
Abstractions and Pattern Databases:
The Quest for Succinctness and Accuracy

Sebastian Kupferschmid and Martin Wehrle

University of Freiburg
Department of Computer Science

Freiburg, Germany
{kupfersc,mwehrle}@informatik.uni-freiburg.de

Abstract. Directed model checking is a well-established technique for detect-
ing error states in concurrent systems efficiently. As error traces are important
for debugging purposes, it is preferable to find as short error traces as possible.
A wide spread method to find provably shortest error traces is to apply the A∗

search algorithm with distance heuristics that never overestimate the real error
distance. An important class of such distance estimators is the class of pattern
database heuristics, which are built on abstractions of the system under consid-
eration. In this paper, we propose a systematic approach for the construction of
pattern database heuristics. We formally define a concept to measure the accuracy
of abstractions. Based on this technique, we address the challenge of finding ab-
stractions that are succinct on the one hand, and accurate to produce informed pat-
tern databases on the other hand. We evaluate our approach on large and complex
industrial problems. The experiments show that the resulting distance heuristic
impressively advances the state of the art.

1 Introduction

When model checking safety properties of large systems, the ultimate goal is to prove
the system correct with respect to a given property. However, for practically relevant
systems, this is often not possible because of the state explosion problem. Complemen-
tary to proving a system correct, model checking is often used to detect reachable error
states. To be able to debug a system effectively, it is important to have short or prefer-
ably shortest possible error traces in such cases. Directed model checking (DMC) is a
well established technique to find reachable error states in concurrent systems and has
recently found much attention [4, 6, 7, 10, 14, 15, 19–23]. The main idea of DMC is to
focus on those parts of the state space that show promise to contain reachable error
states. Thus, error states can often be found by only exploring a small fraction of the
entire reachable state space. DMC achieves this by applying a distance heuristic that es-
timates for each state encountered during the search the distance to a nearest error state.
These heuristics are usually based on abstractions and computed fully automatically.
One important discipline in DMC is to find optimal, i. e., shortest possible error traces.
This can be achieved by applying an admissible distance heuristic, i. e., a heuristic that
never overestimates the real error distance, with the A∗ search algorithm [8, 9].

2 Sebastian Kupferschmid and Martin Wehrle

An important class of admissible distance heuristics is based on pattern databases
(PDB). They have originally been introduced in the area of Artificial Intelligence [2, 5].
A pattern in this context is a subset of the variables or the predicates that describe the
original systemM. A PDB is essentially the state space of an abstraction ofM based
on the selected pattern. The heuristic estimate for a state encountered during the model
checking process is the error distance of the corresponding abstract state. The most cru-
cial part in the design of a pattern database heuristic is the choice of the pattern, which
determines the heuristic’s behavior and therefore the overall quality of the resulting
heuristic. Ultimately, one seeks for patterns that are as small as possible to be able to
handle large systems on the one hand. On the other hand, the corresponding abstract
system that is determined by the pattern should be as similar to the original system as
possible to appropriately reflect the original system behavior. This is equivalent to max-
imizing the distance estimates of the pattern database, as higher distance values lead to
more informed admissible heuristics. More precisely, for admissible heuristics h1 and
h2, it is known that A∗ with h1 performs better than with h2 if h1 delivers greater dis-
tance values than h2 [18]. Therefore, it is desirable to have admissible heuristics that
deliver as high distance values as possible.

In this paper, we present downward pattern refinement, a systematic approach to
the pattern selection problem. Complementary to other approaches, we successively
abstract the original system as long as only little spurious behavior is introduced. For
this purpose we developed a suitable notion to measure the similarity of systems which
corresponds to the accuracy of abstractions. This often results in small patterns that
still lead to very informed pattern database heuristics. We demonstrate that downward
pattern refinement is a powerful approach, and we are able to handle large problems
that could not be solved optimally before. In particular, we show that the resulting
pattern database heuristic recognizes many dead end states. Correctly identifying dead
end states is useful to reduce the search effort significantly, since such states can be
excluded from the search process without losing completeness. This even allows us to
efficiently verify correct systems with directed model checking techniques.

The remainder of this paper is structured as follows. Section 2 provides notations
and the necessary background in directed model checking. In Sec. 3 we detail the main
part of our contribution. This is followed by a discussion of related work. Afterwards,
in Sec. 5 we empirically evaluate our approach by comparing it to other state-of-the-art
PDB heuristics. Section 6 concludes the paper.

2 Preliminaries

In this section we introduce the notations used throughout this paper. This is followed
by a short introduction to directed model checking and pattern database heuristics.

2.1 Notation

The approach we are presenting here is applicable to a broad class of transition systems,
including systems featuring parallelism and interleaving, shared variables or binary syn-
chronization. For the sake of presentation, we decided to define systems rather gener-

Abstractions and Pattern Databases: The Quest for Succinctness and Accuracy 3

ally. The systems considered here consist of parallel processes using a global synchro-
nization mechanism. Throughout this paper, Σ denotes a finite set of synchronization
labels.

Definition 1 (Process). A process p = 〈L,L∗, T 〉 is a labeled directed graph, where
L 6= ∅ is a finite set of locations, L∗ ⊆ L is a set of error locations, and T ⊆ L×Σ×L
is a set of local transitions.

