
A Skat Player Based on Monte Carlo Simulation

Sebastian Kupferschmid and Malte Helmert

Albert-Ludwigs-Universität Freiburg, Germany.
{kupfersc, helmert}@informatik.uni-freiburg.de

Abstract. We apply Monte Carlo simulation and alpha-beta search to the card
game of Skat, which is similar to Bridge, but different enough to require some
new algorithmic ideas besides the techniques developed for Bridge. Our Skat-
playing program integrates well-known techniques such as move ordering with
two new search enhancements. Quasi-symmetry reduction generalizes symme-
try reductions, popularized by Ginsberg’s Partition Search algorithm, to search
states which are “almost equivalent”. Adversarial heuristics generalize ideas from
single-agent search algorithms like A∗ to two-player games, leading to guaran-
teed lower and upper bounds for the score of a game position. Combining these
techniques with state-of-the-art tree search algorithms, our program determines
the game-theoretical value of a typical Skat hand (with perfect information) in 10
milliseconds.

1 Introduction

Although mostly unknown in the English-speaking world, the game of Skat is the most
popular card game in continental Europe, surpassed in world-wide popularity only by
Bridge and Poker. With about 30 million casual players and about 40,000 people playing
at a competitive level, Skat is mostly a German phenomenon, although national associ-
ations exist in twenty countries on all six inhabited continents. It is widely considered
the most interesting card game for three players.

Despite its popularity, Skat has not been studied extensively by the AI community.
This is not due to lack of challenge, as Skat is definitely a game of skill — significant
experience is required to reach tournament playing strength — and all existing computer
implementations play rather poorly. In this paper, we explore how an existing approach
for playing Bridge, Monte Carlo simulation using a fast solver for perfect information
games, can be applied to the game of Skat.

The paper is structured as follows. Section 2 briefly introduces the rules of Skat.
In Section 3, we review the idea of Monte Carlo simulation for card games. Section 4
describes the general architecture of our Skat player, followed by the central Section 5,
which describes a fast algorithm for computing the outcome of Skat games with perfect
information. Section 6 presents empirical results and Section 7 concludes.

2 Skat

Skat is a three-player game played with 32 cards, a subset of the usual Bridge deck. At
the beginning of a game, each player is dealt ten cards, which must not be shown or



2 Sebastian Kupferschmid and Malte Helmert

communicated to the other players. The remaining two cards, called the skat, are placed
face down on the table. Like in Bridge, each hand is played in two stages, bidding and
card play.

The bidding stage determines the alliances for this hand: The successful bidder,
henceforth called the declarer, plays against the other two. Often, several players com-
pete to become the declarer. In this event, the winner of the bidding process mostly
depends on the number of jacks a player holds, and on their suits. Players may also
improve their bids by declaring some special contracts (such as hand, schneider and
schwarz games), but these are nuances that we will not discuss further. We point out
that, different to Bridge, bidding does not have a significant influence on the number of
tricks needed to win the deal, with some minor exceptions.

We will not explain the bidding process further and refer to the official rules [6] for
details. The declarer decides on the kind of game, for which there are six possibilities:
grand games, null games, and suit games for each of the four suits (♣, ♠, ♥, ♦).

Card play proceeds as in Bridge, except that the trumps and card ranks are different.
In grand games, the four jacks are the only trumps. In suit games, the four jacks and the
seven other cards of the selected suit are trumps. There are no trumps in null games.
Non-trump cards are grouped into suits as in Bridge. Each card has an associated point
value between 0 and 11, and the declarer must score more points than the opponents
(i.e. at least 61 points) to win. Null games are an exception and follow misère rules:
the declarer wins iff he scores no trick. Trumps, ranks and point values of the cards are
illustrated in Fig. 1.

Before declaring the game, the declarer may pick up the skat and then discard any
two cards from his hand, face down. These cards count towards the declarer’s score.

3 Monte Carlo Simulation

The main algorithmical problem when dealing with card games like Bridge or Skat is
uncertainty. For perfect-information games like Chess, efficient algorithms exist that
could be readily applied if it were not for the fact that the opponents’ cards are hidden.
In fact, the state space of these card games is comparatively small, and it is not too
difficult to compute an optimal strategy with knowledge of the deal. However, taking
randomness into account is much more challenging (cf. the work by Koller and Pfeffer
[8]).

