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Abstract— We address the problem of searching for moving
targets in large outdoor environments represented by height
maps. To solve the problem we present a complete system that
computes from an annotated height map a graph representation
and search strategies based on worst-case assumptions about all
targets. These strategies are then used to compute a schedule
and task assignment for all agents. We improve the graph
construction from previous work and for the first time present
a method that computes a schedule to minimize the execution
time. For this we consider travel times of agents determined by
a path planner on the height map. We demonstrate the entire
system in a real environment with an area of 700,000m2 in
which eight human agents search for two intruders using mobile
computing devices (iPads). To the best of our knowledge this
is the first demonstration of a search system applied to such a
large environment.

I. INTRODUCTION

In this paper we consider the problem of coordinating a
team of searchers either robotic or human for finding multiple
targets moving in a larger outdoor area. Although this is a
fundamental problem inherent in many real-world applica-
tions, such as urban search and rescue (USAR), surveillance,
and security, there has been only little attention on solutions
that can be directly applied to large-scale environments.

We present a comprehensive system that coordinates and
guides searchers in an outdoor area of the size of several
square miles. To this end we contribute:

1) a novel hierarchical method for computing a graph
structure given a height map, i.e. digital elevation
model (DEM), of the environment and a solver for
computing a search strategy on this graph.

2) A method for computing at each step of the strategy
the task assignment from searchers to observation
locations while minimizing execution time.

3) A real-time system for executing this schedule in the
field, where human searchers can interact with the
system via a mobile device, in our case an iPad.

We suppose that no prior information about the number
of targets nor their movement or capabilities is given. Con-
sidering that the above applications are safety critical we
still seek to provide a guarantee of detection and hence
assume that targets are worst-case adversaries moving at
unbounded speed and are omniscient. This turns our moving
target search problem into a pursuit-evasion problem and we
can leverage the existing literature in this field.

† joint first authors, ? Robotics Institute, Carnegie Mellon University,
500 Forbes Ave., Pittsburgh, PA 15213, � Computer Science Department,
University of Freiburg, Georges-Koehler-Allee 52, 79110 Freiburg, Germany
∗ School of Information Sciences, University of Pittsburgh, 135 N. Bellefield
Ave., Pittsburgh, PA 15260.

We demonstrate the entire system in a real environment
with an area of approximately 700,000m2 in which eight
human agents search for two intruders using mobile com-
puting devices (iPads). To the best of our knowledge this
is the first demonstration of a search system based on
pursuit-evasion strategies in such a large environment that
considers the entire array of problems from the computation
of strategies to task assignment, scheduling, path planning,
and a coordinated execution in the field.

In the following we will first present related work in
Section II and a problem description in Section III. The graph
construction and computation of pursuit-evasion strategies on
the graph follows in Section IV. In Section V we consider
the computation of a schedule for any strategy and generalize
the problem to a task assignment problem with mobile agents
and tasks distributed in space. Finally, in Section VI we
describe how to integrate the above into a working system
and discuss results from a real world demonstration. We
conclude with a discussion and an outline for future work in
Section VIII.

II. RELATED WORK

There are a large number of related research areas for
moving target search within robotics. We shall very briefly
mention a few that are most closely related to our prob-
lem with an emphasize on graph-based and probabilistic
approaches that attempt to control many searchers within
realistic environments.

Algorithms to compute search strategies for pursuit-
evasion problems on graphs have been discussed in [6], [7]
and [4]. Therein an emphasis is put on reducing the number
of agents needed for a search strategy with all searchers
moving on the graph. For search in real environments these
algorithms become useful once a suitable graph can be
obtained. In [8] and [5] it was demonstrated that such
constructions are feasible and that we can apply graph-based
search strategies to coordinate a search in real environments.
These, however, only consider reducing the number of agents
needed for the search and not the time this takes. In [1]
time is considered and the authors present results on the
complexity of computing strategies that minimize travel time.
The travel time is given by weights on edges. It turns out
that minimizing the overall travel time is already strongly
NP -complete even on simple graphs such as on stars and
trees. One problem with this approach, however, is that the
graph on which strategies are computed usually has edges
whenever contamination can spread between two vertices.
Adding a travel time to such edges treats the graph like a
roadmap which it may not be since it primarily captures



how contamination and hence target motion can spread.
Especially when dealing with complex 2.5d environments the
actual best path in the map between any two vertices that are
not directly connected with an edge may not correspond to
a path in such a graph.

