The
environment consist of multiple rooms or corridors. The robot knows the environment
and the coordinates for good scan locations in every room a priori. The goal of the robot
is to scan every room, but the way to some rooms is blocked by closed doors.

From this requirements, we de�ne the following types in our domain :

• Pose: This type represents a 3D position and orientation in the environment. It
has three numerical �uents x, y and z, to specify the position vector, and four more
qx, qy, qz and qw to specify the orientation quaternion. Furthermore, a condition
module is de�ned, to check whether this pose can be reached from another given
pose. Below the OPL de�nition of the Pose type is shown:

Type Pose

{

number x; number y; number z;

number qx; number qy; number qz; number qw;

boolean isReachableFrom(Pose origin);

}

• Target : This type represents a scan position in the environment. It extends the type
Pose and adds a Boolean �uent explored to track, whether a scan was conducted at
the speci�ed position. The OPL de�nition below shows the Target type:

Type Target : Pose

{

boolean explored;

}

• Door : This type represents a door in the environment. The Boolean �uent open
to track the state of the door. The object �uent approachPose of the type Pose
speci�es a position, from where a robot can manipulate the door.

Type Door

{

Pose approachPose;
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boolean open;

}

• Robot : This type represents a robot. The position of the robot is tracked with the
object �uent currentPose of the type Pose. The Boolean �uent busy prevents the
robot form executing two actions at the same time. The duration module driveDu-
ration performs service calls to the ROS navigation stack, in order to compute a
accurate path length between the current pose of the robot and a speci�ed destina-
tion. Additionally, the Robot type de�nes three actions that are explained in detail
further below.

Type Robot

{

Pose currentPose;

boolean busy;

DurationModule driveDuration(Pose destination);

DurativeAction scan(Target poi)

{...}

DurativeAction openDoor(Door door1)

{...}

DurativeAction drive(Pose destination)

{...}

}

• scan: This action lets the robot explore one target. To execute this action the robot
must not be busy with another action, it must be located at the target pose and the
target must not be explored yet. When the action is started, the robot is �agged as
busy, to prevent other actions from interfering. After the action �nishes, the robot
stops being busy and the target is �agged as explored.

DurativeAction scan(Target poi)

{

Duration{20.0;}

Condition

{

and (atStart (not (busy)),

atStart (equals(currentPose, poi)),

atStart (not (poi.explored)));

}

Effect

{

and (atStart (busy),

atEnd (not (busy)),

atEnd (poi.explored));
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}

}

• openDoor : This action lets the robot open one door. Analogous to the scan action,
the busy �uent prevents the robot from executing other actions, while the openDoor
action is in progress. To execute the action the robot has to be at the approachPose
of the door and the door must be closed. When the action �nishes, the door is open.

DurativeAction openDoor(Door door1)

{

Duration {100.0;}

Condition

{

and (atStart (not (busy)),

atStart (equals (currentPose, door1.approachPose)),

atStart (not (door1.open)));

}

Effect

{

and (atStart (busy),

atEnd (not (busy)),

atEnd (door1.open));

}

}

• drive: This action lets the robot move from its current pose to a new destination.
Again, the busy �uent prevents the robot from executing other actions, while the
drive action is in progress. The duration of the drive action is computed via the
module driveDuration. The module request a path calculation from the ROS navi-
gation stack, which is a costly operation; getting the result may take several seconds.
Therefore, the isReachable module tracks the state of doors and prevents the drive
action from execution, in cases where the destination is blocked by a closed door.

DurativeAction drive(Pose destination)

{

Duration {driveDuration(destination);}

Condition

{

and (atStart (not( equals(currentPose, destination))),

atStart (not (busy)),

atStart (destination.isReachableFrom(currentPose)));

}

Effect

{
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and (atStart (busy),

atEnd (assign (currentPose, destination)),

atEnd (not (busy)));

}

}

A problem �le for the Room Scanning OPL domain can instantiate any number of robots,
targets and doors. However, the domain was designed with one robot in mind and is not
suitable for multi-robot planning tasks.