Ranks
Grand games ♣J, ♠J, ♥J, ♦J (trumps)

A, 10, K, Q, 9, 8, 7 (non-trumps)
Suit games ♣J, ♠J, ♥J, ♦J, A, 10, K, Q, 9, 8, 7 (trumps)

A, 10, K, Q, 9, 8, 7 (non-trumps)
Null games A, K, Q, J, 10, 9, 8, 7

Point values
A: 11, 10: 10, K: 4, Q: 3, J: 2, 9: 0, 8: 0, 7: 0

Fig. 1. Ranks and point values of Skat cards. Higher ranking cards are listed further to the left.



A Skat Player Based on Monte Carlo Simulation 3

Monte Carlo approaches, first proposed in this context by Levy [10] and later imple-
mented by Ginsberg [5] in his Bridge-playing program GIB, reduce the problem to the
perfect information case using the following strategy: Whenever the computer player is
asked to play a card, it generates a set of deals which are consistent with previous play.
Each of these deals is then completely analyzed by a fast solver for perfect information
games. In theory, this can be done with a traditional alpha-beta search engine. The re-
sults of these analyses are then used to vote on the card to play in the actual (uncertain)
game.

The Monte Carlo approach has two fundamental problems. The first problem is
that the samples might not be representative of the real card distribution. This is not so
much caused by the fact that only a limited number of deals are analyzed, because the
law of large numbers guarantees that this statistical error can be made arbitrarily small.
The real issue is that not all deals should be generated with equal probability, because
different distributions are not equally plausible given the previous course of play.

To reflect this, we would need to take into account the conditional probability that
an opponent will play a given card given a certain deal and previous play. For example,
if the declarer starts the game with ♣A and the other players follow suit with ♣7 and
♣10, it is highly unlikely that the third player still holds a clubs card (except for ♣J,
which is part of the trump suit, not the clubs suit). However, it is difficult to quantify
information of that kind, both in theory and in practice.1

The second fundamental problem of the Monte Carlo approach is that even if all
possible deals are analyzed and the conditional probabilities are correct,2 the algorithm
does not play perfectly. Intuitively, the reason for this is the fact that the correct card to
play may depend on information that the player cannot possibly know. Formally, this
problem is discussed extensively by Frank and Basin [2].

Despite these fundamental limitations, Monte-Carlo-based approaches have been
successful in the Computer Bridge world. Indeed, most current systems rely on sam-
pling methods to some extent. We believe that they should be at least as effective for
Computer Skat, and possibly more so, because the bidding phase of a Skat game allows
for much less information gathering than in Bridge.

4 General Architecture

Our Skat player consists of two parts, a bidding engine and a card play engine. The
bidding engine is responsible for determining the highest bid that the player is willing
to make and for deciding which two cards to discard in case it wins the bid. The card
play engine is responsible for the actual card play after the game has been declared.
At its core is a fast algorithm for solving Skat games with perfect information. We call
this component the double dummy solver, borrowing from Bridge terminology, even
though the term dummy is Bridge-specific. The double dummy solver is explained in

1 Mixed Strategy Nash Equilibria are the most commonly applied theoretical solution concept
for such games [3].

2 This condition requires an exact mental model of the opponents, and is thus not practically
possible for human opposition.



4 Sebastian Kupferschmid and Malte Helmert

the following sections, while the rest of this section is dedicated to the bidding and card
play engines.

4.1 Bidding Engine

In theory, it is possible to implement the bidding engine by Monte Carlo sampling using
the following strategy: First, select N random deals. Then, for each of the six kinds of
games and each possible way of discarding two cards, query the double dummy solver
to decide whether or not the game can be won. However, this requires 6 ·

(
12
2

)
· N =

396N queries, which is prohibitively high even for a modest number of samples.
Typically, the choice of cards to discard is straight-forward, as most candidates can

be eliminated by simple rules of thumb. A mixed approach that computes Monte Carlo
samples for each kind of game and implements rules for discarding requires only 6N
queries.

