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Abstract. Directed model checking aims at speeding up the search for bugs in
a system through the use of heuristic functions. Such a function maps states to
integers, estimating the state’s distance to the nearest error state. The search gives
a preference to states with lower estimates. The key issue is how to generate
good heuristic functions, i. e., functions that guide the search quickly to an error
state. An arsenal of heuristic functions has been developed in recent years. Sig-
nificant progress was made, but many problems still prove to be notoriously hard.
In particular, a body of work describes heuristic functions for model checking
timed automata in UPPAAL, and tested them on a certain set of benchmarks. Into
this arsenal we add another heuristic function. With previous heuristics, for the
largest of the benchmarks it was only just possible to find some (unnecessarily
long) error path. With the new heuristic, we can find provably shortest error paths
for these benchmarks in a matter of seconds. The heuristic function is based on
a kind of Russian Doll principle, where the heuristic for a given problem arises
through using UPPAAL itself for the complete exploration of a simplified instance
of the same problem. The simplification consists in removing those parts from the
problem that are distant from the error property. As our empirical results confirm,
this simplification often preserves the characteristic structure leading to the error.

1 Introduction

When model checking safety properties, the ultimate goal is to prove the absence of
error states. This can be done by exploring the entire reachable state space. UPPAAL is
a tool doing this for networks of extended timed automata. It has a highly optimized
implementation, but still the reachable state space often is too large in realistic applica-
tions. A potentially much easier task is to try to falsify the safety property, by identifying
an error path: for this, we can use a heuristic that determines in what order the states are
explored. In our work, we enhance error detection in UPPAAL following such a strategy.

A heuristic, or heuristic function, is a function h that maps states to integers, esti-
mating the state’s distance to the nearest error state. The heuristic is called admissible if
it provides a lower bound on the real error state distance. The search gives a preference
to states with lower h value. There are many different ways of doing the latter. The A∗
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method, where the search queue is a priority queue over start state distance plus the
value of h, guarantees to find an optimal (shortest possible) error path if the heuristic is
admissible. An alternative is greedy best-first search. There, the search queue is a prior-
ity queue over the value of h. This does not give any guarantee on the solution length,
but is often (yet not always) faster than A∗ in practice. Note that short error paths are
important in practice, since the error path will be used for debugging purposes. The
application of heuristic search to model checking was introduced a few years ago by
Edelkamp et al. [7, 8], naming this research direction directed model checking, and in-
spiring various other approaches of this sort, e. g. [6, 9, 11, 14, 15]. The main difference
between these approaches is how they define and compute the heuristic function: How
does one estimate the distance to an error state?

The following gives an overview of the heuristic functions defined so far. Edelkamp
et al. [8] base their heuristics on the “graph distance” within each automaton – the
number of edge traversals needed, disregarding synchronization and all state variables.
This yields a rather simplistic estimation, but can be computed very quickly. Groce and
Visser [9] define heuristics inspired from the area of testing, with the idea to prefer cov-
ering yet unexplored branches in the program. Qian and Nymeyer [15, 16] ignore some
of the state variables to define heuristics which are then used in a pattern database ap-
proach (see below). Kupferschmid et al. [14] adapt a heuristic method from the area of
AI Planning, based on a notion of “monotonicity” where it is assumed that a state vari-
able accumulates, rather than changes, its values. Dräger et al. [6] iteratively “merge”
a pair of automata, i. e., compute their product and then merge locations until there are
at most N locations left, where N is an input parameter. The heuristic function is read
off the overall merged automaton. Hoffmann et al. [11] compute the state space of a
predicate abstraction of the system to be checked, and use a mapping from real states
into abstract states to compute the heuristic values.

We add another kind of heuristic functions into the above arsenal. Like Qian and
Nymeyer’s [15] techniques, our heuristic functions belong into the family of pattern
databases (PDB), which were first explored in AI [4], more precisely for hard search
problems in single agent games such as Rubik’s Cube. A PDB heuristic function ab-
stracts a problem by ignoring some of the relevant symbols, e. g., some of the state
variables [15]. The state space of the abstracted problem is built completely as a pre-
process to search, and is used as a look-up table for the heuristic values during search.

The main question to answer is, of course, which symbols should be ignored? How
should we abstract the problem to obtain our PDB? In AI, see e. g. [4, 10], most strate-
gies are aimed at exploiting parts of the problem that are largely independent – the idea
being to generate a separate PDB for each part, and accumulate the heuristic values.
Indeed, Edelkamp et al.’s [7, 8] heuristic can be viewed as an instance of this, where
each PDB ignores all symbols except the program counter of one single automaton.

In our work, we extend and improve upon a new kind of strategy to choose a PDB
abstraction. The strategy is particularly well suited for model checking; a first version
of it was explored by Qian and Nymeyer [16]. It is based on what we call a Russian
Doll principle. Rather than trying to split the entire system up into (more or less) in-
dependent parts, one homes in on the part of the system that is most relevant to the



Fast Directed Model Checking via Russian Doll Abstraction 3

safety property, and leaves that part entirely intact.4 Intuitively, this is more suitable for
model checking than traditional AI techniques because a particular combined behavior
of the automata nearest to the safety property is often essential in how the error arises.
The child Russian Doll preserves such combined behaviors, and should hence provide
useful search guidance. The excellent results we obtained in our benchmarks indicate
that this is indeed the case, even with rather small abstractions/“child dolls”.