For a local transition (l, a, l′) ∈ T we also write l a−→ l′. The systems we are
dealing with are running in lockstep. This means that a process can only perform a local
transition, if all other processes of the system simultaneously perform a local transition
with the same label. In this paper, a systemM is just the parallel composition of a finite
number of processes p1, . . . , pn, the components ofM.

Definition 2 (Parallel composition). Let p1, . . . , pn be a finite number of processes
with pi = 〈Li, L

∗
i , Ti〉 for i ∈ {1, . . . , n}. The parallel composition p1 ‖ . . . ‖ pn of

these processes is the process 〈S, S∗, ∆〉, where S = L1×· · ·×Ln, S∗ = L∗1×· · ·×L∗n,
and ∆ ⊆ S × Σ × S is a transition relation. There is a transition (l1, . . . , ln)

a−→
(l′1, . . . , l

′
n) ∈ ∆, if and only if li

a−→ l′i ∈ Ti for each i ∈ {1, . . . , n}.

Note that parallel composition as defined above is an associative and commutative
operation. This gives rise to the following definition of systems.

Definition 3 (System). A system M = {p1, . . . , pn} is a set of processes, the com-
ponents of M. The semantics of M is given as the composite process 〈S, S∗, ∆〉 =
p1 ‖ . . . ‖ pn. We use S(M) and ∆(M) to denote the set of system states and global
transitions, respectively. We denote the set of error states with S∗(M).

To distinguish between local states of an atomic process and the global state of the
overall system, we use the term location for the former and state for the latter. The
problem we address in this paper is the detection of reachable error states s ∈ S∗(M)
for a given systemM. Formally, we define model checking tasks as follows.

Definition 4 (Model checking task). A model checking task is a tuple 〈M, s0〉, where
M is a system and s0 ∈ S(M) is the initial state. The objective is to find a sequence
π = t1, . . . , tn, of transitions, so that ti = si−1

ai−→ si ∈ ∆(M) for i ∈ {1, . . . , n}
and sn ∈ S∗(M).

We call a sequence π of successively applicable transitions leading from s ∈ S(M)
to s′ ∈ S(M) a trace. If s′ ∈ S∗(M), then π is an error trace. The length of a trace,
denoted with ‖π‖, is the number of its transitions, e. g., the length of π from the last
definition is n.

We conclude this section with a short remark on the close correspondence between
solving model checking tasks and the nonemptiness problem for intersections of regular
automata. From this perspective, a system component corresponds to a regular automa-
ton and the error locations correspond to accepting states of the automaton. Parallel
composition corresponds to language intersection. This view is not necessarily useful
for efficiently solving model checking tasks, but it shows that deciding existence of
error traces is PSPACE-complete [11].

4 Sebastian Kupferschmid and Martin Wehrle

2.2 Directed Model Checking

Directed model checking (DMC) is the application of heuristic search [18] to model
checking. DMC is an explicit search strategy which is especially tailored to the fast
detection of reachable error states. This is achieved by focusing the search on those
parts of the state space that show promise to contain error states. More precisely, DMC
applies a distance heuristic to influence the order in which states are explored. The most
successful distance heuristics are fully automatically generated based on a declarative
description of the given model checking task. A distance heuristic for a systemM is
a function h : S(M) → N0 ∪ {∞} which maps each state s ∈ S(M) to an integer,
estimating d(s), the distance from s to a nearest error state in S∗(M). When we want
to stress that h(s) is a heuristic estimate for s ∈ S(M), we write h(s,M). Typically,
heuristics in DMC are based on abstractions, i. e., the heuristic estimate for a states s is
the length of a corresponding error trace in an abstraction ofM. During search, such
a heuristic is used to determine which state to explore next. There are many different
ways how to prioritize states, e. g., the wide-spread methods A∗ [8, 9] and greedy search
[18]. In the former, states are explored by increasing value of c(s) + h(s), where c(s)
is the length of the trace on that state s was reached. If h is admissible, i. e., if it never
overestimates the real error distance, then A∗ is guaranteed to return a shortest possible
error trace. In greedy search, states are explored by increasing value of h(s). This gives
no guarantee on the length of the detected error trace, but tends to explore fewer states
in practice. Figure 1 shows a basic directed model checking algorithm.

1 function dmc(M, h):
2 open = empty priority queue
3 closed = ∅
4 open.insert(s0, priority(s0))
5 while open 6= ∅ do:
6 s = open.getMinimum()
7 if s ∈ S∗(M) then:
8 return False
9 closed = closed ∪ {s}

10 for each transition t = s
a−→ s′ ∈ ∆(M) do:

11 if s′ 6∈ closed then:
12 open.insert(s′, priority(s′))
13 return True

Fig. 1. A basic directed model checking algorithm

The algorithm takes a systemM and a heuristic h as input. It returns False if there
is a reachable error state, otherwise it returns True. The state s0 is the initial state of
M. The algorithm maintains a priority queue open which contains visited but not yet
explored states. When open.getMinimum is called, open returns a minimum element,
i. e., a state with minimal priority value. States that have been explored are stored in
closed. Every encountered state is first checked if it is an error state. If this is not the
case, its successors are computed. Every successor that has not been visited before is

Abstractions and Pattern Databases: The Quest for Succinctness and Accuracy 5

inserted into open according to its priority value. The priority function depends on the
applied version of directed model checking, i. e., if applied with A∗ or greedy search
(cf. [8, 18]). As already mentioned, for A∗, priority(s) returns h(s) + c(s), where c(s)
is the length of the path on which s was reached for the first time. For greedy search, it
simply evaluates to h(s). When every successor has been computed and prioritized, the
process continues with the next state from open with lowest priority value.

