
Wearable Computing meets Multiagent Systems: A
real-word interface for the RoboCupRescue simulation

platform

Alexander Kleiner
Institut für Informatik
Universität Freiburg

79110 Freiburg, Germany

kleiner@informatik.uni-
freiburg.de

Nils Behrens
Technologie-Zentrum

Informatik
Universität Bremen

28359 Bremen, Germany

psi@tzi.de

Holger Kenn
Technologie-Zentrum

Informatik
Universität Bremen

28359 Bremen, Germany

kenn@tzi.de

ABSTRACT
One big challenge in disaster response is to get an overview
over the degree of damage and to provide this information,
together with optimized plans for rescue missions, back to
teams in the field. Collapsing infrastructure, limited visibil-
ity due to smoke and dust, and overloaded communication
lines make it nearly impossible for rescue teams to report the
total situation consistently. This problem can only be solved
by efficiently integrating data of many observers into a single
consistent view. A Global Positioning System (GPS) device
in conjunction with a communication device, and sensors
or simple input methods for reporting observations, offer a
realistic chance to solve the data integration problem.

We propose preliminary results from a wearable computing
device, acquiring disaster relevant data, such as locations
of victims and blockades, and show the data integration
into the RoboCupRescue Simulation [8] platform, which is
a benchmark for MAS within the RoboCup competitions.
We show exemplarily how the data can consistently be in-
tegrated and how rescue missions can be optimized by so-
lutions developed on the RoboCupRescue simulation plat-
form. The preliminary results indicate that nowadays wear-
able computing technology combined with MAS technology
can serve as a powerful tool for Urban Search and Rescue
(USAR).

Keywords
Wearable Computing, GPS, Multi Agent Systems, MAS,
USAR, GIS, RoboCupRescue

1. INTRODUCTION
One big challenge in disaster response is to get an overview
over the degree of damage and to provide this information,
together with optimized plans for rescue missions, back to
teams in the field. Collapsing infrastructure, limited visibil-
ity due to smoke and dust, and overloaded communication
lines make it nearly impossible for rescue teams to report
the total situation consistently. Furthermore, they might be
affected psychologically or physically by the situation itself
and hence report unreliable information.

This problem can only be solved by efficiently integrating
data of many observers into a single consistent view. A

Global Positioning System (GPS) device in conjunction with
a communication device, and sensors or simple input meth-
ods for reporting observations, offer a realistic chance to
solve the data integration problem. Furthermore, an inte-
grated world model of the disaster allows to apply solutions
from the rich set of AI methods developed by the Multi-
Agent Systems (MAS) community.

We propose preliminary results from a wearable computing
device, acquiring disaster relevant data, such as locations
of victims and blockades, and show the data integration
into the RoboCupRescue Simulation [8] platform, which is
a benchmark for MAS within the RoboCup competitions.
Communication between wearable computing devices and
the server is carried out based on the open GPX protocol [21]
for GPS data exchange, which has been extended for addi-
tional information relevant to the rescue task. We show ex-
emplarily how the data can consistently be integrated and
how rescue missions can be optimized by solutions devel-
oped on the RoboCupRescue simulation platform. The pre-
liminary results indicate that nowadays wearable computing
technology combined with MAS technology can serve as a
powerful tool for Urban Search and Rescue (USAR).

RoboCupRescue simulation aims at simulating large-scale
disasters and exploring new ways for the autonomous coor-
dination of rescue teams [8] (see Figure 1). These goals lead
to challenges like the coordination of heterogeneous teams
with more than 30 agents, the exploration of a large-scale en-
vironment in order to localize victims, as well as the schedul-
ing of time-critical rescue missions. Moreover, the simulated
environment is highly dynamic and only partially observable
by a single agent. Agents have to plan and decide their ac-
tions asynchronously in real-time. Core problems are path
planning, coordinated fire fighting, and coordinated search
and rescue of victims. The solutions presented in this paper
are based on the OpenSource agent software [1], which was
developed by the ResQ Freiburg 2004 team [9], the winner of
RoboCup 2004. The advantage of interfacing RoboCupRes-
cue simulation with wearable computing is twofold: First,
data collected from a real interface allows to improve the
disaster simulation towards disaster reality. Second, agent
software developed within RoboCupRescue might be advan-
tageous in real disasters, since it can be tested in many sim-

Figure 1: A 3D visualization of the RoboCupRescue
model for the City of Kobe, Japan.

ulated disaster situations and can also directly be compared
to other approaches.