Given the key idea of the Russian Doll strategy – keep all and only symbols that are
of “immediate relevance” to the safety property to be checked – the question remains
what is “relevant”. Answering this question precisely involves solving the problem in
the first place. However, one can design computationally easy strategies that are intu-
itively very adequate for model checking. The basic idea is to do some form of abstract
cone-of-influence [3] computation, and ignore those symbols that do not appear in the
cone-of-influence. Qian and Nymeyer [16] use a simple syntactic backward chaining
process that iteratively collects variable names and requires the user to specify a thresh-
old on the maximal considered “distance” – number of iterations – of the kept variables
from the safety property. In our work, we use a more sophisticated procedure based
on the abstraction techniques of Kupferschmid et al. [14]. The procedure selects a sub-
set of the relevant symbols (automata, synchronization actions, clock variables, integer
variables) based on an abstract error path. No user input is required. Once it is decided
which parts to keep, our implementation outputs those parts in UPPAAL input language.
In Russian Doll style, UPPAAL itself is then used to compute the entire state space of
the abstracted problem, and that state space is stored and used as a look-up table for
heuristic values during search.

With half of the related work discussed above, namely [6, 11, 14], we share the
fact that we are working with UPPAAL, and we also share the set of benchmarks with
these works. The benchmarks are meaningful in that they stem from two industrial case
studies [5, 13]. Table 1 gives a preview of our results with our “Russian Doll” approach;
we re-implemented the two heuristic functions defined in [8]; for each of [6, 11, 14], we
could run the original implementation; finally, we implemented the abstraction strategy
of [16], for comparison with our more sophisticated abstraction strategy (we created the
pattern database with UPPAAL for our strategy). Every entry in Table 1 gives the total
runtime (seconds), as well as the length of the found error path. The result shown is the
best one that could be achieved, on that instance, with the respective technique: from
the data points with shortest error path length, we selected the one with the smallest
runtime (detailed empirical results are given in Section 5). A dash means the technique
runs out of memory on a 4 GByte machine. Quite evidently, our approach drastically
outperforms all the other approaches. This signifies a real boost in the performance of
directed model checking, at least on these benchmarks.

The paper is organized as follows. Section 2 introduces notations. Section 3 explains
some technicalities regarding possible sets of symbols to be ignored, and regarding
the generation of a pattern database using UPPAAL. Section 4 introduces our Russian
Doll strategy for choosing the symbols to be ignored. Section 5 contains our empirical
evaluation, Section 6 discusses related work, and Section 7 concludes.

4 We chose the name “Russian Doll” based on the intuition that the part left intact resembles the
child Russian Doll, which is smaller but still characteristically similar to the parent.
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Table 1. Results preview: total runtime / error path length.

Exp. [8]-best [14]-best [6]-best [11]-best [16]-best Russian Doll
C5 114.2 / 57 114.1 / 57 21.8 / 57 13.7 / 57 121.5 / 57 1.1 / 57
C6 – 1211.7 / 57 291.5 / 57 85.2 / 57 – 1.3 / 57
C7 – – 309.1 / 855 204.5 / 1064 – 2.1 / 57
C8 – 427.0 / 433 293.8 / 707 153.5 / 976 – 2.2 / 57
C9 – 875.8 / 614 – – – 2.1 / 58

2 Notations

We assume the reader is roughly familiar with timed automata (TA) and their commonly
used extensions; however, an in-depth familiarity is not necessary to understand the key
contribution of this paper. Here, we give a brief description of the TA variant treated
in our current implementation loosely following the terminology given by Behrmann et
al. [1].

We treat networks of timed automata with binary synchronisation and integer vari-
ables. Our notations are as follows (all sets are finite). Each automaton i is a tuple
(Li, Xi, Vi, Ai, Ei) where Li is a set of locations, Xi is a set of clock variables, Vi
is a set of integer variables, Ai is a set of actions, and Ei is a set of edges; these con-
structs will be explained below. The network consists of a set I of automata. By X ,
V , and A we denote

⋃
i∈I Xi,

⋃
i∈I Vi, and

⋃
i∈I Ai, respectively. Importantly, each

x ∈ X , v ∈ V , and a ∈ A may appear in more than one automaton i ∈ I . In our
Russian Doll abstractions, as stated, we ignore a set of “symbols”. More precisely, such
an abstraction set A will be a subset of I ∪X ∪ V ∪A.

To denote the current locations of the automata, we assume a location variable loci
for each i ∈ I , where the range of loci is Li. A state, or system state, of the network is
then given by a valuation of the variables loci, X , and V . Each x ∈ X ranges over the
non-negative reals. Each v ∈ V has a finite domain domv . The action set A contains
the internal action τ , and for each action a? ∈ A there is a corresponding co-action
a! ∈ A; for a ∈ A, we denote the co-action with a. For each i ∈ I , the edges Ei are
given as a subset of Li × Li. Each edge e ∈ Ei is annotated with an action ae ∈ A,
with a guard ge, and with an effect fe. The guard is a conjunction of conditions, each
having the form of either x ./ c, or x − y ./ c, or lfn(V ′) ./ c, where x, y ∈ Xi,
./∈ {<, ≤, =, ≥, >}, c is a constant (a number), and lfn(V ′) is a linear function in a
variable set V ′ ⊆ Vi. The effect is a list of assignments, each of which either has the
form x := c or v := lfn(V ′)+c, where v ∈ Vi and the other notations remain the same.
Each variable x ∈ Xi and v ∈ Vi occurs on the left hand side of one such assignment
at most. The semantics are defined as usual. Transitions are either asynchronous and
triggered by an edge e where ae = τ , or synchronous and triggered by two edges
e ∈ Ei and e′ ∈ Ej , i 6= j, so that ae = a? and ae′ = a! for some a?, a! ∈ A. Each
i ∈ I has a start location l0i ∈ Li; each v ∈ V has a start value c0v ∈ domv; the start
value of all clocks is 0.