A different graph-based approach is presented in [9].
Therein a graph is created by randomly sampling locations
in a 2d environments and it is assumed that targets move
according to a probabilistic motion model which is presented
by a Markov process that determines how contamination
diffuses. The graph is used for an A∗ search with a suitable
heuristic to search for robot paths on the graph that reduces
the level of contamination. Since this approach is compu-
tationally expensive a partitioning of the environment with
another heuristic is presented. The heuristic attempts to split
the graph into roughly two equal parts with a minimal border.
Then A-star is run on both parts sequentially while the border
is guarded by some sensors. This allows five robots to search
a small indoor environment.

There are also a number of approaches that are not
directly based on graphs. One probabilistic approach has
been described in [3]. This line of work lead to a system
presented in [10]. It has three robots searching for a target in
a small uncluttered environment. The approach, however, has
not been demonstrated to scale well to larger environments.
Another problem, shared with most approaches that do not
rely on a graph directly embedded into an environment, is to
incorporate searcher over which the system has no precise
and fine grained control, such as humans.

The first paper to provide an algorithm to construct graphs
for our search problem with height maps is [8]. Therein the
graph construction is based on randomly sampling locations
in the map. Every location has an associated area in which
targets are detectable if an agent is placed on the location.
These areas are coined detection sets and the detection sets of
all vertices cover the entire map. Edges between vertices are
created whenever two detection sets overlap in a particular
manner. Since we are building directly on this work we will
present it in more detail in subsequent sections.

III. PROBLEM DESCRIPTION

In this section we review the basic problem formulation
given in [8] and present our extensions. We are concerned
with the problem of searching for a moving target in a large
outdoor area represented by a height map h : H → R+,
where H ⊂ R2 is a continuous domain. For all practical
purposes we will approximate H by a 2d grid map. Such
maps can model complex terrain and capture some aspects
of 3d visibility. An example of a real-word height map is
shown in fig. 1. We write E ⊂ H for the free space in which
agents and targets can move and require it to be connected.
In contrast to [8] we allow annotations for H which classify
the terrain into either: 1) cluttered (vegetation and other
occlusions), 2) non-traversable, and 3) forbidden. In [8]
the terrain was only classified as either non-traversable or
traversable. Our additions serve two very practical purposes.
For one, detailled height maps are difficult to obtain and

hence not always up to date. In particular vegetation can
change rather rapidly and impede visibility as well as prevent
motion. To take this into consideration we elevate the terrain
that is classified as cluttered by simply increasing H . Terrain
that is not allowed is simply not part of the search area either
because it is not of interest or dangerous for the agents.

(a) (b)

Fig. 1. (a) A height map of Gascola. (b) A satellite image of Gascola.

To model the detection of an unknown number of unidenti-
fied targets we assume a worst-case scenario, i.e. targets have
unbounded speed and are omniscient. They are, however,
required to move on continuous trajectories within E and
have a minimum height of ht. We can hence represent
the possibility of a target being located in part of E with
contamination. Agents can clear contamination with their
sensors and once E is cleared all targets that were in E must
have been seen at least once by some sensor.

Targets are detected by an agent if they are within line
of sight of the sensor mounted at height hr and within
sensor range sr.1 The consideration of heights allows us to
distinguish the set of visible points in E from the set of points
on which a target is detectable, so called detection sets. We
write D(p) ⊂ H for the detection set for an agent on point
p ∈ H . More precisely, D(p) is the set of all points p′ such
that a target of height ht on p′ is within line of sight of
the agent on p. For the purpose of clearing contamination
we can hence say that when an agent is located on p then
D(p) is cleared, i.e. in colloquial terms all targets that could
potentially be present in D(p) will have been detected by
the sensor. For our purposes we assume an omnidirectional
sensor and the computation of D(t) can be done efficiently
as shown in SectionIV. In principle one could choose other
sensor footprints and hence alter the computation of D(p).
In the next section we shall show how to use detection sets
to construct a graph representation of the environment and
compute search strategies on this graph that will clear all of
E .