We have instead adopted a completely rule-based approach for both bidding and
discard procedure. The rules were generated by the following learning algorithm. First,
we used the double dummy solver to analyze 126,000 deals, where both the discarded
cards and the kind of game were randomized. For each of the resulting hands of the
computer player, the algorithm evaluated a number of hand-crafted features, e.g. num-
ber of jacks and length of each suit, and paired these with the outcome of the game (1
for win or 0 for loss). Then, a Least Mean Squares algorithm fitted a linear function
from the feature space to the real numbers. The resulting success estimator was sup-
posed to estimate the winning probability given the features of a hand. It was then used
in place of the double dummy solver in the bidding stage of the game, so that instead
of 396N calls to the double dummy solver, a corresponding number of computations of
the success estimate was needed, which could be computed sufficiently fast.

Unfortunately, the resulting bidding behavior leaves something to be desired. Al-
though reasonable choices were made most of the time, some decisions were truly puz-
zling. While we do not discuss the bidding engine further, as this part contains no tech-
nical innovations and requires some domain knowledge for understanding the choice of
features, we note that it is currently the Achilles heel of the Skat player.

4.2 Card Play Engine

As noted before, the card play engine is based on Monte Carlo simulations using the
double dummy solver. In Ginsberg’s GIB, a score is calculated for each card and each
sample deal. The algorithm plays the card with the highest average score. A similar
scheme can be used for Skat. However, it is not immediately clear how the score should
be measured. Counting the point total achieved by the computer player is not reason-
able, since playing a card that reliably achieves a point total of 65 (and thus a win) is
preferable to playing a card that leads to a total of 80 most of the time but rarely drops
to 55 (and thus a loss).

On the other hand, simply counting whether or not the deal is won is also problem-
atic, as there is no incentive for the algorithm to win the game by a score of 100:20,
rather than, say, 63:57. Thus it will willingly give away points to the opponent as long



A Skat Player Based on Monte Carlo Simulation 5

as it does not see its victory endangered.3 Because of statistical error and the inaccu-
racies of Monte Carlo methods mentioned earlier, this can lead to situations where an
easy victory is cast away lightly.

To avoid both problems, we follow a combined approach. Winning a hand is most
important, so the set of winning cards of each sample deal is computed first. Those
cards which win a maximal number of sample deals are further analyzed by computing
the average point total across all sample deals. The card play engine finally selects a
card which maximizes this value. This leads to card play that prefers safety to point
accumulation, but accumulates points where safely possible.

To support this approach, the double dummy solver can run in a fast qualitative
mode, in which it only determines whether or not a given card is a winner, and in a
slower quantitative mode, in which it computes exact scores for cards. We describe
these in the following section. Null games are always solved in qualitative mode as they
end as soon as the declarer wins a trick. They are not computationally challenging and
we do not describe them further, assuming grand or suit games in the following.

5 Double Dummy Solver

When running in qualitative mode, the double dummy solver uses a zero-window alpha-
beta search to determine whether or not the score for the declarer when playing a given
card is at least 61. When running in quantitative mode, the solver uses the MTD frame-
work proposed by Plaat et al. [12]. Specifically, we employ the MTD(0) algorithm:
First, we determine whether or not the declarer can achieve a single point. If the an-
swer is positive, a new search determines whether or not he can achieve two points4,
three points, and so on, until the answer is negative. Although it is somewhat counter-
intuitive that this procedure should be an improvement over standard alpha-beta search,
the higher number of cut-offs, combined with the use of a transposition table for stor-
ing intermediate results, usually makes it much faster. Most recomputations of subtree
values only require a transposition table lookup, reducing the cost of re-search. In our
experiments, zero window search outperformed standard alpha-beta by an order of mag-
nitude when using a transposition table.

Therefore, regardless of mode, we can in the following assume that we are conduct-
ing a zero-window search. For clarity of presentation, we will only consider the most
common search window [60, 61], although other search bounds do occur in quantitative
mode. The basic search algorithm, without any search enhancements, is shown in Fig. 2.
In the rest of this section, we discuss four enhancements to the basic search algorithm
which lead to significant speed-ups, concluding our presentation with a refined search
algorithm that includes all enhancements.

3 This is a general problem for game playing algorithms searching to the end of the game.
Schaeffer reports similar “unreasonable” behavior in his checkers-playing program Chinook,
which uses perfect endgame databases. The Chinook team went to some lengths to change this
behavior [13].