As stated, we address the falsification of safety properties, also commonly referred
to as invariants; in CTL, these properties take the form AGφ. In our current implemen-
tation, φ takes the form g ∧ (

∨
i∈I′ ¬loci = li) where g has the same form as a guard,

I ′ ⊆ I , and li ∈ Li. A path of transitions is called an error path if it leads from the start
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state to a state that satisfies ¬φ. An error path is optimal if there is no other error path
that contains less transitions.

The above notations correspond to a subset of the UPPAAL input language; that lan-
guage allows more powerful constructs such as non-binary synchronization, committed
locations, and array manipulations. It is important to note that the restrictions imposed
by the language subset are by no means inherent to our approach. Indeed, the only “lan-
guage bottleneck” in our current implementation is the method choosing the abstraction
set A; as detailed in Section 4, this is based on methods from [14] which are as yet re-
stricted to the above input language. Once A is chosen, UPPAAL itself is used to solve
the abstracted problem, and so of course the whole of UPPAAL’s input language can
be handled. Hence, one can extend our technique simply by devising more generally
applicable techniques for choosing A.

3 Russian Doll Abstraction

This section presents the technicalities of generating the simplified problem in UPPAAL
input language, and using UPPAAL itself to compute the heuristic function. We show
how the simplified problem is generated based on an abstraction set A, how the pattern
database is built and used, and that the resulting heuristic estimates are admissible (i. e.,
lower bounds) provided A satisfies a certain property.

3.1 Abstraction Sets

Assume a network I of timed automata with the notations as specified, and a safety
property AGφ. As mentioned, an abstraction set is a set A ⊆ I ∪ X ∪ V ∪ A. The
abstracted problem is generated as follows.

Definition 1. Given a network I of timed automata and an abstraction set A, the ab-
straction of I under A, A(I), is defined as

{(Li, Xi \ A, Vi \ A, Ai \ A, {A(e) | e ∈ Ei}) | i ∈ I \ A}

where A(e) is initialized to be equal to e and then modified as follows: if ae ∈ A or
ae ∈ A, then aA(e) := τ ; if x ∈ A or y ∈ A for a guard or effect x ./ c, x− y ./ c, or
x := c, then this guard/effect is removed; if ({v} ∪ V ′) ∩ A 6= ∅ for a guard or effect
lfn(V ′) ./ c or v := lfn(V ′) + c, then this guard/effect is removed.

Given a safety property AGφ, φ = g ∧ (
∨
i∈I′ ¬loci = li), the abstraction of φ

under A, A(φ), is defined as A(g) ∧ (
∨
i∈I′\A ¬loci = li), where A(g) is defined as

for guards above.

In words, given an abstraction set A, we simply ignore any automaton that appears
in A, as well as any guards or effects that involve variables or actions from A.

It is important to note that this simple strategy does not always have the desired ef-
fect. Consider the case where automaton i has an edge e where ae = a? and automaton
j has an edge e′ where ae′ = a!. Say i ∈ A but a! 6∈ A. Then potentially j can never
traverse the edge e′ because there is no one to synchronize with. A similar situation
arises if fe sets v := v′ and ge′ demands v = 7, but v′ ∈ A and v 6∈ A. The following
is a sufficient condition on A ensuring that such things do not happen.
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Definition 2. Given a network I of timed automata and an abstraction set A, A is
closed iff all of the following hold:

– If i ∈ I ∩ A and a ∈ Ai, then a ∈ A
– If i ∈ I ∩ A and e ∈ Ei so that fe sets x := c, then x ∈ A
– If i ∈ I ∩ A and e ∈ Ei so that fe sets v := lfn(V ′) + c, then v ∈ A
– If i ∈ I \ A and e ∈ Ei so that fe sets v := lfn(V ′) + c where V ′ ∩ A 6= ∅, then
v ∈ A

We will see below that closed A yield admissible heuristic functions. Obviously,
any A can be closed by extending it according to Definition 2.

3.2 Pattern Databases

As explained, pattern databases in our approach are obtained as the result of a complete
state space exploration using UPPAAL. One subtlety to consider here is that, due to the
continuous nature of the set of possible system states in timed automata, UPPAAL’s
search space does not coincide with the set of possible system states. Rather, each state
s that UPPAAL considers corresponds to a set of system states where all automata loca-
tions and integer variables are fixed but the clock valuation can be any of a particular
clock region. A clock region is given in the form of a (normalized) set of unary or bi-
nary constraints on the clock values, called difference bound matrix, which we denote
by DBMs. By [s], we denote the set of system states corresponding to s.5

Our basic notions regard state spaces and error distances.