Below we show how to instantiate each object type in a problem �le:

• Target : For each room to be scanned, the problem �le must specify the coordinates
of the scan pose. By omitting the explored �uent, it is initialized with the value
false. The OPL code is shown below:

Target target1

{

x = 10.0; y = 0.3; z = 0;

qx = 0; qy = 0; qz = 0; qw = 1;

}

• Door : To add a door to the planning task, the coordinates of the door need to be
speci�ed as a Pose object and assigned to the approachPose �uent of the door.

Pose door1Pose

{

x = 5.0; y = 0.3; z = 0;

qx = 0; qy = 0; qz = 0; qw = 1;

}

Door door1

{

approachPose = door1Pose;

}

• Robot : To add a robot to the planning task, the starting pose of the robot needs to
be speci�ed and assigned to the currentPose �uent of the robot.

Pose robot1StartPose

{

x = 1.0; y = 0.3; z = 0;

qx = 0; qy = 0; qz = 0; qw = 1;

}
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Robot robot1

{

currentPose = robot1StartPose;

}

Finally, the problem �le also speci�es a goal condition. In the listing shown below, we
want target1 to be explored:

Goal

{

and (target1.explored);

}

With the Room Scanning OPL domain speci�ed, we continue with the OPL module
implementation in the following section.

6.3.2 OPL Module Implementation

In section 6.3.1 we de�ned the Room Scanning OPL domain, which contained two module
de�nitions. In this section we exemplary show the implementation of the duration module
driveDuration.

First, we translate the OPL domain with the opl_translate_domain program. The pro-
gram produces a PDDL domain equivalent to the OPL domain and C++ module inter-
faces for each module de�ned in the domain. The header generated for the driveDuration
module is shown below:

#ifndef RoomScanning_Robot_driveDuration_H_

#define RoomScanning_Robot_driveDuration_H_

#include "State.h"

namespace opl

{

namespace RoomScanning

{

double Robot_driveDuration(const State* currentState,

const Robot* thisRobot,

const Pose* destination,

int relaxed);

}

}

#endif
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After the usual include guard, the namespaces for the Room Scanning domain are de-
clared. The module interface function returns a double value, since it is generated for
a duration module. In the OPL domain �le, the module is de�ned as member of the
Robot type. Thus, the name of the function starts with Robot_ followed by the name of
the module. The �rst argument is a constant pointer to a State object. As described in
section 6.1, the State pointer provides read only access to all objects and global �uents
de�ned in the domain. The second argument is a constant pointer to a Robot object.
This argument is generated because the module is de�ned as member of the Robot type
in the domain �le. It points to the robot that currently tries to execute the drive action to
expose all member �uents of the Robot to the module. The third argument is a constant
pointer to a Pose object according to Pose parameter in the module de�nition. The last
argument indicates, whether the value returned by the module call must be precise or
can be approximate. The latter case occurs, when the duration is required to compute
a heuristic value, while the former case occurs, when the action is actually added to the
plan.

We begin the module implementation by creating a cpp �le. We include the module
interface header and implement the declared function. The C++ code listing below
shows the �rst half of the implementation. For clarity, some parts of the implementation
are omitted; in particular debug code and ROS functions, if they are not related to the
module interface.

double Robot_driveDuration(const State* currentState,

const Robot* thisRobot,

const Pose* destination,

int relaxed)

{

if (serviceClient == NULL)

{

initializeClient();

}

const Pose* robotPose = thisRobot->currentPose();

// query path via service

nav_msgs::GetPlan srv;

setPose(srv.request.start.pose, robotPose);

setPose(srv.request.goal.pose, destinationPose);

[...]

