
UPPAAL/DMC – Abstraction-based Heuristics for
Directed Model Checking

Sebastian Kupferschmid1, Klaus Dräger2, Jörg Hoffmann3, Bernd Finkbeiner2,
Henning Dierks4, Andreas Podelski1, and Gerd Behrmann5

1 University of Freiburg, Germany
{kupfersc,podelski}@informatik.uni-freiburg.de

2 Universität des Saarlandes, Saarbrücken, Germany
{draeger,finkbeiner}@cs.uni-sb.de

3 Digital Enterprise Research Institute, Innsbruck, Austria
joerg.hoffmann@deri.org

4 OFFIS, Oldenburg, Germany
dierks@offis.de

5 Aalborg University, Denmark
behrmann@cs.aau.dk

Abstract. UPPAAL/DMC is an extension of UPPAAL that provides generic heuris-
tics for directed model checking. In this approach, the traversal of the state space
is guided by a heuristic function which estimates the distance of a search state to
the nearest error state. Our tool combines two recent approaches to design such
estimation functions. Both are based on computing an abstraction of the system
and using the error distance in this abstraction as the heuristic value. The abstrac-
tions, and thus the heuristic functions, are generated fully automatically and do
not need any additional user input. UPPAAL/DMC needs less time and memory
to find shorter error paths than UPPAAL’s standard search methods.

1 Introduction

UPPAAL/DMC is a tool that accelerates the detection of error states by using the di-
rected model checking approach [4, 5]. Directed model checking tackles the state ex-
plosion problem by using a heuristic function to influence the order in which the search
states are explored. A heuristic function h is a function that maps states to integers, esti-
mating the state’s distance to the nearest error state. The search then gives preference to
states with lower h value. There are many different ways of doing the latter, all of which
we consider the wide-spread method called greedy search [8]. There, search nodes are
explored in ascending order of their heuristic values. Our empirical results show that
this can drastically reduce memory consumption, runtime, and error path length.

Our tool combines two recent approaches to design heuristic functions. Both are
based on defining an abstraction of the problem at hand, and taking the heuristic value
to be the length of an abstract solution. It is important to note that both techniques are
fully automatic, i.e., no user intervention is needed to generate the heuristic function.
UPPAAL has a built-in heuristic mode, but the specification of the heuristic is entirely
up to the user. Inventing a useful heuristic is a tedious job: it requires expert knowledge
and a huge amount of time.



2 Authors Suppressed Due to Excessive Length

2 Heuristics

The next two sections give a brief overview of the abstractions used to build our heuris-
tics, and how heuristic values are assigned to search states.

2.1 Monotonicity Abstraction

Our first heuristic [7] adapts a technique from AI Planning, namely ignoring delete lists
[1]. The idea of this abstraction is based on the simplifying assumption that every state
variable, once it obtained a value, keeps that value forever. I.e., the value of a variable
is no longer an element, but a subset of its domain. This subset grows monotonically
over transition applications – hence the name of the abstraction.

When applying the monotonicity abstraction to a system of timed automata, then
each automaton will (potentially) be in several locations in a state. The system’s integer
variables will have several possible values in a state. So far clocks are not included in
the computation of heuristic values. If we included clocks in the obvious way, every
guard or invariant involving a clock would be immediately satisfied. The reason for this
is that clock value sets quickly subsume all possible time points.

Our heuristic hma assigns to each state encountered during search a heuristic value
by solving an abstract problem. Such an abstract problem is obtained by applying the
monotonicity abstraction to the current state. The length of a solution found in this
abstraction is then used as the heuristic estimate for the state’s distance to the nearest
error state. In a nutshell, an abstract solution is computed by iteratively applying all
enabled transitions to the initial abstract state (the state for which we want to estimate
the distance), until either the enlarged state subsumes an error state, or a fixpoint is
reached. In the former case, an abstract solution can be extracted by backtracing through
the state enlargement steps. In case of reaching a fixpoint, we can exclude this state from
further exploration: the monotonicity abstraction induces an over-approximation, i.e. so
if there is no abstract error path, then there is no real one either.

2.2 Automata-theoretic Abstraction

The second heuristic [3] aims at a close representation of the process synchronisation
required to reach the error. Each process is represented as a finite-state automaton. The
heuristic haa estimates the error distance d(s) of a system state s as the error distance
of the corresponding abstract state α(s) in an abstraction that approximates the full
product of all process automata.

The approximation of the product of a set of automata is computed incrementally
by repeatedly selecting two automata from the current set and replacing them with an
abstraction of their product. To avoid state space explosion, the size of these interme-
diate abstractions is limited by a preset bound N : to reach a reduction to N states, the
abstraction first merges bisimilar states and then states whose error distance is already
high in the partial product.

In this way, the precision of the heuristic is guaranteed to be high in close proximity
to the error, and can, by setting N , be fine-tuned for states further away from the error.
In our experiments, fairly low values of N , such as N = 100, already significantly



UPPAAL/DMC – Abstraction-based Heuristics for Directed Model Checking 3

speed up the search for the error, and therefore represent a good trade-off between cost
and precision.

3 Results

We compare the performance of UPPAAL/DMC’s greedy search and UPPAAL’s ran-
domised depth first search (rDF), which is UPPAAL’s most efficient standard search
method across many examples. The results for rDF in Table 1 are averaged over 10
runs. The Ci examples stem from an industrial case study called “Single-tracked Line
Segment” [6] and the Mi examples come from another case study, namely “Mutual Ex-
clusion” [2]. An error state was made reachable by increasing an upper time bound in
each example.