2.3 Pattern Database Heuristics

Pattern database (PDB) heuristics [2] are a family of abstraction-based heuristics. Orig-
inally, they were proposed for solving single-agent problems. Today they are one of the
most successful approaches for creating admissible heuristics.

For a given system M = {p1, . . . , pn} a PDB heuristic is defined by a pattern
P ⊆M, i. e., a subset of the components ofM. The pattern P can be interpreted as an
abstraction ofM. To stress that P is an abstraction ofM, we will denote this system
withM|P . It is not difficult to see that this kind of abstraction is a projection, and the
abstract system is an overapproximation ofM. A PDB is built prior to solving the actual
model checking task. For this, the entire reachable state space of the abstract system is
enumerated. Every reachable abstract state is then stored together with its abstract error
distance in some kind of lookup table, the so-called pattern database. Typically, these
distances are computed by a breadth-first search. Note that abstract systems have to
be chosen so that they are much smaller than their original counterparts and hence are
much easier to solve.

When solving the original model checking task with such a PDB, distances of con-
crete states are estimated as follows. A concrete state s is mapped to its corresponding
abstract state s|P ; the heuristic estimate for s is then looked up in the PDB. This is
given formally in the definition of PDB heuristics.

Definition 5 (Pattern database heuristic). LetM be a system and P be a pattern for
M. The heuristic value for a state s ∈ S(M) induced by P is defined as follows:

hP(s) = min{‖π‖ | π is error trace of model checking task 〈M|P , s|P〉},

where s|P is the projection of s onto P .

The main problem with PDB heuristics is the pattern selection problem. The in-
formedness of a PDB heuristic crucially depends on the selected pattern. For instance,
if the selected pattern P contains all processes, i. e., M = M|P , then we obtain a
perfect heuristic, i. e., a heuristic that returns the real error distance for all states of
the system. On the other hand, since we have to enumerate the reachable abstract state
space exhaustively, which coincides with the concrete one, this exactly performs like
blind breadth-first search. On the other end of an extreme spectrum, the PDB heuris-
tic induced by the empty pattern can be computed very efficiently, but on the negative
side, the resulting heuristic constantly evaluates to zero and thus also behaves like unin-
formed search. Good patterns are somewhere in between and how to find good patterns
is the topic of this paper.

6 Sebastian Kupferschmid and Martin Wehrle

3 Pattern Selection based on Downward Refinement

In this section, we describe our approach for the pattern selection that underlies the pat-
tern database heuristic. On the one hand, as the abstract state space has to be searched
exhaustively to build the pattern database, the ultimate goal is to find patterns that lead
to small abstractions to be able to handle large systems. On the other hand, the patterns
should yield abstractions that are as similar to the original system as possible to retain
as much of the original system behavior as possible. An obvious question in this con-
text is the question about similarity: what does it mean for a system to be “similar” to
an abstract system? In Sec. 3.1 and Sec. 3.2, we derive precise, but computationally
hard properties of similarity of abstract systems. Furthermore, based on these consid-
erations, we provide ways to efficiently approximate these notions in practice. Based
on these techniques, we finally describe an algorithm for the pattern selection based on
downward pattern refinement in Sec. 3.3.

3.1 Sufficiently Accurate Distance Heuristics

In this section, we derive a precise measure for abstractions to obtain informed pattern
database heuristics. As already outlined above, the most important question in this con-
text is the question about similarity. At the extreme end of the spectrum of possible ab-
stractions, one could choose a pattern that leads to bisimilar abstractions to the original
system. This yields a pattern database heuristic hP that is perfect, i. e., hP(s) = d(s)
for all states s, where d is the real error distance function. However, apart from being
not feasible in practice, we will see that this condition is stricter than needed for obtain-
ing perfect search behavior. It suffices to require hP(s) = d(s) only for states s that
are possibly explored by A∗. In this context, Pearl [18] gives a necessary and sufficient
condition for a state to be explored by A∗. Consider a model checking task 〈M, s0〉
and let d(s0) denote the length of a shortest error trace ofM. Recall that the priority
function of A∗ is priority(s) = h(s)+ c(s), where c(s) is the length of a shortest trace
from s0 to s. Pearl shows that if priority(s) < d(s0), then s is necessarily explored
by A∗, whereas exploring s implies that priority(s) ≤ d(s0). This gives rise to the
following definition for a distance heuristic to be sufficiently accurate.

Definition 6 (Sufficiently accurate). Let M be a system with shortest error trace
length d(s0), P ⊆ M be a pattern of M, and hP be the pattern database heuristic
for P . If hP(s) = d(s) for all states s with hP(s) + c(s) ≤ d(s0), thenM|P is called
a sufficiently accurate abstraction ofM, and hP is called sufficiently accurate distance
heuristic forM.

Obviously, the requirement for a distance heuristic hP to be sufficiently accurate
is weaker than the requirement hP(s) = d(s) for all possible states. However, with
the results given by Pearl, we still know that A∗ with a sufficiently accurate distance
heuristic delivers perfect search behavior, i. e., the same search behavior as that of A∗

with d. This justifies Def. 6 and is stated formally in the following proposition.