IV. COMPUTING STRATEGIES

The computation of pursuit-evasion strategies on graphs
has been studied in many variations and as a result one has a
number of algorithms readily available. But the construction

1Strictly speaking visibility is considered in a three dimensional space by
embedding H into R3.



Algorithm 1 Detection Set From(p, dir,D)

l ← set of points on the line segment of length sr in
direction dir from p ordered by distance to p.
alast ← 0
for p′onl do
a← h(p′)−h(p)−hr

‖p−p′‖
if a ≥ alast then
visible← true
alast ← a
D ← D ∪ p′

else
visible← false

a← h(p′)+ht−h(p)−hr

‖p−p′‖
if a ≥ alast then
D ← D ∪ p′

end if
end if

end for

of appropriate graphs from real environments has received
far less attention. We shall show in this section that im-
provements in the graph construction can yield significant
improvements when using the same algorithms to compute
strategies on the resulting graph. We now introduce a hi-
erarchical construction that allows the computation of the
detection set for every point on our grid in a lower resolution
map. This enables us to rank the detection sets by size and
find better locations for new vertices. The quality of a graph
is measured by the number of agents that the final strategy
requires. Hence, to compare our new construction to prior
work from [8] the algorithm for computing strategies on
graphs is kept identical to [8], but we shall nonetheless and
very briefly discuss it in Section IV-B.

A. Graph Construction

The graph construction in [8] is based on a random
sampling of locations for vertex placement. For each sampled
location p the detection set D(p) is computed and a vertex
added to graph G. New locations p are sampled in parts of E
that are not yet part of any detection set of existing vertices
in G. This requires to compute for each selected location p
the detection set and to remove it from E . The detection set
for location p is computed by casting rays radially and for
each ray determine the points on which targets are detectable
as shown by Alg. 1 and illustrated by Figure 2. We compute
the set of grid cells belonging to the line segment starting
in p with length sr and direction dir with the Bresenham
algorithm known from the field of computer graphics.

One advantage of random sampling is that one does
not have to compute the detection set for the majority of
the points in E , but only for those that are selected as
graph nodes. Randomly selected locations, however, are not
necessarily those from which larger parts of the map can
be observed. They could be located in valleys or between
shrubs and thus having occluded sight. Instead we should
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h(p�)
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Fig. 2. An illustration how to compute detection sets for Algorithm 1.

rather select locations with good visibility, such as mountain
peaks or bell towers.

Therefore, we present a hierarchical sampling approach
that automatically selects locations with large detection sets
for constructing the graph. This is carried out by generating
a set of L low-resolution copies M = (M1, ...,ML) of
the height map, where Ml denotes the map copy at level
l with resolution rl = r0

1
2l

, and r0 denotes the resolution of
the original hight map. Height cells at lower resolutions are
generated from the previous level by a conservative approach,
which is to assign the maximum of the height values from the
four corresponding cells on the lower level. Figure 3 depicts
the generation of two low resolution maps at level 1 and 2
from the original map.

Level 0 (original) Level 1 Level 2 

Fig. 3. Hierarchical simplification of height maps for computing detection
sets. Level 0 represents the original map storing at each grid cell a height
value. Higher levels combine the height values of the four grid cells of their
predecessor level by the max() operator.

Likewise as shown for the random sampling procedure,
the idea is to successively sample locations p from E and
to remove their detection set D(p). But instead of randomly
sampling points, we identify those with the largest detection
set by a depth search on the hierarchy of M. The search
starts at the highest level L, i.e. lowest resolution, of the
hierarchy by computing for each point pL its detection set
D(pL). From these sets the location with the maximum
detection set pmax

L = argmaxpL
|D(pL)| is selected and the

search is continued on level L − 1. After locating the
maximum set on the highest level L, it suffices to search
on lower levels in a depth-first search manner. This is
carried out by computing the selection set SL−1 consisting of
location pL−1 that corresponds to pmax