Definition 3. Given a network I of timed automata, the UPPAAL state space for I ,
S(I), is a tuple (S, T, s0), where S is the set of search states explored by UPPAAL when
verifying a safety property AGφ with φ ≡ >, T ⊆ S × S are the possible transitions
between those search states, and s0 ∈ S is the start state.

Given also a safety property AGφ, an error state is a state s ∈ S so that s |= ¬φ.
Given an arbitrary state s ∈ S, the error distance of s in I with φ, dI,φ(s), is the length
of a shortest path in (S, T ) that leads from s to an error state, or dI,φ(s) =∞ if there
is no such path.

Given Definition 3, it is now easy to state precisely what our pre-process to search
does, when given a network I and a safety property AGφ. First, an abstraction set A
is chosen (with the techniques detailed below in Section 4). Then, UPPAAL is called to
generate S(A(I)). The resulting tuple (S′, T ′, s′0) is redirected into a file, in a simple
format. Once UPPAAL has stopped, an external program finds all error states in S′, and
computes dA(I),A(φ)(s′) for all s′ ∈ S′, using a version of Dijkstra’s algorithm with
multiple sources. In other words, UPPAAL computes the state space of the abstracted
problem, and an external program finds the distances to the abstracted error states.

It remains to specify how S(A(I)) and the dA(I),A(φ)(s′) are used to implement a
heuristic function for solving I and AGφ. The core operation is to map a state in S(I)
onto a set of corresponding states in S(A(I)). For a UPPAAL state s, by [s]|A we denote
the projection of the system states in [s] onto the variables not contained in A.

5 For the reader unfamiliar with timed automata, we want to add that our techniques apply also
to discrete state spaces, in a manner that should become obvious in the following.
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Definition 4. Given a network I of timed automata with S(I) = (S, T, s0), an abstrac-
tion set A with S(A(I)) = (S′, T ′, s′0), and a state s ∈ S, the abstraction of s under
A, A(s), is defined as {s′ ∈ S′ | [s′] ∩ [s]|A 6= ∅}. Given a safety property AGφ, the
heuristic value of s under A, hA(s), is defined as min{dA(I),A(φ)(s′) | s′ ∈ A(s)}.

Note that [s′] ∩ [s]|A 6= ∅ may be the case for more than one s′ because, and only
because, UPPAAL’s search states do not commit to one particular clock valuation. We
have [s′] ∩ [s]|A 6= ∅ if and only if s′ and s agree completely on the automata locations
of I \ A and on the values of V \ A, and DBMs′ is consistent with DBMs.6 Testing
consistency of two DBMs is a standard operation for which UPPAAL provides a highly
efficient implementation. Consequently, in our implementation, we store S(A(I)) in a
hash table indexed on I \A and V \A, where each table entry contains a list of DBMs,
one for each corresponding abstract state s′; of course, dA(I),A(φ)(s′) is also stored in
each list entry. Lookup of heuristic values is then realized via hash table lookup plus
DBM consistency checks in the list, selecting the smallest dA(I),A(φ)(s′) of those s′ for
which the check succeeded.

Lemma 1. Let I be a network of timed automata with S(I) = (S, T, s0), let A be a
closed abstraction set A, and let s ∈ S be a state. Then hA(s) ≤ dI,φ(s).

Proof Sketch: Let S(A(I)) = (S′, T ′, s′0). The key property is that, in the terms of
[2], (S′, T ′, s′0) approximates (S, T, s0): for any transition (s1, s2) ∈ T , either s and s′

agree on the symbols not in A, or there is a corresponding transition (s′1, s
′
2) ∈ T ′. So

transitions are preserved, and error path length can only get shorter in the abstraction.

Lemma 1 does not hold ifA is not closed. This can be seen easily based on examples
like those mentioned above Definition 2, where a symbol that is abstracted away can
contribute to changing the status of a symbol that is not abstracted away. The importance
of Lemma 1 is that, plugging our heuristic function into A∗, we can guarantee to find a
shortest possible – an optimal – error path.

4 Choosing Abstraction Sets

Having specified how to proceed once an abstraction setA is chosen, it remains to clar-
ify how that choice is made. In AI, the traditional design principle for pattern databases
is to look for different parts of the problem that are largely independent, and to construct
a separate pattern database for each of them, accumulating the heuristic values. This
principle has been shown to be powerful (see e. g. [10, 12]). Now, consider this design
principle in model checking. An error typically arises due to some complex interaction
between several automata. If one tears those automata apart, the information about this
interaction is lost. A different approach, first mentioned by Qian and Nymeyer [16], is
to keep only one pattern database that includes as much as possible of those parts of the
network that are of immediate relevance to the safety property. The intuition is that the
particular combined behavior responsible for the error should be preserved.

6 In a discrete state space, s′ and s agree completely on all non-abstracted variables, and so the
mapping becomes simpler.
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To realize this idea, one needs a definition of what is “close” to the safety property,
and what is “distant”. The notion of cone-of-influence [3] computation lends itself nat-
urally to obtain such a definition. Qian and Nymeyer [16] use a simple method based
on syntactic backward chaining over variable names. Herein, we introduce a more so-
phisticated method based on the abstraction techniques of Kupferschmid et al. [14]. As
we shall see, this method leads to much better empirical behavior, at least in our tests
with UPPAAL on networks of timed automata.

