
1

An Automatic Decomposition Method for
Qualitative Spatial and Temporal Reasoning

Julien Hué and Matthias Westphal and Stefan Wölfl
Institut für Informatik

Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 52
79110 Freiburg, Germany

{hue,westpham,woelfl}@informatik.uni-freiburg.de

Abstract—Qualitative spatial and temporal reasoning is a
research field that studies relational, constraint-based formalisms
for representing, and reasoning about, spatial and temporal
information. The standard approach for checking consistency is
based on an exhaustive representation of possible configurations
between three entities, the so-called composition tables. These
tables, however, encode semantic background knowledge in a
redundant way, which becomes a size and efficiency issue, when
the composition table needs to be grounded as done in SAT
encodings of problem instances. In this paper, we present a
new framework that allows for decomposing composition tables
into logically simpler parts, while preserving logical equivalence,
e.g., the decomposition in start- and end-points for Allen’s
Interval Calculus. We show that finding such decompositions
is an NP-complete problem and present a SAT-based method to
generate decompositions. Finally, we discuss the impact of our
decomposition method on SAT encodings of problem instances,
and present a reasoning system built on decompositions that
compares favorably with state-of-the-art solvers.

I. INTRODUCTION

Qualitative spatial and temporal reasoning (QSTR) deals
with knowledge representation formalisms that are close to
human conceptualizations of space and time. Since spatial
and temporal aspects are usually concerned with infinite,
continuous domains, the key idea in QSTR is to only reason
about qualitative descriptions of entity configurations, i.e., one
employs relational schemas that allow for describing such
configurations via an abstraction from concrete numerical
data. On the symbolic level, relations between entities are
represented by using a fixed, finite vocabulary of qualitative
terms, such as “to the left of” or “in front of”. Examples of
such qualitative formalisms include the Point Algebra [23],
Allen’s Interval Algebra [1], and several Region Connection
Calculi [19], [8].

The common approach in QSTR is to study constraint
satisfaction problems over languages that use such qualitative
relations in order to express (spatial or temporal) constraints
between entities. Semantic background knowledge on the
considered domain is recorded in so-called composition tables,
which from a logical point of view can be regarded as
inference rules. More precisely, composition tables encode
knowledge about possible configurations between three entities
in a form close to transitivity rules. For example, if x happened
before y and y happened at the same time as z, then x must

have happened before z as well. Since composition rules only
restrict relations between three entities, one can apply them
to all triples of variables in a qualitative problem instance
in a way that is similar to the path consistency algorithm
known in the context of constraint satisfaction problems on
finite domains, i.e., these rules are used to refine relations
that might hold between the considered entities. For a more
comprehensive and detailed introduction we refer to [21].

Composition rules as listed in a composition table can
therefore be directly applied in other logic programming
paradigms, e.g., in boolean satisfiability (SAT) or Answer Set
Programming (ASP). However, we need to restrict relations
between all triples of entities, and this can often only be
achieved by explicitly repeating rules from the composition
table. Representing composition directly in propositional logic
thus results in high space requirements (e.g., when using SAT
encodings of qualitative constraint satisfaction problems [24]).
One way to tackle this issue is to decompose the problem
into smaller networks by using a divide-and-conquer method
as presented in [13]. A drawback of this method is that
it is dependent on the actual structure of the network. A
complementary and more general idea would be to exploit
underlying structures of a qualitative representation to replace
the composition table with a smaller, simpler, but semantically
equivalent rule set. Examples of this approach can be found
throughout the field of qualitative reasoning such as the
representation of Allen’s Interval Algebra and its composition
rules based on start and endpoints of intervals [16], [17].

In this paper, we present a novel method to automatically
derive such representations from any composition table. The
core idea is to decompose the symbolic qualitative represen-
tation into simpler relations and then the composition table
into axioms (which we call compositional inferences) over
these new relations. We here compute this decomposition
based on a SAT program whose output provides the definition
of a new representation and the corresponding compositional
inferences. Furthermore, we present a new SAT encoding of
the constraint satisfaction problem based on decompositions
which compares favorably with the known encodings such as
the one presented in [17]. We also implemented a prototype
solver based on the decompositions provided. This implemen-
tation shows a good behavior when compared to the state-of-
the-art solver GQR [10].