Nourbakhsh and colleagues utilized the MAS Retsina for
mixing real-world and simulation-based testing in the con-
text of Urban Search and Rescue [15]. Schurr and col-
leagues [17] introduced the DEFACTO system, which en-
ables agent-human cooperation and has been evaluated in
the fire-fighting domain with the RoboCupRescue simula-
tion package. Liao and colleagues presented a system that
is capable of recognizing the mode of transportation, i.e., by
bus or by car, and predicting common travel destinations,
such as the office location or home location, from data sam-
pled by a GPS device [12].

The remainder of this paper is structured as follows. We
present an interface between human rescue teams and the
rescue simulator in Section 2. In Section 3 we give some ex-
amples how approaches taken from MAS can be utilized for
data integration and rescue mission optimization. In Sec-
tion 4 we propose preliminary experiments from integrating
data into RoboCupRescue from a real device and conclude
in Section 5.

2. INTERFACING REAL RESCUE
2.1 Requirement analysis
In wearable computing, one main goal is to build devices
that support a user in the primary task with little or no
obstruction. Apart from the usual challenges of wearable
computing [20, 19], in the case of emergency response, the
situation of the responder is a stressful one. In order to
achieve primary task support and user acceptance, special
attention has to be given to user interface design. For this
application, the user needs the possibility to enter informa-
tion about perceptions and needs feedback from the sys-
tem 1. Furthermore, the user needs to receive task-related
instructions from the command center.

The implementation has to cope with multiple unreliable
communication systems such as existing cell phone net-
works, special-purpose ad-hoc communication and existing

1Technically, this feedback is actually not required by the
application, but we envision that it will improve user accep-
tance.

emergency response communication systems. As the anal-
ysis of the different properties of these communication sys-
tems is beyond the scope of this article, we will therefore
abstract from them and assume an unreliable IP-based con-
nectivity between the mobile device and a central command
post. This assumption is motivated by the fact that both
infrastructure-based mobile communication networks and
current ad-hoc communication systems can transport IP-
based user traffic.

For mobile devices, a number of localization techniques are
available today, for an overview see [6]. Although some
infrastructure-based communication networks are also ca-
pable of providing localization information of their mobile
terminals, we assume the presence of a GPS-based local-
ization device. The rationale behind this is that the local-
ization information provided by communication systems is
not very precise (e.g., sometimes limited to the identifica-
tion of the current cell, which may span several square kilo-
meters) and therefore not usable for our application. The
GPS system also has well-known problems in urban areas
and in buildings. But based on additional techniques such
as the ones stated in [11], its reliability and accuracy can
be sufficiently improved. Particularly the coexistence of a
GPS device with an Internet connection allows to utilize
Internet-based Differential GPS, which leads to a position-
ing accuracy of decimeters [2].

The situation of the device and its user is also characterized
by harsh environmental conditions related to the emergency
response, such as fire, smoke, floods, wind, chemical spillings
etc. The device has to remain operable under such condi-
tions, and moreover has to provide alternative means of in-
put and output under conditions that affect human sensing
and action abilities. As these requirements are quite com-
plex, we decided to design and implement a preliminary test
system and a final system. The components of the two sys-
tems and their interconnections can be found in Figure 4.

2.2 A preliminary test system
In order to analyze the properties of the communication and
localization systems, a preliminary test system has been im-
plemented, for which two requirements have been dropped,
the design for harsh envionmental conditions and the ability
to use alternative input and output.

The communication and localization system is independent
of the user requirements with the exception of the fact that
the system has to be portable. Therefore we chose a mobile
GPS receiver device and a GSM cell phone device as our
test implementation platform. The GPS receiver uses the
bluetooth [3] personal area network standard to connect to
the cell phone. The cell phone firmware includes a Java VM
based on the J2ME standard with JSR82 extensions, i.e.,
a Java application running on the VM can present its user
interface on the phone but can also directly communicate
with bluetooth devices in the local vicinity and with Internet
hosts via the GSM networks GPRS standard.