L plus further locations
around this location within a small neighborhood radius ε.
Principally, it suffices to select ε exactly to cover the four



cells on L−1 from which pmax
L has been generated. However,

in order to compensate for quantization errors we used
ε = 4 for our experiments. From SL−1 the best candidate
of level L − 1 is selected by pmax

L−1 = argmaxpD(p ∈ S).
This procedure is continued until level 0 is reached and thus
location pmax

0 on the original map with maximal detection
is found. Then, D(p0) is removed from E and hierarchy
M updated accordingly. The hierarchical sampling continues
until the entire map has been covered. Once all vertices are
sampled we can proceed by adding edges between these
vertices. Options for how to determines these are discussed
in detail in [8] and for our purposes we merely add edges
between any two overlapping detection sets whenever the
intersection is not covered by a detection set of a third vertex
whose detection set is larger than either one of the two other
vertices.

Notice that even though we are selecting vertices with
larger detection sets this is still a heuristic and by no means
guarantees better strategies. Yet, we shall show in Section VII
that we do get a significant improvement for our Gascola test
site.

B. Strategies on Graphs

Given the graph G constructed as above we now have
to compute pursuit-evasion strategies on it. To allow a
comparison between the graphs from [8] we use exactly
the same algorithm for this purpose but shall very briefly
describe a few details here.

We initially consider all vertices of G contaminated. An
agent moving onto a vertex v ∈ G will clear it since it
detects all targets in the associated detection set. We shall
refer to this as guarding a vertex since it also prevents
any target from crossing through the detection set of v for
the duration that the agent is guarding it. Note that once a
guarding searcher is removed from a vertex contamination
can spread through it. The problem is now to determine
when to guard each vertex to clear a contaminated graph G
with as few agents as possible. Additionally, we require that
the strategy ensures that all cleared vertices are connected
and that no vertices are recontaminated. These properties
are known as contiguous and progressive, respectively. For
our searchers this ensures a safe area within E and that
every vertex has to be visited only once. But it has to be
noted that allowing recontamination or disconnected cleared
vertices can potentially lead to strategies using fewer agents
and one could also choose to compute such non-contiguous
or non-progressive strategies instead.

It turns out that we can utilize prior work in pursuit-
evasion on graphs with some modifications to determine such
strategies. The details of these modifications are presented
in [8] and the resulting algorithm determines strategies that
are represented by a sequence of vertices S. Now, the
sequence S determines when a vertex has to be guarded.
A guarding searcher can be released from the vertex once
all its neighbors in G are also cleared, ensuring that no
recontamination occurs. The sequences S hence not only

determines when agents are placed on vertices but also when
they can be removed.

For our purposes we can consider any strategy S that de-
termines when agents are placed and removed from vertices
so long as it guarantees that if this sequence is followed then
the entire graph is cleared. Hence the underlying algorithm
for computing S can be readily replaced and does not have
to be optimal. The main problem we are concerned with is
how to translate a strategy S into a schedule for an agent
team that assigns every agent to a vertex while minimizing
the time it takes to travel to all locations. This problem is
addressed in the next section.

V. EXECUTING STRATEGIES

Given a pursuit-evasion strategy that requires k agents,
written ai, i = 1, . . . , k we will now compute an assignment
of the guarding tasks to agents and attempt to minimize the
time it takes for all agents to execute the strategy. In our case
a contiguous strategy is given by a sequence of vertices that
need to be guarded. Let us write v1, . . . , vn for this sequence.
Once a vertex has no contaminated neighbors anymore its
guarding agent is free to move to another vertex without
incurring recontamination. This occurs precisely when the
last neighboring vertex is guarded and thereby cleared from
contamination. We can hence generate a task τi for every
i = 1, . . . , n that starts at step i and terminates after some
step j ≥ i, i.e. the agent is released at step j when task τj is
started. In principle this conversion can be applied to other
types of pursuit-evasion strategies such as Graph-Clear [7]
which involves actions other than guarding as well as actions
on edges.