We start by initializing the ROS service client, if it was not yet initialized in a previous
module call. The ROS service client provides the means to request a path planning oper-
ation from the ROS Navigation stack. We call the currentPose method of the thisRobot
object to obtain a reference to the robot pose. The GetPlan message contains the details
of our path planning request. We call the setPose function to copy the coordinates of the
robot pose and the destination pose into the message. The following listing shows the
implementation of the setPose function:
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void setPose(ros::geometry_msgs::Pose& rosPose,

const Pose* oplPose)

{

rosPose.position.x = oplPose->x();

rosPose.position.y = oplPose->y();

rosPose.position.z = oplPose->z();

rosPose.orientation.x = oplPose->qx();

rosPose.orientation.y = oplPose->qy();

rosPose.orientation.z = oplPose->qz();

rosPose.orientation.w = oplPose->qw();

}

The setPose function basically translates between the Pose class generated from the OPL
domain and the Pose message class required for ROS service calls. The coordinate values
are obtained via the �uent getter functions and assigned to the corresponding �eld in the
message pose.

We continue in the module interface function. The listing below shows the second half of
the implementation:

[...]

if (serviceClient.call(srv))

{

if (!srv.response.plan.poses.empty())

{

double pathLength;

// compute path length:

// sum of waypoint distances

[...]

return pathLength;

}

[...]

}

return modules::INFINITE_COST;

}

After �ling the message with the coordinates of the robot and the destination, we send
the service request. Further execution is blocked until the response arrives. If the path
planning process succeeded, the response message contains a number of waypoints. We
compute the path length by summing up the distances between the waypoints. We do not
consider the maximum velocity of the robot and simply return the path length as action
duration. If the path planning process failed, we return in�nite cost.

This concludes the implementation of the OPL module.
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6.3.3 TFD Module Comparison

To highlight the bene�ts of the OPL module interface, we compare the module imple-
mented in section 6.3.2 to a TFD module implementation with the same functionality.

Before beginning the implementation, we create a PDDL version of the Room Scanning
domain. The PDDL listing below shows the parts to module implementation:

(:types

robot pose - object

)

(:modules

(drive_duration ?rob - robot ?destination - pose

cost driveDuration@libtfd_RoomScanning.so)

)

(:functions

(current_pose ?rob - robot) - pose

(x ?p - pose) - number

(y ?p - pose) - number

(z ?p - pose) - number

(qx ?p - pose) - number

(qy ?p - pose) - number

(qz ?p - pose) - number

(qw ?p - pose) - number

)

For the module implementation we only care about the types robot and pose. The drive
duration module is de�ned with two parameters; the �rst of the type robot, the second of
type pose. The object �uent function current_pose speci�es at which pose object a robot
is located. To represent the coordinates of pose objects, we need seven numerical �uents:
three for the position vector and four more for the orientation quaternion.

With the domain de�nitions above, we can begin the module implementation. The sig-
nature of the TFD module function is explained in section 4.3.

As in its OPL counterpart, we omit parts of the implementation and focus on the inter-
action between module and planner state. The following listing shows the �rst half of the
module interface function:

double driveDuration(

const ParameterList& parameterList,

predicateCallbackType predicateCallback,

numericalFluentCallbackType numericalFluentCallback,
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objectFluentCallbackType objectFluentCallback,

int relaxed)

{

if (serviceClient == NULL)

{

initializeClient();

}

string robotName = parameterList.at(0).value;

string destinationName = parameterList.at(1).value;

ObjectFluentList* ofl = new ObjectFluentList();

ParameterList robotPL;

robotPL.push_back(Parameter("rob", "robot", robotName));

ofl->push_back(NumericalFluent("current_pose", robotPL));

if (!objectFluentCallback(ofl))

{

printf("Error in current pose request!");

exit(0);

}

string robotPoseName = ofl->at(0).value;

delete ofl;

// query path via service

nav_msgs::GetPlan srv;

setPose(srv.request.start.pose, robotPoseName,

numericalFluentCallback);

setPose(srv.request.goal.pose, destinationName,

numericalFluentCallback);

[...]