The implementation of the test application is straightfor-
ward: It regularly decodes the current geographic position
from the NMEA data stream provided by the GPS receiver
and sends this information to the (a priori configured) server

IP address of the central command center. The utilized
protocol between the cell phone and the command center
is based on the widely used GPX [21] standard for GPS
locations. Among other things, the protocol defines data
structures for tracks and waypoints. A track is a sequence of
locations with time stamps that has been visited with the
GPS device. A waypoint describes a single location of inter-
est, e.g., the peak of a mountain. We extended the protocol
in order to augment waypoint descriptions with information
specific to disaster situations. These extensions allow res-
cue teams to report the waypoint-relative locations of road
blockades, building fires, and victims. Currently, the wear-
able device automatically sends the user’s trajectory to the
command center, whereas perceptions can manually be en-
tered. A detailed description of the protocol extension can
be found in Appendix A.

2.3 Designing the full emergency response wear-
able system

In order to fulfill the additional requirements for robustness
and user interface, the full system will be based on additional
hard- and software. The system uses a wearable CPU core,
the so-called qbic belt-worn computer [4] (see Figure 3 (a)).
It is based on a ARM CPU running the Linux operating
system, has a bluetooth interface, and can be extended via
USB and RS232 interfaces. The wearable CPU core runs
the main application program. For localization, the same
mobile GPS receiver as in the test system is used, but can
be replaced by a non-bluetooth serial device for increased
reliability. For communication, the system can use multi-
ple communication channels whose already used GSM cell
phone can be one of those 2.

As already stated, the design of the user interface is a crucial
one for this application. Therefore, we envision a user input
device integrated in the clothing of the user, e.g., an arm-
mounted textile keyboard [13] and a wireless link of the key-
board to the belt computer. Such an interface has already
been designed for other applications such as aircraft cabin
operation [14] (see Figure 2). Due to the harsh environmen-

Figure 2: A textile keyboard for aircraft cabin op-
eration.

tal conditions, we plan two independent output devices for
information output and user feedback. A bluetooth head-
set device provides audible feedback for user input, and a
text-to-speech engine provides audible text output.

The second output device is a head-mounted display that
can be integrated into existing emergency response gear such

2As we assumed IP-based connectivity, flexible
infrastructure-independent transport mechanisms such
as MobileIP [16] can be used to improve reliability over
multiple independent and redundant communication links.

(a)

(b) (c)

Figure 3: The qbic belt-worn computer : (a) The belt
with CPU. (b) The head-mounted display. (c) Both
worn by the test person.

as firefighter helmets and masks (see Figure 3(b)). In appli-
cations where headgear is not commonly used, the output
can also be provided through a body-worn display device.

The application software driving the user interface is based
on the so-called WUI toolkit [22], which uses an abstract de-
scription to define user interface semantics independent of
the input and output devices used. The application code is
therefore independent of the devices available in a particular
instance of an implementation, i.e., with or without head-
mounted display. The WUI toolkit can also take context
information into account, such as the user’s current situa-
tion, in order to decide on which device and in what form
output and input are provided.

(a)

(b)

Figure 4: System diagrams: (a) test system based
on a GSM phone (b) full system design based on a
belt-worn wearable computer

3. MULTI AGENT SYSTEMS (MAS) FOR
URBAN SEARCH AND RESCUE (USAR)

3.1 Data integration
Generally, we assume that if communication is possible and
new GPS fixes are available, the wearable device of a rescue
team continuously reports the team’s trajectory as a track
message to the command center. Additionally, the rescue
team might provide information for specific locations, as for
example, indicating the successful exploration of a building,
the detection of a victim, and the detection of a blocked
road, by sending a waypoint message.

Based on an initial road map and on the information on
road blockage and the autonomously collected data on tra-
jectories traveled by the agents, the current system builds
up a connectivity graph indicating the connectivity of loca-
tions. The connectivity graph between a single location and
all other locations is constructed by the Dijkstra algorithm.
The connectivity between two neighboring locations, i.e., the
weight of the corresponding edge in the graph, depends on
the true distance, the amount of blockage, the number of
crossings, and the number of other agents known to travel
on the same route. In the worst case, the graph can be cal-
culated in O (m + nlog (n)), where n is the number of loca-
tions and m the number of connections between them. The
knowledge of the connectivity between locations allows the
system to recommend “safe” routes to rescue teams and to
optimize their target selection. The sequence in Figure 5(a)
shows the continuous update of the connectivity graph for a
building within the simulated City of Foligno. Note that the
graph has to be revised if new information on the connectiv-
ity between two locations is available, e.g if a new blockage
has been detected or an old blockage has been removed.