4 This is actually redundant, as scores of 1 or 119 are impossible.



6 Sebastian Kupferschmid and Malte Helmert

def search(p):
if p isa leaf position:

return p.declarer score ≥ 61
else if p isa declarer node:

for q in succ(p):
if search(q) = true:

return true
return false

else:
for q in succ(p):

if search(q) = false:
return false

return true

Fig. 2. Basic search algorithm.

5.1 Transposition Table

The first and obvious enhancement to Fig. 2 is the use of a transposition table. However,
using a transposition table efficiently in this setting requires some care. At every stage
of the game, the current position can be adequately represented by the player to move,
the remaining cards, the cards in the current trick (if any), and the running score, i.e. the
number of points won by the declarer in previous tricks. The running score is an im-
portant part of the position because it influences the evaluation of the position (win/loss
and exact point value). However, it has no effect on the optimal strategy for the rest of
the game, the subgame rooted at this position in game theory terminology.

Therefore, to keep the transposition table small and allow as many lookups as pos-
sible, it is desirable not to consider the running score a part of the position information.
This means that it is not sufficient to store win/loss values in the transposition table, not
even for the qualitative solver: A subgame in which the declarer can achieve 40 points
can be either a win or a loss, depending on the running score as this subgame is reached.
Thus, the transposition table must always store exact point values or bounds on exact
values, not boolean results.

Using transposition tables in this way, we get a simple cut-off criterion for search
nodes: A subgame is not searched further if the transposition table shows that the total
of the running score and the lower bound on the future score is at least 61, or the total
of the running score and the upper bound on the future score is at most 60.

5.2 Move Ordering

It is commonly known that alpha-beta search performance is dramatically influenced
by the order in which the different move alternatives are considered [11].

Typical implementations of alpha-beta search use three heuristics for finding a good
ordering, i.e. one where an optimal move is considered early: transposition table moves,
history heuristic and killer heuristic. All these techniques are roughly based on the idea
that a move which is good in a certain context is often good in other contexts. We



A Skat Player Based on Monte Carlo Simulation 7

have implemented the first of these techniques: If playing a certain card leads to a cut-
off in some subgame, this card is always considered first when this subgame is later
reexamined with different search bounds.

The remaining cards are ordered with the aim of reducing branching. If there is
currently no card on the table, we prefer playing a suit of which the other players hold
at least one card (so that they must follow suit), but only few cards (so that their choice
is limited). More to the point, for each card we multiply the number of allowed answers
for the other two players, preferring cards which minimize this value. Within a suit,
cards of higher rank are preferred.

In our experiments, this ordering heuristic reduces the average number of investi-
gated search nodes by a factor of 3.45, while reducing the average search time by a
factor of 3.02, compared to the original, arbitrary move ordering. We analyze the im-
pact of move ordering in more detail in Section 6, together with the effect of the other
search enhancements to be introduced now.

5.3 Quasi-Symmetry Reduction

Ginsberg reports that his Bridge playing program GIB [5] is accelerated by an order
of magnitude by replacing alpha-beta search with his Partition Search algorithm [4].
Partition Search aims at increasing the number of subgames that can be solved by trans-
position table lookups. It does so by not storing single game positions but equivalence
classes of game positions in the transposition table. This is very effective in Bridge as
the number of equivalent positions can be expected to be high.

Many of the equivalences of Bridge positions are due to the fact that only the relative
rank of cards is important for determining optimal play; the absolute rank is irrelevant.
We say that two cards held by the same player are rank-equivalent iff they are in the
same suit and no card on the table or in another player’s hand is ranked between them.

Unfortunately, unlike Bridge, it is usually the case in Skat games that all rank-
equivalent cards must be considered because of different point values. In a Bridge game,
a player that holds both ♠K and ♠Q need never play the king before the queen (or vice
versa). The same is not true of a Skat position. For example, if the player can win the
trick playing the king, eventually winning the deal by a margin of 61:59 points, playing
the queen instead might lose the deal. Especially if the difference in value between the
two cards is greater than one, for example in the case of ♠10 and ♠K, the lines of play
that begin with these cards often look completely different.