2

The paper is organized as follows. After a reminder about
notation and basic concepts in QSTR, we provide formal
definitions of the representation of a qualitative calculus and
its decomposition. We then study the complexity of finding
decompositions and introduce a SAT program which can
compute decompositions. Then, we present decompositions
of several qualitative calculi that we have obtained with our
method, explain the new encoding proposal and the prototype
implementation of our new solver, and report on the experi-
mental results of our comparison.

II. BACKGROUND

We briefly recall basic concepts used in qualitative con-
straint satisfaction.

Given a finite set of m variables V = {v1, . . . , vm}
and a domain D, an n-ary constraint consists of an n-ary
relation Ri ⊆ Dn and an n-tuple of variables from V written
as Ri(vi1 , . . . , vin). An assignment f is a partial function
from the set of variables V to the set of values D. An
assignment f is said to satisfy a constraint Ri(vi1 , . . . , vin)
iff 〈f(vi1), . . . , f(vin)〉 ∈ Ri. A constraint network is a tuple
〈V,D,Θ〉 where V is a set of variables, D the domain, and Θ
a set of constraints defined on D. The satisfiability problem
is to find a solution of a given constraint network, i.e., an
assignment of all variables to values such that all constraints
in Θ are satisfied.

In QSTR, knowledge is usually represented as constraint
networks, where the relations in constraints express knowledge
about objects from an infinite domain. In the context of
temporal reasoning, for example, we can assume D to be
the set of rational numbers Q, and represent that a happened
before b by posing a constraint < (a, b) where < represents the
smaller relation on Q2. Since the domain is infinite, we cannot
express the relation as a table of valid tuples and instead we
are required to introduce a symbolic representation scheme.

Definition 1 ([15]). Let D be a non-empty domain. A partition
scheme is a partition of D2 into a finite family B of non-
empty binary relations (called base or atomic relations) on
D such that B contains the identity relation on D2 and is
closed under converses (i.e., ∀B ∈ B : ∃B′ ∈ B : B′ =
{(x2, x1) | (x1, x2) ∈ B}).

Moreover, qualitative information is often imprecise in the
sense that we do not know exactly which base relation holds.
That is, we want to express constraints of the form Bi1(x, y)∨
· · · ∨Bik(x, y).

Definition 2. Given a partition scheme B, a qualitative con-
straint network is a constraint network 〈V,D,Θ〉, where Θ
only contains constraints on binary relations that are unions
of base relations from B.

To reason and refine such disjunctions, we consider the
natural Boolean algebra defined on 2B (i.e., the elements of
B can be conceived of as the atoms of this Boolean algebra
with intersection, union, and complement as operations). On
top of this Boolean algebra one can define a relation algebra-
like structure if one adds a converse operation (the converse

of a set of base relations is defined simply as the set of the
converses of the base relations) and a composition operation
that approximates the set-theoretical composition of binary
relations by relations from the partition scheme. That is,
we define B ◦ B′ := {B′′ ∈ B | ∃x1, x2, x3 ∈ D :
B′′(x1, x3) ∧ B(x1, x2) ∧ B′(x2, x3)} and then extend this
operation ◦ : B × B → 2B to an operation ◦ : 2B × 2B → 2B,
by setting R ◦R′ :=

⋃
B∈R,B′∈R′ B ◦B′.

Since this relation-algebraic structure is determined by the
set of base relations as well as the converse and composi-
tion functions defined for base relations (these functions are
typically presented as tables), the tuple C = (B, ◦, ·`) is
sufficient to specify a set of inference rules, which is usually
referred to as a qualitative calculus. For example, an entry
B1 ◦B2 = {B′1, . . . , B′k} of the composition table can be read
as the (universally quantified) rule B1(v1, v2)∧B2(v2, v3)→
B′1(v1, v3) ∨ · · · ∨B′k(v1, v3).