The search for victims of many rescue teams can only be
coordinated efficiently if the rescue teams share information
on the exploration. We assume that rescue teams report
when they have finished to explore a building and when
they have found a victim, by transmitting the according
message to the command center. The command center uti-
lizes this information to distribute rescue teams efficiently
among unexplored and reachable locations. The sequence
in Figure 5(b) shows an agent’s increasing knowledge on the
exploration status of the map over time. Victims (indicated
by green dots) and explored buildings (indicated by white
color) are jointly reported by all agents. Regions that are
marked by a yellow border indicate exploration targets rec-
ommended by the command center to the agent.

3.2 Rescue sequence optimization
Time is a critical issue during a real rescue operation. If
ambulance teams arrive at an accident site, such as a car
accident on a highway, it is common practice to optimize
the rescue sequence heuristically, i.e., to estimate the chance
of survival for each victim and to rescue urgent cases ear-
liest. During a large-scale disaster, such as an earthquake,
the efficient distribution of rescue teams is even more im-
portant since there are many more victims and usually an
insufficient number of rescue teams. Furthermore, the time
needed for rescuing a group of victims might significantly
vary, depending on the collapsed building structures trap-
ping the victims.

In RoboCupRescue, victims are simulated by the three vari-
ables damage, health and buridness, expressing an individ-

(a) (b)

Figure 5: Online data integration of information re-
ported by simulated agents: (a) The connectivity
between the blue building and other locations in-
creases over time due to removed blockades. White
colored locations are unreachable, red colored loca-
tions are reachable. The brighter the red color, the
better the location is reachable. (b) The agent’s
information on the explored roads and buildings
(green roads are known to be passable, green and
white buildings are known as explored). Regions
marked with a yellow border are exploration targets
recommended by the command center.

ual’s damage due to fire or debris, the current health that
continuously decreases depending on damage, and the diffi-
culty of rescuing the victim, respectively. The challenge here
is to predict an upper bound on the time necessary to res-
cue a victim and a lower bound on the time the victim will
survive. In the simulation environment these predictions are
carried out based on classifiers which were induced by ma-
chine learning techniques from a large amount of simulation
runs. The time for rescuing civilians is approximated by a
linear regression based on the buridness of a civilian and the
number of ambulance teams that are dispatched to the res-
cue. Travel costs towards a target are directly taken from
the connectivity graph. Travel costs between two reachable
targets are estimated by continuously averaging costs expe-
rienced by the agents 3.

We assume that in a real scenario expert knowledge can
be acquired for giving rough estimates on these predictions,
i.e., rescue teams estimate whether the removal of debris
needs minutes or hours. Note that in a real disaster sit-
uation the system can sample the approximate travel time
between any two locations by analyzing the GPS trajectories
received from rescue teams in the field. Moreover, the sys-

3Note that the consideration of specific travel costs between
targets would make the problem unnecessarily complex.

tem can provide for different means of transport, e.g., car or
by feet, the expected travel time between two locations. The
successful recognition of the means of transport from GPS
trajectories was already shown by Liao and colleagues [12].

30

35

40

45

50

55

60

65

70

0 1 2 3 4 5 6 7 8 9

C

iv
ili

an
s

KobeEasy KobeHard KobeMedium KobeVeryHard RandomMapFinal VCEasy VCFinal VCVeryHard

Greedy-Heuristic
Genetic Algorithm

Figure 6: The number of civilian suvivors if applying
a greedy rescue strategy and a GA optimized rescue
strategy within simulated cities

If the time needed for rescuing civilians and the chance of
survival of civilians is roughly predictable, one can estimate
the overall number of survivors by summing up the necessary
time for each single rescue and by determining the overall
number of survivors within the total time. For each rescue
sequence S = 〈t1, t2, ..., tn〉 of n rescue targets, a utility U(S)
that is equal to the number of civilians that are expected to
survive is calculated. Unfortunately, an exhaustive search
over all n! possible rescue sequences is intractable. A good
heuristic solution is to sort the list of targets according to
the time necessary to reach and rescue them and to subse-
quently rescue targets from the top of the list. However, as
shown in Figure 6, this might lead to poor solutions. A bet-
ter method could be the so-called Hungarian Method [10],
which optimizes the costs for assigning n workers to m tasks
in O

`

mn2
´

. The method requires that the time needed un-
til a task is finished does not influence the overall outcome.
However, this is not the case for a rescue task, since a vic-
tim will die if rescued too late. Hence, we decided to uti-
lize a Genetic Algorithm [7] (GA) for the optimization of
sequences and to utilize it for continuously improving the
rescue sequence executed by the ambulance teams.