Qian and Nymeyer’s [16] method starts with the symbols – automata, variables –
mentioned in the safety property; this set of symbols forms layer 0. Then, iteratively,
new layers are added, where layer t + 1 arises from layer t by including any symbol y
that does not occur in a layer t′ ≤ t, and that may be involved in modifying the status of
a symbol x in layer t, e. g., x and y may be variables and there may exist an assignment
x := exp(ȳ) where y ∈ ȳ. The abstraction set is then chosen based on a cut-off value d
supplied by the user: A will contain (exactly) all the symbols in layers t > d.

Intuitively, the problem with this syntactic backward chaining is that it is not dis-
criminative enough between transitions that are actually relevant for violating the error
property, and transitions that are not. In our experiments, we observed that, typically,
the layers t converge to the entire set of symbols very quickly (in our largest bench-
mark example, this is the case at t = 5); when cutting off very early (at t = 2, e. g.),
one misses some symbols that are important, and at the same time one includes many
symbols that are not important.

Our key idea for improving on these difficulties is to do a more informed relevance
analysis. We abstract the problem according to Kupferschmid et al. [14]: we compute
an abstract error path with those authors’ techniques, and set A to those symbols that
are not affected by any of the transitions contained in the abstract error path. This way,
we get a fairly targeted notion of what is relevant for reaching an error and what is not.
The abstraction of Kupferschmid et al. [14] does not require any parameters, and hence
as a side effect we also get rid of the need to request an input parameter from the user;
i. e., our method for choosing A is fully automatic.

Describing Kupferschmid et al.’s [14] techniques in detail would breach the space
limits of this paper and cannot be its purpose. For the sake of self-containedness, the
following is a summary of the essential points. Kupferschmid et al.’s abstraction is
based on the simplifying assumption that state variables accumulate rather than change,
their values. The value s(v) of a variable v in a state s is now a subset rather than an
element, of v’s domain. If v obtains a new value c, then c is included into s(v) without
removing any old values, i. e., the new value subset is defined by s(v) := s(v) ∪ {c}.
Hence the value range of each state variable grows monotonically over transitions, and
hence Kupferschmid et al. call this the monotonicity abstraction.

Of course, the interpretation of formulas, such as transition guards, must be adapted
to the new notion of states. This is done by existentially quantifying the state variables in
the formula where each quantifier ranges over the value subset assigned to the respective
variable in the state. It is easy to see that this abstraction is an over-approximation in
the sense that the shortest abstract error path is never longer than the shortest real error
path; it may be shorter.
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The following example describes a situation where no real error path exists but only
an absone. Say we have an integer variable v and one transition with guard v = 0
and effect v := v + 1. The start state is v = 0, and the safety property is AGv < 2.
Obviously, the safety property is valid, i. e., there is no error path. However, such a path
does exist in the abstraction. The abstract start state is {0} which after one transition
becomes {0, 1}. Since the transition guard is abstracted to ∃c ∈ s(v) : c = 0, the
transition can be applied a second time and we get the state {0, 1, 2}: the new values
obtained for v are 1 (inserting 0 into the effect right hand side) and 2 (inserting 1). The
negated safety property, which is abstracted to ∃c ∈ s(v) : c ≥ 2, is satisfied in that
state.

Kupferschmid et al. develop a method that finds abstract error paths in time that is
exponential only in the maximum number of variables of any linear expression over in-
teger variables; i. e., the only exponential parameter is max{|V ′| | ex. i, e : i ∈ I, e ∈
Ei, (lfn(V ′) ./ c) ∈ ge or (v := lfn(V ′) + c) ∈ fe}. The method consists of two parts,
a forward chaining and a backward chaining step. The forward chaining step simulates
the simultaneous execution of all transitions in parallel, starting from the start state. In
a layer-wise fashion, this computes for every state variable – i. e., for the location vari-
ables loci, i ∈ I , as well as the integer variables v ∈ V and the clock variables x ∈ X
– what the subset of reachable values is. The forward step stops when it reaches a layer
where the negation of the safety condition can be true. The backward step then starts
at the state variable values falsifying the safety condition; it selects transitions that can
be responsible for these values. The guards of these transitions yield new state variable
values that must be achieved at an earlier layer. The process is iterated, selecting new
transitions to support the new values and so on. The outcome of the process is a se-
quence 〈t1, . . . , tn〉 of transitions that leads from the start state to a state falsifying the
safety property, when executed under the monotonicity abstraction.

In our method for choosing the abstraction set A, we execute Kupferschmid et al.’s
algorithm exactly once to obtain an abstract error path t̄ = 〈t1, . . . , tn〉 for the problem.7

We then collect all symbols not affected by this path:

A0 :={i ∈ I | not ex. e ∈ t̄ s. t.e ∈ Ei}∪
{a ∈ A | not ex. e ∈ t̄ s. t.ae = a}∪
{x ∈ X| not ex. e ∈ t̄, c s. t.(x := c) ∈ fe, and

not ex. i ∈ A0, e ∈ Ei, c s. t.(x ./ c) ∈ ge, and
not ex. i ∈ A0, e ∈ Ei, y, c s. t.(x− y ./ c) ∈ ge}∪

{v ∈ V | not ex. e ∈ t̄, lfn(V ′), c s. t.(v := lfn(V ′) + c) ∈ fe, and
not ex. i ∈ A0, e ∈ Ei, lfn(V ′), c s. t.(lfn(V ′) ./ c) ∈ ge and v ∈ V ′}.