Proposition 1. LetM be a system, hP be a distance heuristic that is sufficiently accu-
rate forM. Then the set of explored states with A∗ applied with d is equal to the set of
explored states of A∗ applied with hP .

Abstractions and Pattern Databases: The Quest for Succinctness and Accuracy 7

Proof. The claim follows immediately from the results given by Pearl [18]. As hP is
sufficiently accurate, we know that for every state s that is possibly explored by A∗

applied with hP it holds hP(s) = d(s). Therefore, the behavior of A∗ with d and hP is
identical.

As a first and immediate result of the above considerations, it suffices to have pat-
terns that lead to sufficiently accurate distance heuristics to obtain perfect search behav-
ior with A∗. On the one hand, this notion is intuitive and reasonable. On the other hand,
it is still of rather theoretical nature. It should be obvious that a sufficiently accurate
heuristic is hard to compute as it relies on exact error distances d; as a side remark, if
d was given, the overall model checking problem would be already solved, and there
would be no need to compute a pattern database heuristic. However, Def. 6 also pro-
vides a first intuitive way for approximating this property, an approximation which is
described next.

According to Def. 6, an abstractionM|P is sufficiently accurate if hP(s) = d(s) for
all states s that are possibly explored by A∗. In this case, the pattern database heuristic
based on M|P is sufficiently accurate for M. For the following considerations, note
that hP(s) = d(s|P ,M|P), and therefore, a direct way to approximate this test is to
use a distance heuristic h instead of d. This is reasonable as distance heuristics are
designed exactly for the purpose of approximating d, and various distance heuristics
have been proposed in the directed model checking literature. Furthermore, as checking
all states that are possibly explored by A∗ is not feasible either, we check this property
only for the initial system state. This is the only state for which we know a priori that
it is explored by A∗. Overall, this gives rise to the following definition of relatively
accurate abstractions.

Definition 7 (Relatively accurate). Let 〈M, s0〉 be a model checking task with system
M and initial state s0. Further, let P ⊆ M be a pattern of M, and let M|P be the
corresponding abstraction to P with abstract initial state s0|P . Furthermore, let h be a
distance heuristic, h(s0,M) the distance estimate of s0 ∈ S(M), and h(s0|P ,M|P)
the distance estimate of s0|P ∈ S(M|P). If

h(s0,M) = h(s0|P ,M|P),

thenM|P is called the relatively accurate abstraction ofM induced by h and P .

Obviously, the quality of this approximation strongly depends on the quality of the
applied distance heuristic h. We want to emphasize that, according to the above defini-
tion, we apply a second distance heuristic h to determine our pattern database heuristic
hP . In the experimental section, we will see that even this rather simple approximation
of sufficient accurateness yields very informed abstract systems for sophisticated h.

3.2 Concretizable Traces and Safe Abstractions

In addition to the criterion from the last section, we derive a sufficient criterion for a
distance heuristic to be sufficiently accurate that is still weaker than the requirement
hP(s) = d(s) for all states s. It is based on the observation that abstract systems where
every spurious error trace is longer than d(s0) are not harmful. This is stated formally
in the following proposition.

8 Sebastian Kupferschmid and Martin Wehrle

Proposition 2. LetM be a system, P ⊆M be a pattern such that every spurious error
trace π in the corresponding abstractionM|P is longer than a shortest possible error
trace inM, i. e., ‖π‖ > d(s0). Then hP is sufficiently accurate forM.

Proof. First, recall that hP(s) ≤ d(s) for all states s ∈ S(M) because M|P is an
overapproximation ofM. We show that hP(s)+ c(s) > d(s0) for all states s ∈ S(M)
with hP(s) < d(s). Assume hP(s) < d(s) for a state s ∈ S(M). Let s|P ∈ S(M|P)
be the corresponding abstract state to s. As hP(s) < d(s), there is an abstract trace πP
that is spurious and contains s|P . As all spurious error traces are longer than d(s0) by
assumption, we have ‖πP‖ > d(s0). Therefore, ‖πP‖ = cP(s|P) + dP(s|P) > d(s0),
where cP(s|P) denotes the length of a shortest abstract trace from the initial abstract
state to s|P , and dP(s|P) denotes the abstract error distance of s|P ∈ S(M|P). As
dP(s|P) = hP(s) and c(s) ≥ cP(s|P), we have c(s) + hP(s) > d(s0).

Again, identifying abstractions with the property given by the above proposition
is computationally hard as it relies on checking all possible spurious error traces. In
the following, we show that a subclass of abstractions for a slightly stronger condition
can be identified efficiently. To be more precise, we focus on abstractions that only
introduce spurious error traces that can be concretized in the following sense.

Definition 8 (Concretizable Trace). Let M be a system, P ⊆ M be a pattern, and
M|P be the corresponding abstraction of M. Let πP = t#1 , . . . , t

#
n be an abstract

error trace of M|P with corresponding concrete transitions t1, . . . , tn of M. Let πP
be spurious, i. e., t1, . . . , tn is not a concrete error trace ofM. The error trace πP is
concretizable inM if and only if there is a concrete error trace

π = π0, t1, π1, t2, π2, . . . , πn−1, tn, πn

inM that embeds t1, . . . , tn. The πi are traces inM with ‖πi‖ ≥ 0, for i ∈ {0, . . . , n}.