After the initialization of the ROS service client, we obtain the name of the robot object
from the parameter list. The parameter list is sorted according to the module de�nition.
Therefore, the robot parameter is found on the index 0 and the destination pose on index
1. We create an object �uent with the name currentPose with our robot as parameter.
The object �uent is inserted in to the object �uent list. We use the object �uent callback
function, to request the value of the of the current pose of the robot from the internal
planner state. The module call (and the whole planning process) is aborted, if something
went wrong during the callback. Finally, we have obtained the name of the pose object,
at which the robot is currently located.

Next, we create the ROS service message. The setPose function initializes the poses in
the service request message. The following listing shows the setPose function:

void setPose(ros::geometry_msgs::Pose& rosPose,

const String& poseName,

modules::numericalFluentCallbackType numericalFluentCallback)

{
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NumericalFluentList* nfl = new NumericalFluentList();

ParameterList pl;

pl.push_back(Parameter("p", "pose", poseName));

nfl->push_back(NumericalFluent("x", pl));

nfl->push_back(NumericalFluent("y", ParameterList(pl)));

nfl->push_back(NumericalFluent("z", ParameterList(pl)));

nfl->push_back(NumericalFluent("qx", ParameterList(pl)));

nfl->push_back(NumericalFluent("qy", ParameterList(pl)));

nfl->push_back(NumericalFluent("qz", ParameterList(pl)));

nfl->push_back(NumericalFluent("qw", ParameterList(pl)));

if (!numericalFluentCallback(nfl))

{

printf("Error in setPose function!");

exit(0);

}

rosPose.position.x = nfl->at(0).value;

rosPose.position.y = nfl->at(1).value;

rosPose.position.z = nfl->at(2).value;

rosPose.orientation.x = nfl->at(3).value;

rosPose.orientation.y = nfl->at(4).value;

rosPose.orientation.z = nfl->at(5).value;

rosPose.orientation.w = nfl->at(6).value;

delete nfl;

}

To obtain the coordinate values of the pose, we have to populate the numerical �uent list.
All the �uents we are interested in have the same parameter. Therefore, the parameter
list is copied for every �uent in the list. When the list is �lled with all seven �uent
speci�cations, we use the numerical �uent callback function to request the values from
the internal planner state. If everything was speci�ed correctly, the returned values are
assigned to the message pose.

The second half of the module interface function is identical to the OPL implementation;
thus, it is omitted here.

The disadvantages of the TFD module interface are obvious. Fluent requests are speci�ed
using strings, making them complicated, error prone and ine�cient. Multiple lines of code
are required for every request. Errors can not be detected by the compiler.

The OPL module interface addresses these problems. A single function call retrieves the
value from the internal planner state. The generated classes provide type safety, errors
are detected at compile time. A module developer can concentrate on implementing the
actual module algorithms instead of requesting �uent values.
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7 Experimental Results

In this chapter we perform experiments to evaluate various aspects of the OPL module
interface. The computational overhead caused in the planning system by module calls is
examined in section 7.1. In section 7.2, we compare the e�ciency of accessing the internal
planner state from a TFD module and an OPL module. Section 7.3 shows results of an
integration of the planning system with an simulated autonomous robot.

7.1 Crew Planning Domain

This section summarizes the results of experiments with the Crew Planning Domain.

The Crew Planning Domain is part of the temporal satis�cing track of the 6th Inter-
national Planning Competition 2008. The domain is based on astronauts working on a
space ship. A certain number of research projects has to be completed until a speci�ed
deadline. Multiple crew member are available. Each crew member can do only one task at
a time. Each crew member has a daily routine: every day he must sleep, eat and exercise.
However, some activities require additional equipment, which places restrictions on how
many crew member can do the corresponding activity at the same time.

For IPC 2008, the Crew Planning Domain presented the contenders with 30 problem �les
with increasing complexity. The �rst problem has only one crew member and workload
of 60% for one day, while the 30th problem has three crew members working for three
days at 100% load.

The Crew Planning Domain is represented solely with Boolean predicates; it does not
require external modules. That makes it the perfect candidate to measure the overhead
of external module calls. As state above, a crew member can only execute a single action
at a time. This is enforced by the predicate available. Before a crew member starts a new
action, the available predicate must have the value true for him. Once an action begins,
the predicate is set to false. When the action �nishes, the crew member is available once
again.