We shall now define a task τi := (li, di) as a tuple of a
location li that corresponds to the location of vertex vi in
the map H and di which is the step until which li needs to
be occupied. The sequence of tasks is entirely determined
by our strategy, but the assignment of agents to these tasks
is not.2

To complete a task τ = (l, d) an agent a needs to arrive
at location l and occupy it until we reach step d. Step d
is completed once all locations lj , j ≤ d had been reached
(although some of the agents may already be released from
these locations). Once step d is completed agent a can
continue moving towards another task location. Some task
locations are hence be occupied in parallel since multiple
agents may be waiting for their release. By construction the
total number of agents occupying task locations will not
exceed k. Fig. 4 illustrates the new task sequence arising
from a strategy.

The overall execution time for the strategy is determined
by the speed at which agents can travel to the locations of
their assigned tasks with each agent’s time at the location
depending on other agents. Let us now briefly formalize the
problem.

2Note that there are pursuit-evasion problems and algorithms that imme-
diately assign an agent to an action, but to our knowledge there are none that
consider the number of agents as well as execution time with an underlying
path planner.
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τ1 τ2 τ3 τ4

Fig. 4. A sequence of tasks arising from a strategy. Here τ1 = {l1, d1 =
3} is released after the location l3 of the third task τ3 has been reached by
an agent. Tasks τ1, τ2, τ3 are guarded in parallel while the agent from τ1
may be used to for τ4 since it is released at step 3.

Definition 1 (Task Assignment): A task assignment is a
surjective function A : {τ1, . . . , τn} → {a1, . . . , ak} with
the following property: if A(τi) = A(τj) for some j > i
then di < j.

In colloquial terms, this definition just ensures that every
agent has at least one task and that an agent cannot be
assigned to another task before it is released. To formalize the
contribution of travel time let us write a(t) for the location
of agent a at time t. Further, write T : E × E → R+ to
represent a path planner that returns the time it takes for an
agent to travel between two locations in E written T (l, l′).
Write ti be the time at which step i is completed. We can
now define ti inductively via t0 := 0 and

ti+1 := ti + T (A(τi+1)(ti), li+1). (1)

Notice that the term T (A(τi+1)(ti), li+1) may well be 0
if the agent A(τi+1)(ti) is already on li+1 at time ti. In
fact, with a larger number of agents we should expect this to
occur frequently as agents are moving in E simultaneously.
Fig. 5 shows three steps that finish at the same time, i.e.
t3 = t4 = t5.

a1

a2

a3

a4

l1
l2

l3

l5

l4

t1t0 t2
t3
t4

t5

wait until release

travel time

release

li reached location

Fig. 5. Agents a1, a2, a3 and a4 move to locations l1, l2, l3 and l4
respectively. Step 1 is completed once a1 reaches l1. Other agents may
already be at their assigned locations at this time. At step 2 agent a1 is
released and proceeds to l5. Since a3 and a4 have already reached their
task locations at t2 we have t2 = t3 = t4. Agent a2 is released once a1
reaches l5 and so on.

Obviously, the above assumes that agents actually move
towards their next assigned tasks immediately after release.
For an agent a let A|a := {τ |A(τ) = a} be the set of all
tasks assigned to a, ordered with their index ascending as
before. For convenience let us write A|a = {τa1 , τa2 , . . . , τana

}
where na = |A|a|. At time t0 every agent a immediately
moves towards their first task τa1 = (la1 , d

a
1) following the

planner and needing T (a(t0), la1) time units and at every
subsequent release they move immediately towards the next

assigned task location. We can now formalize our main
problem:

Definition 2 (Minimal Assignment): Given a fixed T a
sequence of tasks τ1, . . . , τn and agents a1, . . . , ak let the
minimal assignment Amin be such that:

Amin = argminA{tn} (2)
To compute a task assignment A it is helpful to compress

the notation. Instead of the sequence of tasks we now con-
sider sets of tasks whose locations have to be reached before
another task is released. This is useful because between
releases we have a constant number of agents available and
a constant number of tasks that all have to reached before
new agents become available.

Let us write t̃0, t̃1, . . . , t̃ñ, for the times at which at least
one agent is released. At t̃0 all agents are free and can be
assigned to tasks. Write F̃0 = {1, . . . , k}, . . . , F̃ñ for the
set of free agents after the step completing at t̃i. Let T̃i
be all tasks that have an agent on their location at time t̃i,
i = 1, . . . , ñ.