However, it can be proven that if two cards are rank-equivalent, then the difference
between the values of the subgames started by playing either of these cards is bounded
by their difference in point value [9]. Thus, if we can prove that playing ♠10 results in
a declarer score of 72 and♠K is no longer in play, then playing♠Q results in a declarer
score in the interval [65, 79], since in this situation ♠10 and ♠Q are rank-equivalent,
and the difference in point value is 10− 3 = 7.

We use rank-equivalence for a technique we call quasi-symmetry reduction, which
decreases the branching factor of interior nodes of the search tree: Whenever the search
algorithm considers playing a card c which is rank-equivalent to a previously consid-
ered card c′, we fetch the transposition table entry for the position reached by playing



8 Sebastian Kupferschmid and Malte Helmert

c′ and check if there is any hope in playing c instead of c′. For example, if the transpo-
sition table shows that playing ♠Q at some declarer node yields at most 57 points, then
playing ♠K can yield at most 58 points, so that the move need not be considered.

In our experiments, exploiting quasi-symmetries significantly reduces the number
of search nodes. However, much of this gain is countered by an increased cost per
node for rank-equivalence checking and transposition table lookups. The most efficient
version of the algorithm, which is the one we report on, only exploits quasi-symmetries
for cards whose point values differ by at most one.

In our experiments, quasi-symmetry reduction reduces the average number of search
nodes by a factor of 2.38 and average running time by a factor of 2.03.

5.4 Adversarial Heuristics

As a final search enhancement, the double dummy solver uses a forward pruning tech-
nique which we will now describe. In Section 5.1, we explained that whenever a po-
sition is re-explored during search, the search algorithm fetches a lower bound L and
upper bound U on the declarer score in this subgame from the transposition table. If M
is the running declarer score, then the subgame is not searched further if M + L ≥ 61
or M +U ≤ 60. Our forward pruning technique extends this early termination check to
positions which are not present in the transposition table. To this end, we must compute
(preferably narrow) bounds L and U for arbitrary subgames.

How can such bounds be calculated? In single-agent search problems, lower bounds
on the actual search cost are typically computed by relaxing the problem at hand, i.e. by
increasing the set of allowed moves. For example, the minimal weighted matching
heuristic for Sokoban [7] can be interpreted as the length of an optimal solution to a
relaxed problem where boxes may be moved to adjacent empty squares regardless of
the position of the man. The Manhattan heuristic for the n2 − 1 puzzle can be similarly
understood as the length of an optimal solution to a relaxed problem where tiles may
always be moved to adjacent positions, even if these are occupied.

When extending these ideas to an adversarial search context, care must be taken
to correctly reflect the role of the MAX and MIN players. For any given subgame,
we can compute an upper bound to the score of the MAX player by extending the
set of possible moves for MAX and/or reducing the set of possible moves for MIN.
Conversely, a lower bound can be computed by extending the set of possible moves for
MIN and/or reducing the set of possible moves for MAX. Any such modification leads
to correct bounds that can be exploited during search without compromising the validity
of the search in any way, unlike common forward pruning techniques such as null-move
pruning in Chess or Buro’s ProbCut [1] in Othello. We call bounds derived in such a
way adversarial heuristics because of their similarity to heuristics used in single-agent
(non-adversarial) search.

The key to good adversarial heuristics is modifying the sets of allowed moves in
such a way that the resulting bounds are reasonably narrow, but cheap to compute. For
lower bounds on the declarer score in Skat, the following two modifications of the game
rules satisfy this criterion:

1. The declarer may only play cards that are guaranteed to win the trick. If this means
that he has no legal moves, the opponents may claim the remaining points.



A Skat Player Based on Monte Carlo Simulation 9

def search(p):
if p isa leaf position:

return p.declarer score ≥ 61
else if p isa declarer node:

if p in transposition table:
(L, U) := transposition table(p)

else:
(L, U) := adversarial heuristics(p)

if M + L ≥ 61:
return true

if M + U ≤ 60:
return false

for q in order moves(succ(p)):
if q ∼ q’ for q’ considered earlier:

(L’,U’) := transposition table(q’)
if M + U’ + δ(q,q’) ≤ 60:

continue
if search(q) = true:

return true
return false

else:
... {analogous to declarer node case}

Fig. 3. Search algorithm with all search enhancements; δ(q, q′) denotes the point difference be-
tween the two cards being played. We omit some details like updating the transposition table,
which are handled in the standard way.