Informally speaking, an abstract trace πP inM|P is concretizable inM if there is
a concrete trace inM so that the corresponding abstract trace inM|P is equal to πP .
Note that from the above definition, concretizable error traces are a subclass of spurious
error traces; as a side remark, these are exactly those error traces that preserve dead-ends
inM, i. e., states from which no error state is reachable. In the following, we focus on
finding abstractions that do not introduce error traces that are not concretizable. We
observe that safe abstraction is an effective technique for this purpose.

Safe abstraction for directed model checking has been introduced by Wehrle and
Helmert [21]. Essentially, processes identified by safe abstraction can change their lo-
cations independently of and without affecting any other process, and every possible
location is reachable. We briefly give the formal definitions in the following, starting
with the notion of independent processes.

Definition 9 (Independent process). LetM be a system and let p ∈ M be a process.
Process p = 〈L,L∗, T 〉 is independent inM if for every (l1, a, l2) ∈ T with l1 6= l2
and every process 〈L′, L∗′, T ′〉 = p′ ∈ M \ {p}, the following two conditions hold:
For every l′ ∈ L′, there is (l′, a, l′′) ∈ T ′, and for every (l′, a, l′′) ∈ T ′: l′ = l′′.

Abstractions and Pattern Databases: The Quest for Succinctness and Accuracy 9

According to the above definition, independent processes p can change their loca-
tions independently of the current locations of other processes, and changing locations
in p has no side effect on other processes either. Based on this notion, we define safe
processes as follows.

Definition 10 (Safe process). LetM be a system and let 〈L,L∗, T 〉 = p ∈ M be a
process. Process p is safe inM if p is independent inM, and for all locations l, l′ ∈ L
there is a sequence of local transitions in T that leads from l to l′, i. e., p is strongly
connected.

Safe processes can be efficiently identified by an analysis of the system processes’
causal dependencies. Wehrle and Helmert exploited this property by performing di-
rected model checking directly on the safe abstracted system. Corresponding abstract
error traces inM|P have been finally extended to a concrete error trace inM. Doing
so, however, is not optimality preserving: shortest abstract error traces inM|P may not
correspond to any shortest error trace inM.

In this work, we use safe abstraction in a different context, namely to select patterns
for a pattern database. For the following proposition, we assume without loss of gener-
ality that for every process p the target location set for p is not empty, and each label
a that occurs in a transition of any process also occurs in a transition of p. Under these
assumptions, every abstract error trace can be concretized. This is summarized in the
following proposition. A proof is given by Wehrle and Helmert [21].

Proposition 3. LetM be a system and let p ∈ M be a safe process ofM. Let P =
M\{p} be the pattern obtained by removing p fromM, andM|P be the corresponding
abstract system. Then every abstract error trace inM|P is concretizable.

We observe that under the assumptions of Prop. 3, the set of unconcretizable ab-
stract error traces is empty, and of course, so is the set of shorter or equally long ab-
stract traces {πP | πP is not concretizable and ‖πP‖ ≤ d(s0)}. In other words, ab-
stracting safe variables does not introduce error traces that are longer than d(s0) and
are not concretizable. We observe that safe abstraction provides an effective technique
to approximate Prop. 2, where the condition of spuriousness is strengthened to con-
cretizablility. The causal analysis required for safe abstraction can be done statically,
is cheap to compute, and identifies processes that have the property that corresponding
abstract systems approximate the conditions of Prop. 2. At this point, we emphasize
again that we do not claim to introduce safe abstraction; however, we rather apply this
technique for a different purpose than it was originally introduced.

Overall, based on the computationally hard notion of sufficiently accurate distance
heuristics and Prop. 2, we have introduced ways to find abstract systems that are similar
to the original system. Based on these techniques, we propose an algorithm for the
pattern selection in the next section.

3.3 An Algorithm for Pattern Selection Based on Downward Refinement

In this section, we put the pieces together. So far, we have identified the notion of suf-
ficiently accurate abstractions, and proposed techniques for approximating these con-
cepts. Based on these techniques, we introduce an algorithm for the pattern selection

10 Sebastian Kupferschmid and Martin Wehrle

which we call downward pattern refinement. It starts with the full pattern, and itera-
tively refines it as long as the confidence is high enough that the resulting abstraction
yields an informed pattern database. The algorithm is shown in Figure 2.

1 function dpr(M, s0, h):
2 P :=M\ {p | p safe process inM}
3 for each p ∈ P do:
4 if h(s0,M) = h(s0|P\{p},M|P\{p}) then:
5 P := P \ {p}
6 goto 3
7 return P

Fig. 2. The downward pattern refinement algorithm

Roughly speaking, the overall approach works as follows. We start with the pattern
that contains all system processes. In this case, the resulting pattern database heuristic
would deliver perfect search behavior. However, as we have already discussed, such
systems usually become too huge and cannot be handled in general due to the state
explosion problem. Therefore, we iteratively remove processes such that the resulting
abstraction is still similar to the original system.