The results in Table 1 clearly demonstrate the potential of our heuristics. The heuris-
tic searches consistently find the error paths much faster. Due to the reduced search
space size and memory requirements, they can solve all problems. At the same time,
they find, by orders of magnitude, much shorter error paths in all cases.

Table 1. Experimental results of UPPAAL’s rDF and UPPAAL/DMC’s greedy search with hmaand
haa . The results are computed on an Intel Xeon with 3 Ghz and 4 GB of RAM. Dashes indicate
out of memory.

runtime in s explored states memory in MB trace length
Exp rDF hma haa rDF hma haa rDF hma haa rDF hma haa

M1 0.8 0.1 0.2 29607 5656 12780 7 1 11 1072 169 74
M2 3.1 0.3 0.9 118341 30742 46337 10 11 11 3875 431 190
M3 2.8 0.2 0.8 102883 18431 42414 9 10 11 3727 231 92
M4 12.7 0.8 1.9 543238 76785 126306 22 13 14 15K 731 105
C1 0.8 0.2 0.5 25219 2339 810 7 9 11 1065 95 191
C2 1.0 0.3 1.0 65388 5090 2620 8 10 19 875 86 206
C3 1.1 0.5 1.1 85940 6681 2760 10 10 19 760 109 198
C4 8.4 2.5 1.8 892327 40147 25206 43 11 23 1644 125 297
C5 72.4 13.2 4.0 8.0e+6 237600 155669 295 21 28 2425 393 350
C6 – 10.1 14.9 – 207845 1.2e+6 – 20 67 – 309 404
C7 – 169.0 162.4 – 2.7e+7 1.3e+7 – 595 676 – 1506 672
C8 – 14.5 155.3 – 331733 1.2e+7 – 23 672 – 686 2210
C9 – 1198.0 1046.0 – 1.3e+8 3.6e+7 – 2.5G 1.6G – 18K 1020

Other heuristis, proposed by Edelkamp et al. [4, 5] in the context of SPIN, are based
on graph distances. The underlying abstraction of these heuristics preserves only edges
and locations of an automata system. For an automaton a let d(a) be the distance of a’s
start location to its target location. Then, the hgd

max heuristic is defined as maxa d(a).
The hgd

sumheuristic is defined as
∑

a d(a).
Note that hgd

max and hgd
sum are rather crude approximations of the systems semantics.

For example, they completely ignore variables and synchronisation. In contrast, the hma



4 Authors Suppressed Due to Excessive Length

and haa heuristics do not do this. Our approximations are more costly, i.e. one call of
hma or haa takes more runtime than one call of hgd

max or hgd
sum . The additional effort

typically pays off: for example, in the case studies shown in Table 1, greedy search with
maxa d(a) and

∑
a d(a) performs only slightly better than rDF, and much worse than

our heuristics; e.g. it cannot solve any of C6, C7, C8, and C9.

4 Outlook

The most important piece of future work is to explore the value of our tool in the abstrac-
tion refinement life cycle. The basic idea is to use heuristics to address the intermediate
iterations where (spurious) errors still exist. As our results show, this has the potential
to speed up the process and yield shorter, and thus more informative error paths. Hence,
our technique for error detection will be able to help with actual verification.

4.1 Availability of the Tool

At http://www.informatik.uni-freiburg.de/˜kupfersc/uppaal_dmc/,
two Linux executables of UPPAAL/DMC are available. The first version is optimised
for Intel Pentium 4 processors, the other one was compiled with default optimisation.
The page also provides a short description of the used benchmarks, and all used model
and query files.

Acknowledgments

This work was partly supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS). See http://www.avacs.org/ for more
information.

References

[1] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence,
129(1–2):5–33, 2001.

[2] Henning Dierks. Comparing model-checking and logical reasoning for real-time
systems. Formal Aspects of Computing, 16(2):104–120, May 2004.

[3] Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. Directed model checking
with distance-preserving abstractions. In Proceedings of the 13th International
SPIN Workshop on Model Checking of Software (SPIN’2006), 2006.

[4] Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Directed explicit
model checking with HSF-Spin. In Proceedings of the 8th International SPIN
Workshop on Model Checking of Software (SPIN’2001), pages 57–79, 2001.

[5] Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Directed explicit-state
model checking in the validation of communication protocols. International Jour-
nal on Software Tools for Technology Transfer, 2004.

http://www.informatik.uni-freiburg.de/~kupfersc/uppaal_dmc/


UPPAAL/DMC – Abstraction-based Heuristics for Directed Model Checking 5

[6] Bernd Krieg-Brückner, Jan Peleska, Ernst-Rüdiger Olderog, and Alexander Baer.
The UniForM Workbench, a universal development environment for formal meth-
ods. In Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors, FM’99 –
Formal Methods, volume 1709 of Lecture Notes in Computer Science, pages 1186–
1205. Springer, September 1999.

[7] Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann.
Adapting an AI planning heuristic for directed model checking. In Proceed-
ings of the 13th International SPIN Workshop on Model Checking of Software
(SPIN’2006), 2006.

[8] Judea Pearl. Heuristics: Intelligent search strategies for computer problem solving.
Addison-Wesley, 1984.


	Introduction
	Heuristics
	Monotonicity Abstraction
	Automata-theoretic Abstraction

	Results
	Outlook
	Availability of the Tool