The rationale between this modification is that the optimal strategy for the opponents
becomes difficult to compute once they are able to control the game. We eliminate this
expensive computation by requiring the declarer to force the game.

2. In addition to normal moves, an opponent may swap the point values of two cards
in his hand before playing a card, provided that the two cards are in the same suit.

This modification eliminates a strategical dilemma for the opponents: In some sit-
uations, it is difficult to decide whether they should play a card of minimal point value
or minimal rank. For example, consider a diamonds game where the declarer plays ♣J
and is thus guaranteed to win the trick. The first opponent holds two trumps, ♥J and
♦A. In some situations, it is preferable to play ♥J , only losing two points to the de-
clarer. In other situations, it is better to play♦A, losing eleven points to the declarer but
keeping the higher-ranked card in order to win a trick later. In the modified game, the
best reply is obvious: Swap the point values of the ace and jack, so that the ace is worth
two points and the jack is worth eleven points, then play the ace.

We point out that swapping the point values of cards is rarely needed, because rank
ordering and point value ordering are consistent for all non-trump suits, and in the case
of grand games even for the trump suit. Thus, the second modification does not usually
have a large impact on the quality of the bounds.



10 Sebastian Kupferschmid and Malte Helmert

An experienced Skat player will notice that computing an optimal strategy in the
modified game is almost trivial, except for situations where an opponent need not follow
suit. Indeed, the value of a game position in the modified game can be computed in time
O(N), where N is the number of remaining cards. For details on how this can be done,
we refer to the first author’s master’s thesis [9].

Similar ideas can be applied to obtain upper bounds on the declarer score. However,
this case is slightly more complicated, so we refer to the first author’s master’s thesis
again for details.

In our experiments, using adversarial heuristics reduces the average number of
search nodes by a factor of 1.80 and the average run time by a factor of 1.58.

The complete search algorithm, including all enhancements, is shown in Fig. 3.

6 Experiments

In the previous section, we described the implementation of our Skat double dummy
solver, focusing on three central search enhancements: move ordering, quasi-symmetry
reduction, and adversarial heuristics. In this section, we provide a more detailed empir-
ical analysis of the performance gains offered by these features.

In practice, it is not sufficient to consider the effectiveness of a search enhancement
in isolation. It is quite possible that a given enhancement leads to a dramatic improve-
ment in run time by itself, but offers no gain when implemented together with other fea-
tures. For this reason, we evaluated all possible combinations of move ordering (MO),
quasi-symmetry reduction (QR) and adversarial heuristics (AH), including the empty
set. All configurations used a transposition table.

Features Nodes in 1,000 Run Time
MO QR AH Mean Dev. Med. Mean Dev. Med.

2772 8853 181 0.84s 3.11s 0.04s
× 804 3669 29 0.28s 1.42s 0.01s

× 1163 3457 102 0.41s 1.36s 0.03s
× 1538 5223 57 0.53s 2.02s 0.02s

× × 317 1499 17 0.12s 0.65s 0.01s
× × 626 3182 12 0.20s 1.10s 0.01s

× × 658 2152 34 0.25s 0.87s 0.01s
× × × 244 1300 7 0.11s 0.60s 0.01s

Fig. 4. Mean value, standard deviation and median of node count and running time for 100,000
randomly generated Skat games.

Fig. 4 shows that the three enhancements work well in combination. Although the
speedups are not completely orthogonal, each of the three features is a useful addition to
all configurations without it. The results are based on 100,000 randomly generated suit
games. Grand games are easier, null games much easier to solve. The high standard de-
viations and low medians show that the results are far from being normally distributed.



A Skat Player Based on Monte Carlo Simulation 11

Most deals are solved very quickly, but occasional outliers heavily influence the average
case performance.

None

MO QR AH

MO
QR

MO
AH

QR
AH

All

3.45

2.
38

1.80

2.
53

1.28 3.67 1.77 2.45

2.
34

1.30

2.
56 2.70

Fig. 5. Node count reductions for the various search enhancements.

Fig. 5 depicts a lattice illustrating the usefulness of adding each feature to any con-
figuration. The arrow labels show the reduction of average node count achieved when
going from one configuration to another. The figure shows that there are some dimin-
ishing returns, but the general picture is quite positive.