We start with identifying all processes that do not introduce error traces that are not
concretizable. Therefore, we remove all processes that are safe according to the safe
abstraction approach (line 2). From the resulting abstract systemM|P , we iteratively
remove processes p that lead to relatively accurate abstractions for the given distance
heuristic h, i. e., for which the distance estimate of the initial abstract state does not
decrease (lines 3–6). In particular, in line 4, we check for the current abstractionM|P
if it can be further abstracted without reducing the distance estimation provided by h.
The search stops when no more processes can be removed without decreasing h, i. e.,
when a fixpoint is reached. Termination is guaranteed after at most |P| iterations as we
remove one process from the pattern in each iteration. We finally return the obtained
pattern (line 7). We remark that the order in which the processes are considered may in-
fluence the resulting pattern. However, in our experiments, we observed that the pattern
is invariant with respect to this order.

4 Related Work

Directed model checking has recently found much attention in different versions to
efficiently detect error states in concurrent systems [4, 6, 7, 10, 14, 15, 19–23]. In the
following, we give a very brief comparison of downward pattern refinement with other
PDB heuristics. Overall, they mainly differ from our approach in the pattern selection
scheme. The hrd heuristic [15] uses a counterexample-guided pattern selection scheme,
where those variables that occur in a certain abstract error trace are selected. The pattern
selection mechanism of the hcoi heuristic [19] is based on a cone of influence analysis.
It is based on the idea that variables that occur “closer” to those variables of the property

Abstractions and Pattern Databases: The Quest for Succinctness and Accuracy 11

are more important than other ones. The hpa heuristic [10] splits a system into several
parts and uses predicate abstraction to build a PDB heuristic for each of the parts. The
resulting heuristic is the sum of all these heuristics.

Further admissible non-PDB heuristics are the hL and haa heuristics. The under-
lying abstraction of the haa heuristic [4] is obtained by iteratively replacing two com-
ponents of a system by an overapproximation of their cross product. The hL heuristic
is based on the monotonicity abstraction [14]. The main idea of this abstraction is that
variables are set-valued and these sets grow monotonically over transition application.
In the following section, we will provide an experimental comparison of these heuristics
with our approach.

5 Evaluation

We have implemented downward pattern refinement into our model checker MCTA [16]
and empirically evaluated its potential on a range of practically relevant systems com-
ing from an industrial case study. We call the resulting heuristic hdpr . We compare it
with various other admissible distance heuristics as implemented in the directed model
checking tools UPPAAL/DMC [13] and MCTA.

5.1 Implementation Details

As outlined in the preliminaries, we chose our formalism mainly to ease presentation.
Actually, our benchmarks are modeled as timed automata consisting of finitely many
parallel automata with clocks and bounded integer variables. The downward pattern
refinement algorithm works directly on timed automata. In a nutshell, automata and in-
teger variables correspond to processes in our formalism. As it is not overly important
how abstractions of timed automata systems are built, we omit a more detailed descrip-
tion here for lack of space. We remark that this formalism is handled as in Kupferschmid
et al.’s Russian doll approach [15].

To identify relatively accurate abstractions, we use the (inadmissible) hU heuristic
[14] for the following reasons. First, it is one of MCTA’s fastest to compute heuristics for
this purpose. This is an important property since the heuristic is often called for different
patterns during the downward pattern refinement procedure. Second, among MCTA’s
fastest heuristics, the hU heuristic is the most informed one. The more informed a
heuristic is the better it is suited for the evaluation of patterns. As in the computation
of the hU heuristic clocks are ignored, we always include all clocks from the original
system in the selected pattern. By doing so, the resulting hdpr is able to reason about
clocks. We will come back to this in Sec. 6.

To identify safe variables, each automaton and each bounded integer variable cor-
responds essentially to a process p in the sense of Def. 1. Both kinds of processes can
be subject to safe abstraction as described in Sec. 3.2.

5.2 Experimental Setup

We evaluate the hdpr distance heuristic with A∗ search by comparing it with other dis-
tance heuristics implemented in MCTA or UPPAAL/DMC. In more details, we compare

12 Sebastian Kupferschmid and Martin Wehrle

to hrd , hcoi , hpa , haa and hL heuristics as described in the related work section. Fur-
thermore, we compare to UPPAAL’s1 breadth-first search (BFS) as implemented in the
current version (4.0.13). Note that we do not compare our method with inadmissible
heuristics like the hU heuristic, as we do not necessarily get shortest error traces when
applied with A∗. All experiments have been performed on an AMD Opteron 2.3 GHz
system with 4 GByte of memory.

As benchmarks, we use the Single-tracked Line Segment case study, which comes
from an industrial project partner of the UniForM-project [12]. The case study models
a distributed real-time controller for a segment of tracks where trams share a piece of
track. A distributed controller has to ensure that never two trams are simultaneously in
the critical section driving in different directions. The controller was modeled in terms
of PLC automata [3], which is an automata-like notation for real-time programs. With
the tool MOBY/RT [17], we transformed the PLC automata system into abstractions
of its semantics in terms of timed automata [1]. For the evaluation of our approach we
chose the property that never both directions are given permission to enter the shared
segment simultaneously. We use three problem families to evaluate our approach, de-
noted with C, D, and E. They have been obtained by applying different abstractions
to the case study. For each of them, we constructed nine models of increasing size by
decreasing the number of abstracted variables. Note that all these problems are very
large. The number of variables in the C instances ranges from 15 to 28, the number
of automata ranges from 5 to 10. The corresponding numbers in the D problems range
from 29 to 54 (variables) and from 7 to 13 (automata). The E instances have 44 to 54
variables and 9 to 13 automata. We injected an error into the C and D examples by ma-
nipulating an upper time bound. The E instances are correct with respect to the chosen
property.