For this experiment, a condition module named emptyModule was added to the domain.
Every action that originally had the available predicate in its condition, now additionally
calls the emptyModule. The module is very simple: it always returns true. Thus, it does
not change the applicability of actions.

Three di�erent domains were evaluated against each other, in order to determine the
overhead of the OPL module interface. The original Crew Planning Domain from IPC
2008 acts as the base line. The Crew Planning Module Domain has additionally the
emptyModue as described above, to show the overhead of the TFD module interface.
The Crew Planning OPL Domain was created, containing equivalent types, �uents and
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actions as the Crew Planning Module PDDL domain. This shows the overhead of the
OPL module interface. For each of the 30 problem �les 100 test runs were conducted.
Table 1 shows the results of this experiment.

As can be seen in the table, the OPL module interface has in most experiments a signi�cant
lower overhead than the TFD module interface. For some problems the overhead increases
the search time insigni�cantly compared to the original domain. However, due to an
elusive bug in the search program, no solution was found for problem 25 of the OPL
domain in any of the test runs. Even when removing the module calls from the OPL
domain, the bug persisted. So far, the phenomenon seems to be restricted to this one
problem.

7.2 Transport Domain

This section summarizes the results of experiments with the Transport Domain.

The Transport Domain is part of the temporal satis�cing track of the 6th International
Planning Competition 2008. The domain is based on a delivery company. A city consist of
locations connected by roads. Multiple packages require deliverance to various locations
in the city. A number of transport vehicles needs to be coordinated, in order to pick up
and deliver every package to the speci�ed destination in a minimum amount of time.

For this experiment, eight problems of the original 30 from IPC 2008 were selected. The
complexity scales from the �rst problem with �ve locations, two vehicles and two packages
up to the last problem with 45 locations, four vehicles and 18 packages.

During their work on [Dornhege et al., 2009], the authors created a TFD module. The
module performs volumetric calculations to determine, whether a package �ts into the
vehicle. In order to do so, the module requests the sizes of all packages to be loaded into
the vehicle and the vehicle's capacity from the internal planner state. We created an OPL
domain and a corresponding module implementing the same algorithm for this Thesis.
In this experiment, the performance of these two modules is compared, to determine the
computational overhead of requesting �uent values from the internal planner state with
OPL modules and TFD modules.

For each of the eight problem �les 100 test runs were conducted. Table 2 shows the results
of the experiment.

Apart from problem 3 and 4, OPL modules outperform TFD modules signi�cantly: for
instance, for problem 6 the planning time with the OPL module was more than three
times as low. Especially for the complex problems with long search durations (problems
6, 7 and 8), the time advantage is enormous. For the problems 3 and 4 the situation is
reversed: the OPL module produces longer search durations. The reasons for the reversal
could not yet be determined.

48



cr
ew

co
u
n
t

d
ay

co
u
n
t

w
or
k
lo
ad

O
ri
gi
n
al

m
ea
n

O
ri
gi
n
al

st
d

M
o
d
u
le
m
ea
n

M
o
d
u
le
st
d

O
P
L
m
ea
n

O
P
L
st
d

1 1 1 40 3 4 8 4 5 5
2 1 1 60 7 5 13 5 9 5
3 1 1 80 2 4 9 5 5 5
4 1 1 100 18 4 25 5 22 4
5 2 1 40 41 3 55 5 50 4
6 2 1 60 73 6 89 4 85 5
7 2 1 80 96 5 119 4 120 4
8 2 1 100 87 5 110 5 95 6
9 3 1 40 152 6 186 5 172 6
10 3 1 60 265 6 322 6 275 6
11 3 1 80 238 5 291 6 304 6
12 3 1 100 286 6 351 6 348 6
13 1 2 60 32 5 42 4 37 5
14 1 2 80 48 5 60 4 54 6
15 1 2 100 36 5 45 5 35 5
16 2 2 60 266 5 328 6 289 6
17 2 2 80 314 7 395 6 337 6
18 2 2 100 388 6 417 6 372 8
19 3 2 60 1,040 10 1241 10 960 10
20 3 2 80 1,060 10 1290 10 1,220 10
21 3 2 100 1,350 10 1640 20 1,390 10
22 1 3 60 80 4 101 6 90 6
23 1 3 80 63 5 81 5 73 6
24 1 3 100 104 5 133 6 105 5
25 2 3 60 646 7 784 8 - -
26 2 3 80 799 8 970 10 812 8
27 2 3 100 787 9 960 20 875 9
28 3 3 60 1,770 10 2,120 10 1,770 10
29 3 3 80 2,950 30 3,540 20 2,890 30
30 3 3 100 2,840 20 3,430 20 2,840 20