We will assume that qualitative constraint networks are
normalized in that Θ contains exactly one constraint for each
pair of variables vi, vj with i < j. Note that 2B is closed under
intersection and converse, and that the universal relation can
be simply expressed by the union of all base relations.

In general, the problem of deciding whether a qualitative
constraint networks is satisfiable is undecidable [12]. Contrary
to that, the problem of deciding whether a qualitative con-
straint network is consistent, is in NP. Note that consistency
here refers to the set of inference rules of the qualitative cal-
culus at hand. More precisely, a qualitative constraint network
〈V,D,Θ〉 is said to be inconsistent if there exist variables
v1, v2 ∈ V such that a constraint with the empty relation
∅(v1, v2) can be derived from the network. This can be restated
as in the following definition. An atomic refinement Θ′ of a
(normalized) constraint network Θ is a constraint network such
that ∀Ri(vi1 , vi2) ∈ Θ ∃Bi(vi1 , vi2) ∈ Θ′ : Bi ⊆ Ri

Definition 3. A qualitative constraint network 〈V,D,Θ〉 is
consistent iff (i) there exists an atomic refinement Θ′ of
the (normalized) constraints Θ, and (ii) Θ′ is closed under
composition: ∀R(vi1 , vi3), R′(vi1 , vi2), R′′(vi2 , vi3) ∈ Θ′ :
R ⊆ R′ ◦R′′.

As every relation is a union of base relations, this decision
problem is approached by searching an atomic refinement of
every relation while applying composition to every triple of
variables as a constraint propagation method. We can think of
this as a finite constraint network on the domain D′ = B, with
variables V ′ = { (vi, vj) ∈ V2 | i < j }, and a constraint set
Θ′ = {R◦

(
(vi, vk), (vi, vj), (vj , vk)

)
| 1 ≤ i < j < k ≤ |V|},

where R◦ = { (B3, B1, B2) | B3 ∈ (B1 ◦ B2) } ⊆ B3
enforces inference through the composition function. Elements
of this relation are called composition triads [14]. With this
formulation, typical qualitative reasoners establish generalized
arc consistency during search (for details see, e.g., [6], [24]).
For the remainder of this paper we will only discuss the
consistency problem.

An important family of qualitative calculi is the Region
Connection Calculi (RCC) which comprises different for-
malisms for reasoning about topological relations between
spatially extended objects (called regions) [19], [18], [7]. The

3

◦ DR(b, c) PO(b, c) EQ(b, c) PP(b, c) PC (b, c)
DR(a, b) ∗ DR PO DR DR PO DR

PP PP
PO(a, b) DR PO ∗ PO PO PP DR PO

PC PC
EQ(a, b) DR PO EQ PP PC
PP(a, b) DR DR PO PP PP ∗

PP
PC (a, b) DR PO PC PC PO EQ PC

PO PC PP PC

Fig. 1. The composition table of RCC5.

theory of Region Connection Calculi is built on a binary
connectedness predicate and can be cast as a first-order theory.
Different fragments can be obtained depending on further
distinctions being made (e.g., distinctions between interior,
bounding points, or the convex hull of regions). Regions are
typically interpreted as regular open (or regular closed) sets
of a topological space, and we do so here as well, when we
illustrate regions by simple regions in R2.

1) RCC5: The simplest of the RCC is RCC5 [2] which
deals with relations that can be defined in terms of parthood
of simple regions or closed disks. The language of RCC5
contains five binary relations B = {DR,EQ ,PO ,PP ,PC}
with the following interpretation: DR(a, b) means that a and
b are completely disconnected; EQ(a, b) means that a and b
are identical; PO(a, b) means that a and b partially overlap;
PP(a, b) means that a is a proper part of b; PC (a, b) means
that b is a proper part of a. The composition table for RCC5
can be seen in Figure 1.