The GA is initialized with heuristic solutions, for example,
solutions that greedily prefer targets that can be rescued
within a short time or urgent targets that have only little
chance of survival. The fitness function of solutions is set
equal to the sequence utility U(S). In order to guarantee
that solutions in the genetic pool are at least as good as the
heuristic solutions, the so-called elitism mechanism, which
forces the permanent existence of the best found solution in
the pool, has been used. Furthermore, we utilized a simple
one-point-crossover strategy, a uniform mutation probability
of p ≈ 1/n, and a population size of 10. Within each minute,
approximately 300, 000 solutions can be calculated on a 1.0
GHz Pentium4 computer.

We tested the GA-based sequence optimization on different

city maps in the simulation and compared the result with a
greedy strategy. As can be seen in Figure 6, in each of the
tested environments, sequence optimization improved the
performance of the rescue team. One important property
of our implementation is that it can be considered as an
anytime algorithm: The method provides at least a solution
that is as good as the greedy solution, but also a better one,
depending on the given amount of time.

4. PRELIMINARY EXPERIMENTS
The system has preliminary been tested by successively in-
tegrating data received from a test person. The test person
equipped with the test device described in Section 2 walked
several tracks within a district of the City of Bremen (see
Figure 7). During the experiment, the mobile device con-
tinuously transmitted the trajectory of the test person. Ad-
ditionally, the test person reported victim found waypoints
after having visual contact with a victim. Note that vic-
tim waypoints were selected arbitrarily, since fortunately no
victims were found in Bremen.

In order to integrate the data into the rescue system, the
received data, encoded by the extended GPX protocol that
represents location by latitude and longitude, has to be con-
verted into a grid-based representation. We utilized the Uni-
versal Transverse Mercator (UTM) [18] projection system,
which provides a zone for any location on the surface of the
Earth, whereas coordinates are described relatively to this
zone. By calibrating maps from the rescue system to the
point of origin of the UTM coordinate system, locations from
the GPS device can directly be mapped. In order to cope
with erroneous data, we decided to simply ignore outliers,
i.e. locations far from the track, that were detected based on
assumptions made on the test person’s maximal velocity. In
the next version of the system it is planned to detect outliers
based on the mahanalobis distance estimated by a Kalman
Filter, likewise as dead reckoning methods used in the con-
text of autonomous mobile robots. Figure 7(b) shows the
successive integration of the received data into the rescue
system and Figure 7(a) displays the same data plotted by
GoogleEarth. Note that GPX data can be directly processed
by GoogleEarth without any conversion.

5. CONCLUSION
We introduced the preliminary design of a wearable de-
vice which can be utilized for USAR. Furthermore we have
demonstrated a system which is generally capable of inte-
grating trajectories and observations from many of these
wearable devices into a consistent world model. As shown by
the results of the simulation, the consistent world model al-
lows the system to coordinate exploration by directing teams
to globally unexplored regions as well as to optimize their
plans based on the sampled connectivity of roads, and to
optimize the sequence of rescuing victims. The application
of this coordination also in real scenarios, i.e., to send the
road graph and mission commands back to the wearable de-
vices of real rescue teams in the field, will be a part of future
work.

As we can see from our experiments, the accuracy of the
GPS locations suffices for mapping trajectories on a given
road graph. However, during a real disaster, a city’s infras-
tructure might change completely, i.e., former roads might

(a) (b)

Figure 7: Successive integration of data reported by a test person equipped with a wearable device. (a) The
real trajectory and observations of victims plotted with GoogleEarth (victims are labeled with “civFound”).
(b) The same data integrated into the rescue system (green roads are known to be passable, white buildings
are known as explored, and green dots indicate observed victims).

be impassable or disappear at all, and people search for new
connections between places (e.g., off-road or even through
buildings). Therefore, it is necessary that the system is ca-
pable of learning new connections between places and to
modify the existing graph accordingly. Brüntrup and col-
leagues already studied the problem of map generation from
GPS traces [5]. Our future work will particularly deal with
the problem of learning from multiple noisy routes. We
will extend the existing rescue system with the capability of
adding new connections to the road graph and to augment
these connections with the estimated travel time, sampled
from the observed trajectories.

Furthermore we are investigating methods of visual odome-
try for estimating the trajectories of humans walking within
buildings, or more general, in situations where no GPS lo-
calization is possible. We are confident that this odometry
data together with partial GPS localization will suffice to
integrate an accurate map of the disaster area, including
routes leading through buildings and debris.