Table 1: Results of the Crew Planning experiment. The �rst column shows the problem
number. Columns two to four indicate the complexity of the problem with the
number of crew members, number of days and the amount of work. Column �ve
shows the mean time required to �nd the �rst valid plan for each problem for
the original Crew Planning Domain in milliseconds. Column six contains the
corresponding standard deviations. The columns seven and eight show mean
run time and standard deviation for the Crew Planning Module Domain. The
columns nine and ten show show mean run time and standard deviation for the
Crew Planning OPL Domain.

49



lo
ca
ti
on

co
u
n
t

ve
h
ic
le
co
u
n
t

p
ac
ka
ge

co
u
n
t

T
F
D
m
ea
n

T
F
D
st
d

O
P
L
m
ea
n

O
P
L
st
d

1 5 2 2 9 3 3 5
2 10 2 4 119 6 39 4
3 15 3 6 524 8 1,016 7
4 20 3 8 1,310 10 2,100 10
5 25 3 10 3,360 30 2,890 20
6 30 4 12 87,500 400 17,910 160
7 35 4 14 140,900 400 68,000 1000
8 45 4 18 54,400 200 29,200 100

Table 2: Results for the Transport experiment. The �rst column shows the problem num-
ber. Columns two to four indicate the complexity of the problem with the number
of locations, number of vehicles and number of packages. Column �ve shows the
mean time required to �nd the �rst valid plan for each problem for the Transport
TFD Module Domain in milliseconds. Column six contains the corresponding
standard deviations. The columns seven and eight show mean run time and
standard deviation for the Transport OPL Module Domain.

7.3 Room Scanning Domain

This section summarizes the results of experiments with the Room Scanning domain.

The Room Scanning Domain is based on an autonomous robot searching for items in
various rooms. The environment consist of multiple rooms or corridors. The path to
some rooms is blocked by closed doors. The robot has a metric map of the environment
and knows the coordinates for good scan locations in every room. The robot wants to
scan all target locations in a minimum amount of time.

For the experiment we created eight problems with varying complexity. The complexity
ranges from two scan targets without any door in �rst problem, up to eight scan target
and two doors in the last. The Room Scanning domain and the corresponding module
implementation is explained in sections 6.3.1 and 6.3.2.

The planning process and the plan execution were evaluated separately. For each of the
problems 250 planing iterations were conducted. The planning system was con�gured
in anytime mode: the search continues after the �rst plan was found, until either the
search space is completely explored or a prede�ned amount of time has passed. For this
experiment the timeout was set to 180 seconds.

Table 3 shows the results of the planning experiment. As expected, the time required to
�nd the �rst valid plan increases with problem complexity. However, for the best plan,
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1 2 0 13.8 0.3 13.8 0.3 1
2 3 1 17.9 0.3 18.7 0.3 2
3 4 1 28.5 0.4 48.0 0.5 4
4 5 1 33.4 0.5 40.7 0.6 5
5 5 2 48.9 0.6 86.2 0.8 6
6 6 2 57.5 0.7 160.0 20.0 10
7 7 2 64.3 0.7 95.0 2.0 7
8 8 2 74.2 0.8 173.0 8.0 21