Beside its definition thanks to the composition table, RCC5
can also be defined by a translation into predicate logic
given in [19]. For this, let C(a, b) be a formula representing
connectedness meaning that a and b share a common point.
In particular, C(a, b) respects symmetry and reflexivity. For
convenience, we denote by P (a, b) the fact that a is a
part of b. Formally, P (a, b) := ∀z, C(z, a) → C(z, b) and
Pi(a, b) := P (b, a) The different relations between objects of
space can be defined by:

• DR(a, b) iff ¬P (a, b) ∧ ¬Pi(a, b) ∧ ¬C(a, b);
• PP(a, b) iff P (a, b) ∧ ¬Pi(a, b) ∧ C(a, b);
• PC (a, b) iff ¬P (a, b) ∧ Pi(a, b) ∧ C(a, b);
• PO(a, b) iff ¬P (a, b) ∧ ¬Pi(a, b) ∧ C(a, b);
• EQ(a, b) iff P (a, b) ∧ Pi(a, b) ∧ C(a, b).

2) RCC8: When considering the border of regions, we can
split DR into DC (DisConnected) and EC (Externally Con-
nected), PP into TPP (Tangential Proper Part) and NTPP
(Non-Tangential Proper Part), and the converse relation PC
into TPPI and NTPPI . Formally, one can describe these 8
relations of RCC8 as in [21]: EQ(a, b) iff P (a, b) ∧ P (b, a);
DC (a, b) iff ¬C(a, b); EC (a, b) iff C(a, b) ∧ ¬∃z(P (z, a) ∧
P (z, b)); PO(a, b) iff ¬P (a, b) ∧ ¬P (b, a) ∧ ¬∃z(P (z, a) ∧
P (z, b)); TPP(a, b) iff PP(a, b)∧ ∃z(EC (z, a)∧EC (z, b));
NTPP(a, b) iff PP(a, b) ∧ ¬TPP (a, b); TPPI (a, b) iff
TPP(b, a) and NTPPI (a, b) iff NTPP(b, a) where PP(a, b)
is described as P (a, b) ∧ ¬P (b, a).

III. DECOMPOSITION OF QUALITATIVE CALCULI

The introduced representations of RCC5 and RCC8 were
directly stemming from their definition. As less inference rules
lead to faster reasoning we naturally should ask the questions:
Are these the smallest possible representations? And how can
we obtain compositional inferences with such representations?
In the following we treat base relations as predicates between
two variables. The key idea we pursue is to rewrite base
relation in a different predicate scheme with correct inference
rules. For this we identify a new set of binary predicates
A s.t. every base relation predicate can be represented by
a conjunction of (possibly negated) predicates from A. In a
second step, the task is to generate a set of inference rules
over A which is equivalent to the composition table.

A. Representations, Inferences, and Decompositions

In the following we assume that we are given a fixed
qualitative calculus C = 〈B, ◦, ·`〉 with base relations B
and a set of binary predicates A = {A1, . . . , An}. Within
our framework, the decomposition of a qualitative calculus
is represented by a set of rules which write base relation
predicates as conjunctions of predicates from A with negation,
and a set of compositional inferences based on this new
representation that replicates the composition table. For the
first part, we define a representation of base relations over A.
We denote as Li(a, b) either Ai(a, b) or ¬Ai(a, b) for some
Ai ∈ A.

Definition 4. A representation TB of a base relation B ∈ B
is a conjunction TB(a, b) :=

∧n
i=1 L

i
B(a, b).

We are only interested in representing all base relations in
a way that allows us to distinguish them. In such cases, we
consider a representation to be valid.

Definition 5. Let TB(a, b) be a representation of B for each
base relation. A valid representation of all base relations is a
set T = {TB | B ∈ B}, s.t. there is no TB1 , TB2 ∈ T where
B1 6= B2 and ∀1 ≤ i ≤ n,Li

B1
= Li

B2
.

Example 1. We illustrate the notion of representation with
the Point Algebra. The base relations of the Point Algebra
are B = {<,=, >}. They can be represented with predicates
A = {A1, A2} where T = {T< := A1 ∧ ¬A2, T> := ¬A1 ∧
A2, T= := A1 ∧A2}

To add reasoning capabilities, we further need inference
rules that mimic the information of the composition table. We
use compositional inferences for this purpose.

Definition 6. A compositional inference is a logic statement
of the form ∀a, b, c ∈ V, Li1(a, b)∧Li2(b, c)→ Li3(a, c) with
i1, i2, i3 ∈ {1, . . . , n}.