Finally, it would be interesting to compare the system with
conventional methods that are used in emergency response
nowadays. This could be achieved by comparing the ef-
ficiency of two groups of rescue teams exploring buildings
within an unknown area, whereas one group is coordinated
by conventional radio communication and the other group
by our system via wearable devices.

6. REFERENCES
[1] Resq freiburg 2004 source code. Available on:

http://gkiweb.informatik.uni-freiburg.de/

~rescue/sim04/source/resq.tgz. release September,
2004.

[2] Satellitenpositionierungsdienst der deutschen
landesvermessung sapos. Available on:
http://www.sapos.de/.

[3] The ieee standard 802.15.1 : Wireless personal area
network standard based on the bluetooth v1.1
foundation specifications, 2002.

[4] O. Amft, M. Lauffer, S. Ossevoort, F. Macaluso,
P. Lukowicz, and G. Tröster. Design of the QBIC
wearable computing platform. In 15th International
Conference on Application-Specific Systems,
Architectures and Processors (ASAP ’04), Galveston,
Texas, September 2004.

[5] R. Bruentrup, S. Edelkamp, S. Jabbar, and B. Scholz.
Incremental map generation with gps traces. In
International IEEE Conference on Intelligent
Transportation Systems (ITSC), Vienna, Austria,
2005.

[6] M. Hazas, J. Scott, and J. Krumm. Location-aware
computing comes of age. IEEE Computer,
37(2):95–97, February 2004.

[7] J. H. Holland. Adaption in Natural and Artificial
Systems. University of Michigan Press, 1975.

[8] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara,
T. Takahashi, A. Shinjou, and S. Shimada. RoboCup

Rescue: Search and rescue in large-scale disasters as a
domain for autonomous agents research. In IEEE
Conf. on Man, Systems, and Cybernetics(SMC-99),
1999.

[9] A. Kleiner, M. Brenner, T. Braeuer, C. Dornhege,
M. Goebelbecker, M. Luber, J. Prediger, J. Stueckler,
and B. Nebel. Successful search and rescue in
simulated disaster areas. In In Proc. of the
International RoboCup Symposium ’05, 2005.

[10] H. W. Kuhn. The hungarian method for the
assignment problem. Naval Research Logistics
Quaterly, 2:83–97, 1955.

[11] Q. Ladetto, B. Merminod, P. Terrirt, and Y. Schutz.
On foot navigation: When gps alone is not enough.
Journal of Navigation, 53(02):279–285, Mai 2000.

[12] L. Liao, D. Fox, and H. A. Kautz. Learning and
inferring transportation routines. In AAAI, pages
348–353, 2004.

[13] U. Möhring, S. Gimpel, A. Neudeck, W. Scheibner,
and D. Zschenderlein. Conductive, sensorial and
luminiscent features in textile structures. In H. Kenn,
U. Glotzbach, O. Herzog (eds.) : The Smart Glove
Workshop, TZI Report, 2005.

[14] T. Nicolai, T. Sindt, H. Kenn, and H. Witt. Case
study of wearable computing for aircraft maintenance.
In Otthein Herzog, Michael Lawo, Paul Lukowicz and
Julian Randall (eds.), 2nd International Forum on
Applied Wearable Computing (IFAWC), pages
97–110,. VDE Verlag, March 2005.

[15] I. Nourbakhsh, K. Sycara, M. Koes, M. Yong,
M. Lewis, and S. Burion. Human-robot teaming for
search and rescue. IEEE Pervasive Computing: Mobile
and Ubiquitous Systems, pages 72–78, January 2005.

[16] C. Perkins. Ip mobility support for ipv4. RFC, August
2002.

[17] N. Schurr, J. Marecki, P. Scerri, J. P. Lewi, and
M. Tambe. The defacto system: Coordinating
human-agent teams for the future of disaster response.
Programming Multiagent Systems, 2005.

[18] J. P. Snyder. Map Projections - A Working Manual.
U.S. Geological Survey Professional Paper 1395.
United States Government Printing Office,
Washington, D.C., 1987.

[19] T. Starner. The challenges of wearable computing:
Part 1. IEEE Micro, 21(4):44–52, 2001.

[20] T. Starner. The challenges of wearable computing:
Part 2. IEEE Micro, 21(4):54–67, 2001.