In this notation, e ∈ t̄ is of course a shorthand for asking whether any of the transi-
tions ti involves e. In words, we keep all automata, actions, clock variables and integer
variables that are modified on the path, and we keep all clock and integer variables that
are relevant to a guard in an automaton that we keep. We obtain our final abstraction set
A by closing A0 according to Definition 2.

7 Actually we use a slightly modified version of the described backward chaining procedure, not
considering indirect variable dependencies. We found this method to yield better performance,
by selecting more relevant variable subsets.
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filter FES1

filter FCS1

counter EC1

error detection

filter FLS1

filter FES2

filter FCS2

filter FLS2

counter EC2

counter CL2

main controller

Actuator 1

Actuator 2

counter CL1

Fig. 1. The Single-tracked Line Segment case study.

Kupferschmid et al.’s techniques form an appropriate basis for choosing A because
they are computationally efficient, and they do provide useful information about rele-
vance in the problem. Let us consider an example to illustrate this. Figure 1 illustrates
one of our two industrial case studies, called “Single-tracked Line Segment”. This study
stems from an industrial project partner of the UniForM-project [13]. It concerns the de-
sign of a real-time controller for a segment of tracks where trams share a piece of track;
each end of the shared piece of track is connected to two other tracks. The property to
be checked requires that never both directions are given permission to enter the shared
segment simultaneously. That property is not valid because some of the temporal con-
ditions in the control automaton are not strict enough.

Let us consider Figure 1 in some more detail. As one would expect, Actuator 1
and Actuator 2 are the two automata in direct control of the signals allowing (signal
up) or disallowing (signal down) a tram to enter the shared track. In particular, the
safety property expresses that always at most one of those signals is up. The main
controller automaton contains the (faulty) control logic that governs how the signals are
set. The four counter automata count how many trains have passed on each of the four
tracks that connect to the shared segment. The error detection detects inconsistencies
between the counts, meaning that a train that should have left the shared segment is
actually still inside it. Finally, each filter automaton receives an input variable from a
sensor, and removes the noise from the signal by turning it into a step function based
on a simple threshold test (so as to avoid, e. g., mistaking a passing truck for a tram).

The advantage of Kupferschmid et al.’s abstract error path for this example is that it
touches only Actuator 1, Actuator 2, and the control unit. That is, the abstract error
path involves exactly those automata that are immediately responsible for the error.
Further, the abstract error path involves exactly the variables that are crucial in obtaining
the error. The other – irrelevant – variables and automata have only an indirect influence
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on the error path, and need not be touched to obtain an error under the monotonicity
abstraction. On the other hand, consider what happens if we apply Qian and Nymeyer’s
[16] syntactic backward chaining instead. In the start layer, indexed 0, of the chaining,
we have only Actuator 1 and Actuator 2. In the next layer, indexed 1, we correctly get
the control unit – but we also get error detection and all of the counter automata. In
just one more step, at layer 2, we get every automaton in the whole network. As if that
wasn’t bad enough, the relevant variables involved in producing the error appear much
later, some of them in layer 5 only. Hence, based on this information, there is no way
of separating the relevant symbols from the irrelevant ones.

5 Empirical Results

We ran experiments on an Intel Xeon 3.06 Ghz system with 4 GByte of RAM. We com-
pare our heuristic to those of Edelkamp et al. [8] and Qian and Nymeyer [16] (both
re-implemented), as well as those of Kupferschmid et al. [14], Dräger et al. [6], and
Hoffmann et al. [11] (all in the original implementation). We further include results for
UPPAAL’s breadth-first search, which we abbreviate BF, and for UPPAAL’s randomised
depth-first search, abbreviated rDF. We distinguish between optimal search and greedy
search. The former is BF, or A∗ with an admissible (lower-bound) heuristic function;
the latter is rDF, or greedy best-first search with any (possibly non-admissible) heuris-
tic function. Table 2 shows the results for optimal search, Table 3 shows the results for
greedy search. In the figures, our Russian Doll technique is indicated with RD. All other
techniques are indicated in terms of the respective citations. If a technique requires a
parameter setting, then we choose the setting that performs best in terms of total run-
time; importantly, this does not compromise the other performance parameters: search
space size and memory usage correlate positively with runtime, and error path length
behavior does not vary significantly over parameter settings.

The “Ci”, i = 1, . . . , 9, examples in the figures come from the Single-tracked Line
Segment case study that was explained above. Examples “Mi” and “Ni”, i = 1, . . . , 4,
come from a study called “Mutual Exclusion”. This study models a real-time protocol
to ensure mutual exclusion of states in a distributed system via asynchronous communi-
cation. The protocol is described in full detail in [5]. The specifications are flawed due
to an overly generous time bound. In all of the Ci, Mi, and Ni test beds, the size of the
network scales with increasing i.