Compositional inferences are used to rule out impossible
configurations of three objects. It could have been written as
a set of nogoods, i.e., Li1(a, b) ∧ Li2(b, c) ∧ Li3(a, c), which
would have been logically equivalent but there would have
been a loss of efficiency in the computation (a nogood would
be equivalent to 6 compositional inferences and minimal

4

decompositions are not always of size which are multiple of
6).

For some predicate schemes A we will not find a valid
representation. Further, for some we can find a valid represen-
tation, but no suitable set of compositional inferences. Here
we are only interested in obtaining representation with sets of
compositional inferences that are equivalent to the composition
table.

Definition 7. Let T be a valid base relation representation.
A set of compositional inferences N is: (i) sound, if for any
Li1(a, b)∧Li2(b, c)→ Li3(a, c) ∈ N there is no composition
triad (B3, B1, B2) with conjuncts Li1 in TB1 , Li2 in TB2 and
¬Li3 in TB3 ; (ii) complete, if for any triple (B3, B1, B2) that
is not a composition triad, there are conjuncts Li1 in TB1

, Li2

in TB2
and ¬Li3 in TB3

, s.t. Li1(a, b)∧Li2(b, c)→ ¬Li3(a, c)
is in N .

By abuse, we will sometimes denote Ai(a, b) by Ai(a, b).

Example 2. We continue Example 1, where T represented the
Point Algebra. We can define a set of compositional inferences
over elements of A. Namely: A2(a, b) ∧ A2(b, c) → A2(a, c)
meaning that a ≥ b and b ≥ c entails a ≥ c, A1(a, b) ∧
A1(b, c) → A1(a, c) meaning that a ≤ b and b ≤ c entails
a ≤ c, and also A1(a, b)∧¬A2(b, c)→ ¬A2(a, c), A2(a, b)∧
¬A1(b, c) → ¬A1(a, c), ¬A1(a, b) ∧ A2(b, c) → ¬A1(a, c)
and ¬A2(a, b) ∧A1(b, c)→ ¬A2(a, c).

Finally, with these concepts we can define decompositions
of a qualitative calculus.

Definition 8. A decomposition of a qualitative calculus is a
tuple 〈T ,N〉, where T is a valid representation of all base
relations and N is a complete and sound set of compositional
inferences.

Further, for any qualitative calculus there always exists a
decomposition.

Proposition 1. Let C be a qualitative calculus, then there
exist a valid representation T and a complete and sound set
of compositional inferences N for C.

Proof: It is easy to construct a valid representation by
choosing |A| = |B| where TBi

= (
∧

j 6=i ¬Aj) ∧ Ai. We then
construct compositional inferences from those triples of base
relations that are not composition triads. For instance, if Bi3 6∈
(Bi1 ◦ Bi2) then Ai1(a, b) ∧ Ai2(b, c) → ¬Ai3(a, c) is an
inference.

We will now address the question of a minimal representa-
tion and decomposition by means of automatic computations
whose solutions are possible decompositions that correctly
represent the qualitative calculus.

B. Computing Optimal Decompositions
A reasoning process based on decomposition would be

very dependent on the size of this decomposition. The most
important factor is of course the number of literals used as
it dictates the size of the search space. The other important
factor is the number of decomposition inferences as the fewer,
the faster will be the propagation.

As minimality is important for reasoning efficiency, we
considered several different approaches for finding decom-
positions: brute force search, SAT, and ASP. The SAT ap-
proach turned out to be the most practical one. We will give
some theoretical results first, then detail the SAT encoding
before showing some of the running times of these different
approaches, and explaining the obtained decomposition.

Proposition 2. The decision problem whether there exists a
decomposition of a calculus C with k literals and n composi-
tional inferences is NP-complete.

Proof: The NP-membership is easy to verify. One can
verify the sound and completeness of a set of compositional
inference thanks to an ASP program which is positive-order
consistent and of polynomial size, which means it is a polyno-
mial operation. It is possible to prove the NP-hardness thanks
to a reduction from the Hitting Sets problem [20]. The proof
is in two steps. The lack of space prevents us for going into
too much details.