This compressed notation gives us an immediate first
insight. Namely, to minimize the time difference t̃i − t̃i−1
we have to solve a Linear Bottleneck Assignment Problem
(LBAP) and match some agents from Fi−1 to the new tasks
T̃i \ T̃i−1, i = 1, . . . , ñ. The cost of an assignment between
a free agent a and a task τ = (l, d) is simply given by
the difference between t̃i−1 − tarrival where tarrival is the
earliest time, as determined by T , at which a can be at l,
i.e. tarrival = tlast + T (a(tlast), l) where tlast is the time
at which a became released and hence free. Using this we
can build a cost matrix c(a, τ) to capture the cost of each
possible assignment. Note that |Fi−1| ≥ |T̃i+1| and we have
to add an idle task τ0 so that the LBAP would assign some
robots to a dummy task τ0 that the agent simply ignores
when moving to the next location. From here on any LBAP
algorithm can be applied to minimize t̃i − t̃i−1 and for t̃i
this would give us the minimum possible value, given that
t̃i−1 was fixed. But this does not guarantee that tn = t̃n is
minimal and brings us directly to the main problem which
is best illustrated with the following example.

Suppose we have four agents a1, a2, a3 and a4 and
T̃1{τ1, τ2} with τ1 = {l1, 2}, τ2 = {l2, 4} and T̃2 = {τ3, τ4}
with τ3 = {l3, 4}, τ4 = {l4, 4}. Fig 6 shows the locations
of the agents and l1, . . . , l4 and two different assignments
for F̃0 on T̃1 that in turn allow different assignment for F1

onto T̃2. The assignments are also shown in fig. 7. It is easy
to see that an optimal solution to the LBAP for F̃0 on T̃1
leads to an overall worse solution. In colloquial terms, we
can sacrifice some time in an assignment at one step and
instead choosing to give an idle task to an agent that will
travel to its tasks for a subsequent assignment and thereby
improving it. This can lead to overall less time spent, i.e. a
smaller tn.

The dependency between subsequent assignments is due to
the fact that some robots can be assigned to tasks for future
steps if previous steps do not utilize all agents. If at every step
the number of tasks is equal to the number of agents, then the
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Fig. 6. Each part a)-d) shows four locations and agents. Part a) and b)
show one assignment in which agents a1 and a2 move to l1 and l2, the
optimal assignment to minimize t̃1. After t̃1 agent a2 is released and at this
point assigning a2 and a3 is the optimal assignment to minimize t̃2 given
that t̃1 is fixed. Part c) and d), however, show an assignment that leads to
a larger t̃1 but smaller t̃2.

repeated solving of the linear bottleneck assignment problem
(LBAP) will yield an optimal solution. Otherwise, from
a global perspective, the repeated computation of locally
optimal LBAP solution is a greedy algorithm.

Fig. 7 shows the assignment of agents to tasks in a familiar
manner for LBAP problems in the form of consecutive
bipartite graphs. Repeated assignment problems are also
known as multi-level assignment problems and one variant
that has some resemblance to our problem is presented in
[2]. Unfortunately it is NP − complete and we conjecture
that this may be the case for our minimal assignment as well.
A detailed exposition is, however, beyond the scope of this
paper and for our purposes the presented approach to solve
multiple LBAPs is sufficient and in Section VII we shall see
that this already leads to a significant improvement.
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Fig. 7. Two task assignments visualized as graphs that correspond to fig.
6. The agent assigned to τ1 has to remain there until release while τ2 can
be reassigned in the second level LBAP. The consecutive LBAP solution
for both levels shown on the left is, however, not optimal for t̃2.

VI. SYSTEM

Few of the prior work on searching for moving targets or
pursuit-evasion has ever been tested in real world applica-
tions, especially not in large and realistic environments. One
main obstacle is the integration of all aspects of the problem

from mapping up to the computation and coordinated execu-
tion of search strategies. In this section we describe a system
that integrates all solution to these problems presented here
and in previous work and guides searchers through a large
outdoor environment.