Consider first Table 2. The results for the Ci examples are striking. While all other
techniques suffer from severe scalability issues, we can find the error in even the largest
example in basically no time at all (C2 is somewhat of an outlier). This is due to the
quality of the heuristic function, which is clearly indicated in the number of search states
explored by UPPAAL (note the direct effect that a smaller number of search states has
on the peak memory usage). In the Mi and Ni examples, our technique is less dominant,
but still performs better than the other techniques. The only somewhat bad cases are the
smaller examples where the overhead for computing the Russian Doll pattern database
does not pay off in terms of total runtime. Note that this is benign – what matters are
the hard cases. It is remarkable that, consistently, our method explores at least one order
of magnitude less search states than any of the others. This clearly indicates that, again,
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Table 2. Results for optimal search. Notations: “runtime” is total runtime (including any pre-
processes) in seconds; “search space” is the number of states UPPAAL explored before finding an
error; “memory” is peak memory usage in MByte; “trace” is the length of the found error path;
x e+y means x · 10y .

runtime search space memory trace
BF [8] [14] [6] BF [8] [14] [6] BF [8] [14] [6]

M1 0.8 0.7 0.3 0.3 50001 50147 24035 19422 7 9 9 9 48
M2 3.1 3.3 1.4 1.1 223662 223034 101253 77523 11 14 12 11 51
M3 3.3 3.3 1.6 1.4 234587 231357 115008 94882 11 14 12 12 51
M4 13.6 13.8 6.5 6.9 990513 971736 468127 436953 29 33 23 23 54
N1 5.2 5.6 3.3 2.7 100183 99840 59573 46920 9 11 10 10 50
N2 25.6 25.7 15.5 12.7 442556 446465 273235 211132 18 21 16 16 53
N3 26.4 27.0 17.1 13.6 476622 473117 301963 238161 17 20 16 16 53
N4 120.0 118.3 79.0 68.2 2.0e+6 2.0e+6 1.3e+6 1.1e+6 65 57 40 39 56
C1 0.3 0.2 0.6 0.1 35325 35768 17570 9784 7 11 10 10 55
C2 0.9 0.8 1.5 0.4 109583 110593 46945 34644 10 18 13 12 55
C3 1.2 1.1 1.8 0.5 143013 144199 53081 40078 11 21 14 13 55
C4 10.8 10.6 14.8 2.9 1.4e+6 1.4e+6 451755 324080 78 124 52 41 56
C5 114.0 114.2 114.1 21.8 1.2e+7 1.2e+7 3.4e+6 2.4e+6 574 927 329 246 57
C6 – – 1211.7 291.5 – – 3.2e+7 2.4e+7 – – 2880 2402 57
C7 – – – – – – – – – – – – 57
C8 – – – – – – – – – – – – 57
C9 – – – – – – – – – – – – 58

runtime search space memory trace
[11] [16] RD [11] [16] RD [11] [16] RD

M1 1.4 0.7 4.8 22634 28788 190 9 12 13 48
M2 2.8 2.9 5.0 94602 121594 4417 12 23 13 51
M3 3.2 3.1 5.2 121559 131482 11006 12 24 15 51
M4 9.0 12.8 6.2 466967 543872 41359 24 67 20 54
N1 4.6 4.9 26.8 46966 61830 345 10 21 21 50
N2 13.7 27.2 17.7 211935 271912 3811 16 71 21 53
N3 14.6 30.0 22.4 233609 298208 59062 16 74 33 53
N4 58.6 154.3 55.5 1.0e+6 1.2e+6 341928 39 305 105 56
C1 3.5 0.4 1.0 7088 30201 130 10 14 9 55
C2 3.7 1.0 1.7 15742 95560 89813 11 25 27 55
C3 3.7 1.4 0.9 15586 127327 197 12 31 9 55
C4 6.1 12.4 1.0 108603 1.2e+6 1140 23 181 10 56
C5 13.7 121.5 1.1 733761 1.1e+7 7530 194 1479 11 57
C6 85.2 – 1.3 7.3e+6 – 39435 745 – 16 57
C7 – – 2.1 – – 149993 – – 32 57
C8 – – 2.2 – – 158361 – – 34 57
C9 – – 2.1 – – 127895 – – 39 58
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Table 3. Results for greedy search. Notations as in Table 2; “K” means thousand.

runtime search space memory trace
Exp rDF [8] [14] [6] rDF [8] [14] [6] rDF [8] [14] [6] rDF [8] [14] [6]
M1 0.8 0.4 0.0 0.3 29607 31927 5656 21260 7 9 8 9 1072 1349 169 90
M2 3.1 2.8 0.3 1.0 118341 203051 30743 78117 10 15 10 10 3875 7695 431 102
M3 2.8 1.6 0.2 1.1 102883 174655 18431 85301 9 12 9 10 3727 5412 231 105
M4 12.7 7.3 1.2 3.8 543238 579494 122973 287122 22 28 15 16 15K 5819 849 124
N1 1.9 1.3 0.4 1.2 41218 42931 16335 30970 7 9 9 9 1116 1695 396 110
N2 9.3 9.5 2.4 5.8 199631 264930 88537 149013 13 17 12 12 4775 9279 990 127
N3 8.4 4.9 0.6 6.0 195886 134798 28889 158585 12 14 10 12 3938 1656 324 108
N4 40.9 52.1 4.9 31.6 878706 1.5e+6 226698 785921 39 60 20 32 18K 1986 1199 147
C1 0.8 0.1 0.1 0.1 25219 19263 2368 2025 7 11 9 10 1056 794 95 149
C2 1.0 0.4 0.2 0.2 65388 68070 5195 4740 8 15 9 10 875 962 84 198
C3 1.1 0.6 0.3 0.2 85940 97733 6685 6970 10 19 9 10 760 916 109 198
C4 8.4 6.1 2.5 0.5 892327 979581 55480 31628 43 96 16 12 1644 2305 142 173
C5 72.4 69.4 20.8 2.6 8.0e+6 8.8e+6 465796 260088 295 734 68 37 2425 2708 330 268
C6 – – 177.4 23.3 – – 4.5e+6 2.9e+6 – – 519 303 – – 490 377
C7 – – – 309.1 – – – 2.9e+7 – – – 2600 – – – 855
C8 – – 427.0 293.8 – – 1.2e+7 2.8e+7 – – 1266 2608 – – 433 707
C9 – – 875.8 – – – 2.0e+7 – – – 1946 – – – 614 –