Firstly, consider a problem we can call Disconnected Min-
imal Hitting Sets defined the following way: Given a set
A = {a1, . . . , an}, a collection B1, B2, . . . , Bm of subsets of
A, a collection C1, C2, . . . , Cm of subsets of A, and a number
k. There exists a Hitting Set H ⊆ A such that the number of
Ci with Ci∩H 6= ∅ is equal to k and H∪Bi 6= ∅, 1 ≤ i ≤ m.

It is similar to the minimal Hitting Sets problem except for
the value to minimize which is not the number of elements
of H but the number of Ci where elements of H appear. It
is very easy to see that Minimal Hitting Sets is just a special
case of Disconnected Minimal Hitting Sets and that it is thus
NP-hard.

Secondly, we can formalize the problem of finding a
minimal decomposition for a calculus as a Disconnected
Minimal Hitting Sets. We denote by R = {r1, . . . , rm} the
possible representations for a literals. The set A is the set
of compositional inferences built over the ri. The Bi are the
elements of the composition table. The Cj are the ri. With
this encoding, we try to find a set which covers every entry
of the composition table while minimizing the number of
compositional inferences used to do so.

1) Decompositions as a SAT problem: We encode the
decision problem for the fixed number of literals k. Firstly,
we require solutions to be valid representations. To this end
we assert that two relations are not represented the same way.
This verification is made in two steps: firstly if two relations
Bj1 and Bj2 are represented the same way for one literal
Ai, then the atom j1 j2 id on lit i is entailed. Second, we
assert for any pair of base relations at least one literal of their
representation is different.

∀i ∈ 1..|A|,∀j1, j2 ∈ 1..|B|, ¬A i j1 ∨ ¬A i j2 ∨ j1 j2 id on lit i
A i j1 ∨A i j2 ∨ j1 j2 id on lit i

¬j1 j2 id on lit 1 ∨ · · · ∨ ¬j1 j2 id on lit |A|

Finally, to restrict solutions to decompositions we assert the
existence of correct compositional inferences. Here, firstly a
compositional inference x (denoted by ci x) is discarded if it
covers a possible entry in the composition table.

5

∀ci x = 〈Li1 , Li2 , Li3〉 and ∀j1, j2, j3 s.t. Bj3 ∈ Bj1 ◦Bj2 ,{
¬L i1 j1 ∨ ¬L i2 j2 ∨ ¬L i3 j3 ∨ ¬ci x

where Li is either Ai or ¬Ai.
Secondly, it is necessary to check that there exists at least

one compositional inference applicable for every forbidden
entry of the composition table. The next rule says that a
compositional inference is not applicable if it does not exist.
The last ones state that a compositional inference is not
applicable on an entry, if it does not cover it.

∀j1, j2, j3 s.t. Bj3 6∈ Bj1 ◦Bj2 ,
∀ci x = 〈T1.Li1 , T2.Li2 , T3.Li3〉,

ci x ∨ ¬ci x ao j1 j2 j3
L i1 j1 ∨ ¬ci x ao j1 j2 j3
L i2 j2 ∨ ¬ci x ao j1 j2 j3
L i3 j3 ∨ ¬ci x ao j1 j2 j3

Finally, at least one rule should be applicable on every
forbidden entry of the composition table:

∀j1, j2, j3 s.t. Bj3 6∈ Bj1 ◦Bj2 ,{
ci 1 ao j1 j2 j3 ∨ · · · ∨ ci |N (C)| ao j1 j2 j3

Nevertheless, this program only computes one solution with
k literals while not minimizing the number of compositional
inferences. To overcome this, we implemented a counting
method as introduced in [22] for the number of (true) com-
positional inferences ci x and a number comparison with a
given fixed bound n. We then launched the SAT program
several times, first lowering the bound k to find the smallest
decomposition in terms of literals and then lowering the
allowed number of compositional inferences n until the lowest
bound for this was reached as well. Thus the SAT program can
be used to find optimal decompositions that minimize both k
and n.