Table 3: Results for the Room Scanning experiment. The �rst column shows the problem
number. Columns two and three indicate the complexity of the problem with the
number of scan targets and number of doors. Column four shows the mean time
required to �nd the �rst valid plan for each problem for the Room Scanning OPL
Domain in seconds. Column �ve contains the corresponding standard deviations.
Column six shows the time required to �nd the best plan, with the standard
deviation in column seven. Column seven indicates how often the plan was
improved after the �rst plan was found.

problem 6 and 8 show a substantially higher standard deviation than the other problems.
We suspect the high deviation is related to the timeout: for some iterations the plan was
improved shortly before the timeout occurred, while for other iterations the search was
aborted, before a better plan could be discovered. Instead, the previously discovered plan
was used for the statistics, resulting in high time di�erences between iterations.

The number of plan improvements increases with problem complexity. Thus it can be
argued, that with increased problem complexity the quality of the initial plan decreases.

The plan execution was evaluated exemplary. Once a valid plan is found, the commands
sent to corresponding services in the ROS Navigation stack. The success of the execution
only depends on the interactions between the Gazebo simulator and the various ROS
stacks. Thus, an in-depth evaluation is beyond the scope of this Thesis. Figure 4 shows
screenshots of the simulation throughout the execution of a plan that was generated for
problem eight.
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(a) overview (b) 0: initial state (c) 1. open door 1

(d) 2. open door 2 (e) 3. scan target 5 (f) 4. scan target 3

(g) 5. scan target 2 (h) 6. scan target 1 (i) 7. scan target 4

(j) 8. scan target 8 (k) 9. scan target 7 (l) 10. scan target 6

Figure 4: Execution of a valid plan for problem 8, with two doors and eight scan targets
(blue circles).
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8 Conclusion

Autonomous robotic applications become increasingly complex in recent years. Hard-
coded mission control, for instance via �nite state machines, does not scale well with
complexity and will reach its limit soon. Methods of AI planning have the potential
to bridge the gap: AI planning systems o�er e�cient and �exible high level reasoning.
However, for real world applications the precision of low level reasoning is crucial. So far,
only few attempts were made to integrate both, e�cient high level reasoning and precise
low level reasoning, into a single planning system.

One such attempt is implemented in the Temporal Fast Downward planning system. It
o�ers a module interface to integrate external algorithms into the planning process. The
module interface is domain independent, thus, no changes in the planner software are
required for new domains. However, due to its generic nature, the coupling between a
module and the internal planner state is ine�cient, error prone and counter-intuitive. We
believe an e�cient and intuitive interface is key to widespread use of planning systems
for real life applications.

In this Thesis we present the Object-oriented Planning Language (OPL), as a successor
of PDDL. OPL o�ers a C++ like syntax, which reduces the learning curve for application
designer unfamiliar with PDDL. More importantly, it provides tools, to automatically
generate a domain speci�c module interface for the TFD planning system. The generated
C++ classes provide type-safe and e�cient access to the internal planner state. The gen-
erated interface integrates with the planner on top of the existing domain independent
interface. Thus, the planning system remains domain independent. With the generated
interface, developers can concentrate on algorithm design instead of wasting time on plan-
ning system integration. We demonstrate the improved module performance in various
experiments.

The potential of OPL is not yet fully realized. So far, modules can only read the internal
planner state, but not change the state. In the next step, we will include e�ect modules
into the code generation process to provide a way for two-ways information exchange
between planning system and external applications.

Furthermore, we believe the performance of the planning system can be improved sig-
ni�cantly through means of automated module result caching. In most cases a module
only depends on a sub set of the planning state. The dependency can be discovered by
tracking, which part of the state is accessed via the module interface.

Finally, two more points of interaction exist between the planning system and an ex-
ternal application, besides the module interface. The speci�cation of the initial state
and the goal condition is currently handled via problem �les. Once the planning process
is completed successfully, the plan is transferred to the application via a plan �le. To
avoid these ine�cient and error prone information exchange methods, additional domain
speci�c interfaces could be generated.
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