5.3 Experimental Results

Our experimental results are presented in Table 1. We compare hdpr with the other
heuristics and UPPAAL’s breadth-first search (BFS) in terms of total runtime (including
the preprocessing to build the pattern database for the PDB heuristics) and in terms
of number of explored concrete states during the actual model checking process. The
results are impressive. Most strikingly, hdpr is the only heuristic that is able to solve
every (erroneous and correct) problem instance. Looking a bit more closely, we also
observe that hdpr is always among the fastest approaches. In the C instances, only hrd

is faster, whereas in the smaller D instances, hdpr outperforms the other approaches
except for D1. The larger D instances cannot be handled by any of the other heuristics
at all. Moreover, we observe that the pruning power of hdpr is high, and hence, we
are able to verify correct systems that are even out of scope for the current version
of UPPAAL. In many cases, the initial system state s0 is already evaluated to infinity;
this means that there is provably no concrete error trace from s0 and there is no need
to search in the concrete system at all. In particular, this results in a total number of
explored states of zero. We will discuss these points in more details in the next section.

1 http://www.uppaal.com/

Abstractions and Pattern Databases: The Quest for Succinctness and Accuracy 13

Table 1. Experimental results for A∗ search. Abbreviations: “runtime”: overall runtime including
any preprocessing in seconds, “explored states”: number of explored states before an error state
was encountered or the instance was proven correct, dashes indicate out of memory (> 4 GByte)

runtime in s explored states trace
Inst. hdpr hrd hcoi hpa haa hL BFS hdpr hrd hcoi hpa haa hL BFS length

erroneous instances

C1 1.8 0.7 0.6 1.1 0.1 0.1 0.2 55 130 130 7088 8649 8053 21008 54
C2 2.3 1.0 1.6 1.2 0.4 0.2 0.4 55 89813 187 15742 21719 21956 55544 54
C3 2.2 0.6 2.6 1.2 0.4 0.4 0.6 55 197 197 15586 28753 24951 74791 54
C4 2.5 0.7 23.4 2.2 1.9 2.3 5.3 253 1140 466 108603 328415 170325 553265 55
C5 2.6 0.9 223.9 6.8 12.6 18.2 46.7 1083 7530 2147 733761 2.5e+6 1.2e+6 4.0e+6 56
C6 4.1 0.8 227.4 53.6 176.2 165.2 464.7 2380 39436 6229 7.4e+6 2.5e+7 1.0e+7 3.4e+7 56
C7 3.7 1.3 227.7 – – – – 3879 149993 16357 – – – – 56
C8 3.7 1.3 182.3 – – – – 5048 158361 16353 – – – – 56
C9 3.3 1.3 – – – – – 12651 127895 – – – – – 57
D1 5.9 81.1 217.6 9.0 2.3 28.0 76.6 2450 4.6e+6 414 475354 2.6e+6 888779 4.1e+6 78
D2 6.7 218.5 213.5 35.6 11.5 134.0 458.4 4401 4223 4223 2.5e+6 1.4e+6 4.0e+6 2.2e+7 79
D3 6.7 222.7 215.0 36.3 11.8 152.3 466.5 4713 2993 2993 2.5e+6 1.4e+6 4.6e+6 2.2e+7 79
D4 7.1 218.7 216.3 27.9 9.9 79.7 404.4 979 2031 2031 2.0e+6 1.3e+6 2.4e+6 1.8e+7 79
D5 48.9 – – – – – – 75631 – – – – – – 102
D6 52.6 – – – – – – 255486 – – – – – – 103
D7 55.5 – – – – – – 131275 – – – – – – 104
D8 52.6 – – – – – – 22267 – – – – – – 104
D9 55.3 – – – – – – 11960 – – – – – – 105

error-free instances

E1 5.9 – 1.5 1.6 0.2 0.3 0.3 0 – 59210 22571 24842 18533 43108 n/a
E2 23.4 – – 91.6 65.7 140.1 157.0 0 – – 6.1e+6 6.4e+6 4.6e+6 1.1e+7 n/a
E3 53.1 – – – – – – 1 – – – – – – n/a
E4 156.1 – – – – – – 1 – – – – – – n/a
E5 158.0 – – – – – – 0 – – – – – – n/a
E6 161.9 – – – – – – 0 – – – – – – n/a
E7 168.1 – – – – – – 0 – – – – – – n/a
E8 172.8 – – – – – – 13 – – – – – – n/a
E9 180.1 – – – – – – 0 – – – – – – n/a

5.4 Directed Model Checking for Correct Systems?

As outlined in the introduction, directed model checking is tailored to the fast detection
of reachable error states. The approach is sound and complete as only the order is influ-
enced in which the states are explored. However, one may wonder why a technique that
influences the order of explored states is also capable of efficiently proving a system
correct. The answer is that admissible distance heuristics like hdpr , i. e., heuristics h
with h(s) ≤ d(s) for all states s and the real error distance function d, also admit prun-
ing power in the following sense. If h(s) =∞ for an admissible heuristic h and a state
s, then there is no abstract error trace that starts from the corresponding abstract state of
s. Therefore, s can be pruned without losing completeness because d(s) = ∞ as well,
as there is no concrete error trace starting from s either. Therefore, the absence of error
states might be shown without actually exploring the entire reachable state space. In
our experiments, we observe that hdpr is very successful for this purpose as well. This

14 Sebastian Kupferschmid and Martin Wehrle

is caused by the suitable abstraction found by our downward refinement algorithm that
preserves much of the original system behavior. The other distance heuristics do not
perform as well in this respect. This is either because the underlying abstraction is too
coarse (and hence, not many states are recognized that can be pruned), or it is too large
such that no pattern database could be built because of lack of memory. Obviously, the
abstractions of hdpr identify a sweet spot of the trade-off to be as succinct as possible
on the one hand, and as accurate as possible on the other hand.

