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Abstract. It is probably very hard to develop a new model checker that is faster
than UPPAAL for verifying (correct) timed automata. In fact, our tool MCTA does
not even try to compete with UPPAAL in this (i. e., UPPAAL’s) arena. Instead,
MCTA is geared towards analyzing incorrect specifications of timed automata. It
returns (shorter) error traces faster.

1 Our tool: MCTA

We present MCTA, a model checking tool for real-time specifications modeled as timed
automata. Although the tool can be used for verification, MCTA is rather optimized
for falsification, i. e., detecting violations against safety properties fast and returning
short error traces. Several types of traces can be generated, including an option to find a
(guaranteed) shortest error trace. There is also the possibility to examine MCTA’s traces
with UPPAAL’s graphical user interface.

MCTA accepts input models in the form of the UPPAAL input language (cf. [1]). So
far only a fraction thereof is supported, e. g. there is no support for urgent channels,
arrays, etc. yet. Internally, MCTA uses UPPAAL’s timed automata parser library. For
the representation of zones, MCTA uses UPPAAL’s difference bound matrices library.
Both libraries are released under the terms of the LGPL or GPL, respectively, and are
freely available at http://www.uppaal.com/. All other data structures and all
algorithms (and their implementation) used are genuine to MCTA.

MCTA is free software and also released under the terms of the GPL. Pre-compiled
Linux executables and a snapshot of the source code of our tool are also freely available
at http://mcta.informatik.uni-freiburg.de.

2 The Ingredients of MCTA

MCTA accelerates the detection of error states by using the well-known directed model
checking approach [4, 5]. In this approach, an abstract distance value is computed for
each state encountered during the state space traversal. The abstract distance values de-
termine the order in which the states are explored. Among possible successor states,
the ones with a lower value are preferred. There are many different strategies to explore
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the state space. MCTA allows the user to choose between two strategies based on two
wide-spread search methods called A∗ and greedy search. The first explores states s
with lowest value of c(s) + h(s) first, where c(s) is the length of the path from the
initial state through which s was reached. Under certain conditions on the abstract dis-
tance values, one is guaranteed a shortest error path. In the second strategy, states are
explored by increasing value of h(s). Doing so, the length of the detected error path is
not guaranteed to be as short as possible, but tends to explore less states in practice.

MCTA generates the abstract distance values fully automatically for each input given
by a timed automaton and a safety property. This is done by efficiently computing a
rather coarse abstraction (the user can choose among several kinds of abstraction, see
below) and taking the distance in the abstract state space. MCTA in addition offers the
possibility to automatically recognize which transitions should be penalized during the
state space traversal; this is a new technique presented in [8].

Monotonicity Abstraction Currently, MCTA comes with several kinds of abstractions
as the basis for computing the abstract distance values. Here, we will only explain the
distance function which is based on the monotonicity abstraction [7]. This abstraction
is mainly an adaption of a technique from AI Planning namely ignoring delete lists [2].
The idea of the corresponding abstraction is to have every state variable, once it has
obtained a value, keeps that value forever. I. e., the value of a variable is no longer an
element, but a subset of its domain. This subset grows monotonically over transition
applications, hence the name of this abstraction.

MCTA assigns to each state encountered during the state space traversal an abstract
distance value by applying the monotonicity abstraction to the part of the state space
that is rooted in the current state, and traversing the abstract state space. The length of
the abstract error trace is the state’s abstract distance value. If there is no abstract error
path, then there is no concrete one either.

3 Results

We compare the performance of MCTA and UPPAAL for detecting error traces in in-
correct specifications of timed automata. For both tools we chose the most powerful
options. We used the current version of UPPAAL (4.0.6) with the option randomized
depth first search (rDF). The results for rDF in Table 1 are averaged over 10 runs. For
MCTA the specific options are: the strategy for the state space traversal being based on
greedy search, the abstraction for the abstract distance values being the monotonicity
abstraction, and the recognition of “useless transitions” and the state space traversal
penalizing recognized transitions [8].

The examples C1, . . . , C9 stem from an industrial case study called “Single-tracked
Line Segment” [6]. It models a distributed real-time controller for a segment of tracks
where trams share a piece of track. The examples M1, . . . , M4 and N1, . . . , N4 come
from a case study namely “Mutual Exclusion” [3]. It models a real-time protocol to
ensure mutual exclusion of states in a distributed system via asynchronous communi-
cation. Both case studies are part of the AVACS project benchmark suite.

The results in Table 1 (visualized in Fig. 1) clearly demonstrate that the algorithms
employed by our tool are useful for analyzing incorrect timed automata. In comparison
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Table 1. Experimental results of UPPAAL’s and MCTA’s most powerful options. The results are
computed on an Intel Xeon with 2.66 Ghz. Dashes indicate out of memory (more than 4 GB).

explored states runtime in s memory in MB trace length
Exp UPPAAL MCTA UPPAAL MCTA UPPAAL MCTA UPPAAL MCTA

M1 8343 4256 0.37 0.07 38 56 829 97
M2 27156 8186 1.53 0.10 40 57 3245 146
M3 24368 10650 1.39 0.12 40 58 2991 91
M4 70906 22412 4.93 0.24 45 64 11728 136
N1 11115 5689 0.93 0.10 38 59 607 108
N2 45998 15377 4.99 0.25 41 62 3788 152
N3 31725 16332 3.31 0.26 41 65 3302 91
N4 220262 44199 25.31 0.71 51 84 14003 118
C1 15407 1658 0.23 0.12 38 56 945 91
C2 31308 1333 0.32 0.16 39 56 820 91
C3 45443 1153 0.36 0.13 39 56 541 91
C4 366056 1001 2.90 0.19 49 57 1690 121
C5 2629269 833 23.54 0.22 120 57 2345 114
C6 21940802 833 230.08 0.29 761 57 3237 114
C7 – 829 – 0.35 – 57 – 114
C8 – 816 – 0.28 – 57 – 95
C9 – 13423 – 3.24 – 71 – 90

with UPPAAL which does not employ such algorithms (based on automatically gener-
ated abstract error distances), our tool finds the error paths faster. It explores less states
and uses less memory and thus scales to larger benchmarks. At the same time, it returns
shorter error paths.
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Fig. 1. Comparing UPPAAL and MCTA on incorrect specifications of timed automata (“MCTA’s
arena”): runtime (in s) for detecting error traces. MCTA is orders of magnitude faster.
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4 Outlook

In the future, MCTA will evolve by supporting more and more language constructs for
defining (extensions of) timed automata, and by providing more and more kinds of
abstractions for computing abstract distance values. Eventually, we hope, the results
and the practical experience with MCTA for analyzing incorrect specifications will flow
into tools that were originally geared towards analyzing correct timed automata.
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