7 Conclusion

We have shown that by enhancing a state-of-the-art game-playing algorithm with a
number of suitable search enhancements, it is possible to build a fast double dummy
solver for the game of Skat. Of course, in practice we are not just interested in the
performance of the double dummy solver, but also in the quality of play of the overall
system.

This is somewhat harder to quantify because such experiments are difficult to auto-
mate. We played 18 games against human and machine opposition. Against two human
players of moderate strength, the system ended on a close second place. Post-mortem
analysis revealed flawless card play but improvable bidding behavior. Against two com-
puter players5 the system played very convincingly, winning every single game when it
played as a declarer and all games but one when it played in the opposing party [9].

The logical next step for future work is to improve the bidding engine. In theory,
the general approach of learning rules from a set of features and self-play data seems
reasonable. However, our choice of features and learning algorithm might not be the
best possible. Alternatively, hand-crafted rules could be used, but this is tedious and
requires expert domain knowledge.

5 Played by XSkat 3.4; cf. http://www.xskat.de/, a program with rule-based card play.

http://www.xskat.de/


12 Sebastian Kupferschmid and Malte Helmert

Another possible direction for further study is the investigation of alternative search
algorithms such as proof number search or B∗. The classical drawback of these ap-
proaches is their high memory consumption, but in Skat games, all visited positions
can easily be kept in memory.

Finally, it would be interesting to apply the search enhancements we introduced to
other games. Quasi-symmetry reduction is a potentially useful technique for all games
where points are accumulated in the course of play, which includes, but is not limited
to, all trick-based card games. Adversarial heuristics can be usefully applied in a similar
way to classical heuristics whenever complete solution of a game is feasible. We see a
good potential for other games amenable to Monte-Carlo approaches, for games with a
strong threat structure like Go-Moku or Hex, and for Amazon subgames.

References

[1] Michael Buro. ProbCut: An effective selective extension of the alpha-beta algo-
rithm. ICCA Journal, 18(2):71–76, 1995.

[2] Ian Frank and David A. Basin. Search in games with incomplete information: A
case study using bridge card play. Artificial Intelligence, 100(1–2):87–123, 1998.

[3] Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1991.
[4] Matthew L. Ginsberg. Partition search. In Proc. AAAI-96, pages 228–233, 1996.
[5] Matthew L. Ginsberg. GIB: Steps toward an expert-level bridge-playing program.

In Proc. IJCAI-99, pages 584–593, 1999.
[6] International Skat Players Association. Skat order 1999. Web site: http://

www.ispaworld.org/, 2003.
[7] Andreas Junghanns and Jonathan Schaeffer. Sokoban: Enhancing general single-

agent search methods using domain knowledge. Artificial Intelligence, 129(1–
2):210–251, 2001.

[8] Daphne Koller and Avi Pfeffer. Representations and solutions for game-theoretic
problems. Artificial Intelligence, 94(1–2):167–215, 1997.

[9] Sebastian Kupferschmid. Entwicklung eines double dummy skat solvers – mit
einer anwendung für verdeckte skatspiele. Master’s thesis, University of Freiburg,
2003.

[10] David N. L. Levy. The million pound bridge program. In David N. L. Levy and
Donald F. Beal, editors, Heuristic Programming in Artificial Intelligence — The
First Computer Olympiad, pages 95–103. Ellis Horwood, 1989.

[11] Judea Pearl. Heuristics — Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984.

[12] Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie de Bruin. Best-first fixed-
depth minimax algorithms. Artificial Intelligence, 87(1–2):255–293, 1996.

[13] Jonathan Schaeffer. Search ideas in Chinook. In Jaap van den Herik and Hiroyuki
Iida, editors, Games in AI Research, pages 19–30. Universiteit Maastricht, The
Netherlands, 2000.

http://www.ispaworld.org/
http://www.ispaworld.org/

	Introduction
	Skat
	Monte Carlo Simulation
	General Architecture
	Bidding Engine
	Card Play Engine

	Double Dummy Solver
	Transposition Table
	Move Ordering
	Quasi-Symmetry Reduction
	Adversarial Heuristics

	Experiments
	Conclusion