6 Conclusions

We have introduced an approach to find abstractions and to build pattern database
heuristics by systematically exploiting a tractable notion of system similarity. Based
on these techniques, we presented a powerful algorithm for selecting patterns based
on downward refinement. The experimental evaluation shows impressive performance
improvements compared to previously proposed, state-of-the-art distance heuristics on
a range of large and complex real world problems. In particular, we have learned that
directed model checking with admissible distance heuristics can also be successfully
applied to verify correct systems. For both erroneous and correct systems, we are able
to solve very large problems that could not be optimally solved before. Overall, we
observe that directed model checking with abstraction based distance heuristics faces
similar problems as other (abstraction based) approaches to solve model checking tasks.
In all these areas, the common problem is to find abstractions that are both succinct and
accurate. This is also reflected in the future work, where it will be interesting to fur-
ther investigate the class of pattern database heuristics and, in particular, to find suitable
abstractions for pattern databases. In this context, counterexample-guided abstraction
refinement could serve as a technique to further push our approach. Moreover, for the
class of timed automata, we expect that the development of heuristics that consider
clocks in the computation of heuristic values (rather than ignoring them) will improve
our approach as such heuristics are better suited for the evaluation of patterns.

Acknowledgments

This work was partly supported by the German Research Foundation (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
2. Culberson, J.C., Schaeffer, J.: Pattern databases. Comp.Int. 14(3), 318–334 (1998)
3. Dierks, H.: Time, Abstraction and Heuristics – Automatic Verification and Planning of Timed

Systems using Abstraction and Heuristics. Habilitation thesis, University of Oldenburg, Ger-
many (2005)

4. Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-preserving
abstractions. STTT 11(1), 27–37 (2009)

Abstractions and Pattern Databases: The Quest for Succinctness and Accuracy 15

5. Edelkamp, S.: Planning with pattern databases. In: Proc. ECP. pp. 13–24 (2001)
6. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the

validation of communication protocols. STTT 5(2), 247–267 (2004)
7. Edelkamp, S., Schuppan, V., Bosnacki, D., Wijs, A., Fehnker, A., Aljazzar, H.: Survey on

directed model checking. In: Proc. MOCHART. pp. 65–89. Springer (2008)
8. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of min-

imum cost paths. IEEE Trans. Systems Science and Cybernetics 4(2), 100–107 (1968)
9. Hart, P.E., Nilsson, N.J., Raphael, B.: Correction to a formal basis for the heuristic determi-

nation of minimum cost paths. SIGART Newsletter 37, 28–29 (1972)
10. Hoffmann, J., Smaus, J.G., Rybalchenko, A., Kupferschmid, S., Podelski, A.: Using predi-

cate abstraction to generate heuristic functions in Uppaal. In: Proc. MOCHART. pp. 51–66.
Springer (2007)

11. Kozen, D.: Lower bounds for natural proof systems. In: Proc. FOCS. pp. 254–266. IEEE
Computer Society (1977)

12. Krieg-Brückner, B., Peleska, J., Olderog, E.R., Baer, A.: The UniForM workbench, a uni-
versal development environment for formal methods. In: Proc. MF. pp. 1186–1205. Springer
(1999)

13. Kupferschmid, S., Dräger, K., Hoffmann, J., Finkbeiner, B., Dierks, H., Podelski, A.,
Behrmann, G.: Uppaal/DMC – abstraction-based heuristics for directed model checking. In:
Proc. TACAS. pp. 679–682. Springer (2007)

14. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI planning heuris-
tic for directed model checking. In: Proc. SPIN. pp. 35–52. Springer (2006)

15. Kupferschmid, S., Hoffmann, J., Larsen, K.G.: Fast directed model checking via russian doll
abstraction. In: Proc. TACAS. Springer (2008)

16. Kupferschmid, S., Wehrle, M., Nebel, B., Podelski, A.: Faster than Uppaal? In: Proc. CAV.
Springer (2008)

17. Olderog, E.R., Dierks, H.: Moby/RT: A tool for specification and verification of real-time
systems. J. UCS 9(2), 88–105 (2003)

18. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley (1984)

19. Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction and symbolic
pattern databases. In: Proc. TACAS. pp. 497–511. Springer (2004)

20. Smaus, J.G., Hoffmann, J.: Relaxation refinement: A new method to generate heuristic func-
tions. In: Proc. MOCHART. pp. 146–164. Springer (2008)

21. Wehrle, M., Helmert, M.: The causal graph revisited for directed model checking. In: Proc.
SAS. pp. 86–101. Springer (2009)

22. Wehrle, M., Kupferschmid, S.: Context-enhanced directed model checking. In: Proc. SPIN.
Springer (2010)

23. Wehrle, M., Kupferschmid, S., Podelski, A.: Transition-based directed model checking. In:
Proc. TACAS. pp. 186–200. Springer (2009)