Using an annotated height map we constructed a graph
representation as described in Section IV-A but taking into
account additional obstructions for visibility due to cluttered
terrain. On this graph we computed a strategy, using the algo-
rithm presented in [8] and a corresponding task assignment
and schedule following the procedure described in Section
V. This schedule is then made available to all agents. For
our demonstration we used human agents equipped with
mobile devices (IPads) on which we programmed a custom
Objective-C application. All devices were communicating via
a 3G connection and all data was logged at a central location.
The interface of the application is shown in Fig. 8. All
searching agents had information about the instructions of
all other searching agents and their locations by exchanging
GPS data at two second intervals. The evading agents, i.e.
targets, were also given a device each to simulate a smart
evader. Only evading agents were able to see the location of
other evaders. When a searching agents saw an evader they
logged the encounter by touching the respective area inside
the map.

Agent Selection

Step Slider

Detection Set

Goal Location

Start Location

Suggested Path

Fig. 8. The IPad interface for all agents. Additionally each agents receives
location information on other searchers in the display and can monitor their
progress. Evading agents receive additional information about other evaders.

All agents received a warning signal if their GPS indicated
that they were close to terrain that was classified as not
traversable. Once agents reach their assigned location for
a step in the execution the system sends messages to other
agents informing them about the progression and their new
tasks. Fig. 9 shows the main parts of the system in an
overview.

VII. DEMONSTRATION AND RESULTS

Here we present our results from applying all of the above
to our test site Gascola. The height map of Gascola shown in



Task AssignmentGraph ConstructionHeight Map
Terrain Classification

Graph Strategies

Server Trajectory P lanning

v3v2v1

vy

e1 e2 e3

vx

λvx
(e)e a1

a2

a3

a4

t̃1 t̃2

τ1

τ2

τ0

τ0

τ3

τ4

τ1

τ0

a1

a2

a3

a4

t̃1 t̃2

τ1

τ2

τ0

τ0

τ3

τ4

τ1

τ0

1

1
4

5

0

0

0

0

0

2

2

0

1

1

Searchers in the field

GPS data

Next step

Target locations

Fig. 9. A high level overview of the system.

fig. 1 has a resolution of 1m per pixel. The entire area of the
site is approximately 700,000 m2. The lowest point in the
map is set to 0m elevation and the highest point is at 122m.
Gascola has a lot of seasonal shrubs and other vegetation
that influence visibility and movement of agents. We hence
surveyed the terrain a week prior to the deployment of the
agents and added the annotations seen in fig. 10. Collecting
detailled height maps is a considerable efforts and these
annotations allow us to accomodate short term changes in
the terrain.

Fig. 10. Our sample map of the Gascola area outside of Pittsburgh with
additional annotation. In green we see cluttered terrain, mostly shrubs and
debris, red are steep areas that are not traversable by our agents and black
areas not admissible and define the area of the search.

The hierarchical approach yields a significant reduction of
the graph complexity particularly on cluttered maps while
guaranteeing a full coverage of the terrain. On the Gascola
map the random sampling yielded in average 102 vertices
and 240 edges, whereas the hierarchical approach reduced
this amount in average to graphs with 62 vertices and 130
edges. The reduction had a positive impact on the number

of agents needed for the schedule. Solutions computed based
on randomly sampled graphs needed in average 13.9 ± 1.1
agents, whereas solutions based on hierarchical sampling
required in average 7.8± 0.2 agents. Note that results were
averaged over 100 experiments each. Finally, we selected a
graph and with a strategy requiring eight agents computed
on the graph shown in 11. The associated detection sets for
all vertices are also shown in fig. 11. These were uploaded
to the mobile devices so that agents can see what detection
sets they are responsible for.

Fig. 11.