runtime search space memory trace
Exp [11] [16] RD [11] [16] RD [11] [16] RD [11] [16] RD
M1 1.4 0.2 4.8 23257 11284 249 9 9 13 51 169 56
M2 2.4 1.0 4.8 84475 59667 495 12 15 13 53 476 77
M3 2.5 1.4 4.9 92548 85629 993 12 17 13 56 589 54
M4 5.6 3.3 5.1 311049 216938 3577 24 32 13 56 419 106
N1 3.2 0.5 26.5 31593 13902 242 10 11 21 55 159 57
N2 8.7 3.8 17.7 172531 93467 470 16 28 20 58 624 64
N3 8.2 5.3 15.4 167350 104104 1787 16 28 19 58 493 71
N4 39.4 30.7 10.3 975816 422499 10394 39 93 19 61 242 81
C1 3.2 0.3 0.9 1588 23173 130 10 13 9 159 65 55
C2 3.5 0.8 1.2 3786 75111 56894 10 21 21 181 77 128
C3 3.6 1.1 1.0 3846 101049 290 10 26 9 187 75 57
C4 4.9 8.8 1.1 30741 1.0e+6 1163 14 151 10 241 86 58
C5 7.1 84.3 1.4 185730 9.1e+6 39837 31 1075 18 423 124 76
C6 23.6 – 1.7 1.9e+6 – 80878 195 – 25 757 – 65
C7 204.5 – 6.7 1.8e+7 – 697116 1591 – 129 1064 – 65
C8 153.5 – 10.4 1.4e+7 – 1.1e+6 1282 – 194 976 – 98
C9 – – 20.0 – – 2.2e+6 – – 355 – – 109
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our approach yields the best quality search information (the relatively high memory
usage for N4 is mostly due to the size of the pattern database).

Consider now Table 3, the data for the greedy searches. The techniques by Kupfer-
schmid et al. [14], Dräger et al. [6], and Hoffmann et al. [11] all perform much better,
compared to the optimal search in Table 2, in terms of runtime, search space size, and
peak memory usage. This improvement is bought at the cost of significantly overlong
error paths; in most cases, the returned error paths are more than an order of magni-
tude longer than the shortest possible error path. For rDF and the heuristic functions
by Edelkamp et al. [8], the path length increase is even more drastic, by another or-
der of magnitude, and with only a moderate gain in runtime. Qian and Nymeyer’s [16]
heuristic function yields much improved runtime behavior in Mi and Ni at the cost
of significantly overlong error paths; in Ci, greedy search does not make much of a
difference. Finally, consider our RD technique. In Mi and Ni, the search space size per-
formance is drastically improved now beating the other techniques quite convincingly
(but not as convincingly in terms of runtime, where [16] is very competitive except in
N4). In Ci, the search spaces become a little larger; it is not clear to us what the reason
for that is. The loss in error path quality is relatively minor.

In summary, the empirical results clearly show how superior our Russian Doll
heuristic function is, on these examples, in comparison to previous techniques.

6 Related Work

We have already listed the previous methods for generating heuristic functions for di-
rected model checking [6, 9, 11, 14, 15, 16]. By far the closest relative to our work
is the work by Qian and Nymeyer [16] which uses an intuitively similar strategy for
generating pattern database heuristics. As we have shown, our improved strategy yields
much better heuristic functions, at least in our suite of benchmarks. It remains to be
seen whether that is also the case for other problems. It should also be noted that Qian
and Nymeyer [16] use their heuristic function in a rather unusual BDD-based iterative
deepening A∗ procedure, and compare that to a BDD-based breadth-first search. As the
authors state themselves, it is not clear in this configuration how much of their empir-
ically observed improvements is due to the heuristic guidance, and how much of it is
due to all the other differences between the two search procedures. In our work, we use
standard heuristic search algorithms. We finally note that Qian and Nymeyer [16] state
as the foremost topic for future work to find better techniques choosing the abstraction;
this is exactly what we have done in this paper.8

7 Conclusion

We have explored a novel strategy for generating pattern database heuristics for directed
model checking. As it turns out, this strategy results in an unprecedented efficiency of

8 We remark on the side that we developed our technique independently from Qian and Nymeyer
[16], and only became aware of their work later.
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detecting error paths, solving within a few seconds, and to optimality, several bench-
marks that were previously hardly solvable at all.

Our empirical results must of course be related to the benchmarks on which they
were obtained, and it is a priori not clear to what extent they will carry over to other
model checking problems. However, there certainly is a non-zero chance that they will
carry over. This makes the further exploration of this kind of strategy an exciting direc-
tion, which we hope will inspire other researchers as well.
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