[21] TopoGrafix. Gpx - the gps exchange format. Available
on: http://www.topografix.com/gpx.asp. release
August, 9th 2004.

[22] H. Witt, T. Nicolai, and H. Kenn. Designing a
wearable user interface for hands-free interaction ind
maintenance applications. In PerCom 2006 - Fourth
Annual IEEE International Conference on Pervasive
Computer and Communication, 2006.

APPENDIX
A. COMMUNICATION PROTOCOL
<xsd:complexType name="RescueWaypoint">

<xsd:annotation><xsd:documentation>

This type describes an extension of GPX 1.1 waypoints.

Waypoints within the disaster area can be augmented

with additional information, such as observations of fires,

blockades and victims.

</xsd:documentation></xsd:annotation>

<xsd:sequence>

<xsd:element name="Agent"

type="RescueAgent_t" minOccurs="0" maxOccurs="1" />

<xsd:element name="Fire"

type="RescueFire_t" minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="Blockade"

type="RescueBlockade_t" minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="VictimSoundEvidence"

type="RescueVictimSoundEvidence_t" minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="Victim"

type="RescueVictim_t" minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="Exploration"

type="RescueExploration_t" minOccurs="0" maxOccurs="1" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="RescueVictim_t">

<xsd:annotation><xsd:documentation>

This type describes information on a victim

relatively to the waypoint.

</xsd:documentation></xsd:annotation>

<xsd:sequence>

<xsd:element name="VictimDescription"

type="xsd:string" "minOccurs="0" maxOccurs="1"/>

<xsd:element name="VictimSurvivalTime"

type="xsd:integer" "minOccurs="0" maxOccurs="1"/>

<xsd:element name="VictimRescueTime"

type="xsd:integer" "minOccurs="0" maxOccurs="1"/>

<xsd:element name="VictimProximity"

type="Meters_t" minOccurs="0" maxOccurs="1"/>

<xsd:element name="VictimBearing"

type="Degree_t" minOccurs="0" maxOccurs="1"/>

<xsd:element name="VictimDepth"

type="Meters_t" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="RescueFire_t">

<xsd:annotation><xsd:documentation>

This type describes the observation of fire

relatively to the waypoint.

</xsd:documentation></xsd:annotation>

<xsd:sequence>

<xsd:element name="FireDescription"

type="xsd:string" "minOccurs="0" maxOccurs="1"/>

<xsd:element name="FireProximity"

type="Meters_t" minOccurs="0" maxOccurs="1"/>

<xsd:element name="FireBearing"

type="Degree_t" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="RescueBlockage_t">

<xsd:annotation><xsd:documentation>

This type describes detected road blockages

relatively to the waypoint.

</xsd:documentation></xsd:annotation>

<xsd:sequence>

<xsd:element name="BlockageDescription"

type="xsd:string" "minOccurs="0" maxOccurs="1"/>

<xsd:element name="BlockageProximity"

type="Meters_t" minOccurs="0" maxOccurs="1"/>

<xsd:element name="BlockageBearing"

type="Degree_t" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="RescueVictimSoundEvidence_t">

<xsd:annotation><xsd:documentation>

This type describes evidence on hearing a victim

relatively to the waypoint.

</xsd:documentation></xsd:annotation>

<xsd:sequence>

<xsd:element name="VictimEvidenceRadius"

type="Meters_t" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="RescueExploration_t">

<xsd:annotation><xsd:documentation>

This type describes the area that has been exploration

around the waypoint.

</xsd:documentation></xsd:annotation>

<xsd:sequence>

<xsd:element name="ExploredRadius"

type="Meters_t" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="RescueAgent_t">

<xsd:annotation><xsd:documentation>

This type describes the observant agent.

</xsd:documentation></xsd:annotation>

<xsd:sequence>

<xsd:element name="AgentName"

type="xsd:string" "minOccurs="0" maxOccurs="1"/>

<xsd:element name="AgentTeam"

type="xsd:string" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="Meters_t">

<xsd:annotation><xsd:documentation>

This type contains a distance value measured in meters.

</xsd:documentation></xsd:annotation>

<xsd:restriction base="xsd:integer"/>

</xsd:simpleType>

<xsd:simpleType name="Degree_t">

<xsd:annotation><xsd:documentation>

This type contains a bearing value measured in degree.

</xsd:documentation></xsd:annotation>

<xsd:restriction base="xsd:integer"/>

</xsd:simpleType>