We then computed the execution time using our proce-
dure from Section V yielding an assignment that takes 175
minutes to execute. In order to determine the impact of our
procedure on execution time we compared it to 10,000 ran-
dom assignments. These random assignments simply assign
free agents randomly to new tasks at each step. Here we get a
solutions with a mean execution time of 349.3056±34.0350
minutes and with a maximum at 491.6365 and minimum
at 236.4207. Hence the improvement is significant and can
safe our searchers in the field in Gascola a whole hour of
search time. Obviously, the problem deserves further study
and experimentation on more maps. It should also be noted
that instead of using an LBAP solution at each level we can
solve the general assignment problem and thereby minimize
the sum of all travel times instead of the maximum. This
could be useful for applications in which energy conservation
is more important and some of the execution time can
sacrificed.

All participants, eight searchers and two evaders, received
a 15 minute instruction on how to use the application.
The two evaders were given a head-start of another 15
minutes. They were instructed to make use of the available
information on all searchers as best as possible to try to
avoid being captured. Most agents were instantly able to
follow the suggested paths and reach their locations. Two
agents, however, had considerable difficulty at first to orient
themselves and each one got lost once causing a delay
of the execution but never leading to a breach between
the boundary of contaminated and cleared space. After the
first hour, however, all agents were comfortable following
the instructions as the execution proceeded further. The
experiment continued until the first IPads ran out of battery



power at which points all participants were recalled. The
searchers managed to execute two thirds of the entire strategy
during this time and catching every evader at least once.

Fig. 12 shows a snapshot of the GPS data during the
first half of the execution of the strategy. The purple evader
was caught three times by three different agents attempting
to move into the cleared areas undetected. The blue agent,
however, managed to run behind the area controlled by
one of the guards at the top of the map and successfully
breached the perimeter. The GPS log clearly shows that the
searcher in charge abandoned his area without instructions.
This issue illustrates the necessity for thoroughly instructing
the searchers when applying the system. The blue evader
was, however, subsequently detected by another agent.

The main conclusions to draw from this field demonstra-
tion is foremost the feasibility of such an integrated system.
Secondly, we observed that a team of human agents is by
no means a homogenous team. Each agent has different
walk speeds and capabilities in following the instructions.
Furthermore, also the environment despite a recent survey
had changed due to rainfall and some of the precomputed
paths were in fact blocked. This had no effect on the
guarantee of the strategy but did delay execution since new
paths had to be found by the affected searchers. These two
issues, heterogeneity and dynamic changes in the environ-
ment clearly outline problems for further study.
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Fig. 12. A snapshot of the GPS log from all searchers and evaders.

VIII. DISCUSSION AND CONCLUSION

In this paper we presented three primary contributions.
First we improved the graph construction from previous work
which now allows us to apply pursuit-evasion algorithms
to a large complex height map and obtain strategies that
use significantly fewer agents. Second, we defined and
provided a first algorithm for the problem of executing search
strategies by assigning individual search tasks to agents in
order to minimize the overall time needed to execute the
search. The difficulty of finding optimal solutions, however,
is an open problem and our algorithm only computes optimal
solutions under restricted conditions. Third, the reduction

in the number of agents and the minimization of execution
time allowed us to demonstrate the entire set of solutions in
one comprehensive system in a wide outdoor environment.
Despite the potential for even further improvements the
current setup is already feasible for helping teams of agents
to execute wide area searches as demonstrated by the field
test. To the best of our knowledge this is the first large-scale
demonstration of the application of a graph-based pursuit-
evasion problem.

Evidently, there are a number of issues that still need
to be addressed more thoroughly. First, the hierarchical
graph construction will need to be evaluated against other
constructions on more maps to determine its merit beyond
our Gascola map. Second, the computation of minimal as-
signments for the execution of search strategies needs further
study to determine its complexity and find either optimal
polynomial time algorithms or approximation algorithms
with performance bounds.

Furthermore, one of the main insights from our field
demonstration is that agent teams are never truly homoge-
nous, especially with human agents. Developing algorithms
that accomodate this fact is highly desirable. Another impor-
tant question relates to the fact that real environments and
searchers are dynamic. New observations or unanticipated
events such as an immobilized agent or a blocked path are
currently not dealt with. Hence it is desirable to extend
the presented work to such dynamic scenarios in which the
agents and observations about the environment interact with
the strategy and adapt it. Addressing these issues will bring
us closer to a feasible and viable systems that can have real
implications for large scale search in the real world.
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