2) Time necessary to prove the existence of a solution:
We compared the different computational approaches both in
terms of running times and memory usage. The tests were run
on an Intel Quad-Core Xeon 2.66 GHz with 4 GB of memory
for each core and 4 MB of secondary cache. The Brute Force
algorithm has been implemented in C++. The SAT solver used
is Minisat Version 1:2.2.1-2 [9]. The ASP solver used is clingo
3.0.3 [11]. The ASP program and the SAT program are based
on the idea described in Section III-B1.

Figure 2 gives the running times necessary to prove the
existence of a solution given a fixed number of literals for the
decomposition (here irrespective of the number of composi-
tional inferences).

Method 3 4 5 6 7 8
Brute Force 12.9 111.5 1539.3 2611.5 4291.8 8.2

SAT 0.9 3.8 24.1 24.0 35.6 50.4
ASP 0.4 2.2 16.2 58.4 × ×

Fig. 2. Running times (sec) for the RCC8 calculus w.r.t the number of literals

Calculus |B| |A| |N |
Point Algebra 3 2 6

Point Branching 4 3 9
RCC5 5 3 12
RCC8 8 6 36
OCC 8 6 20

Cardinal Direction 9 4 12
Allen 13 8 48

Fig. 3. Size of the optimal decompositions for several qualitative calculi

¬P (a, b) ∧ Pi(b, c) → ¬P (a, c)
¬Pi(a, b) ∧ P (b, c) → ¬Pi(a, c)
Pi(a, b) ∧ ¬P (b, c) → ¬P (a, c)
P (a, b) ∧ ¬Pi(b, c) → ¬Pi(a, c)
Pi(a, b) ∧ Pi(b, c) → Pi(a, c)
P (a, b) ∧ P (b, c) → P (a, c)
C(a, b) ∧ Pi(b, c) → C(a, c)
¬C(a, b) ∧ P (b, c) → ¬C(a, c)
C(a, b) ∧ ¬C(b, c) → ¬Pi(a, c)
Pi(a, b) ∧ ¬C(b, c) → ¬C(a, c)
P (a, b) ∧ C(b, c) → C(a, c)
¬C(a, b) ∧ C(b, c) → ¬P (a, c)

Fig. 4. Set of inferences for RCC5 decomposition

Even though the Brute Force algorithm is using far less
memory than the others, it has running times which makes
it unusable in practice. On the other end, the ASP programs
obtained good running times but its memory usage makes it
fail for the computation of size 7 and 8. Finally, only the SAT
program offers both a good running time and a memory usage
that allows computations of larger calculi, e.g., Allen’s Interval
Calculus. It nevertheless took more than a week to compute
the optimal Allen decomposition.

3) Results obtained: The optimal decomposition (both in
terms of literals and compositional inferences) obtained are
given in the Figure 3. Due to lack of space, all decompositions
cannot be detailed or discussed here.

Most of the results can be explained thanks to formalisms
already known in the literature. For RCC5, the decomposition
is identical to the translation into predicate logic presented
in [19] and summarized in the background section with the
inferences presented in Figure 4.

For the RCC8 calculus, the representation is identical to the
description in terms of P , Pi , NTP , NTPi , DC and DR as
given in [3]. 36 compositional inferences are necessary for
covering the composition table.

The decomposition of the Cardinal Direction calculus is
the same as the two-dimensional decomposition of the Point
Algebra. The Allen minimal decomposition is the one using
the decomposition of Point Algebra on start and endpoints
given in [16] and represented in Figure 5.

These decompositions confirm the correctness of our re-
sults.

IV. IMPLEMENTATION AND EVALUATION

To evaluate the benefit of decompositions over composition
tables, we experimented with encodings of qualitative satisfi-
ability problems in SAT. For this, we here propose a way of

6

relation A1 A2 A3 A4 A5 A6 A7 A8

meaning X− < Y − X− < Y + X+ < Y − X+ < Y + X− > Y − X− > Y + X+ > Y − X+ > Y +

d × o × o o × o ×
di o o × × × × o o
o o o × o × × o ×
oi × o × × o × o o
m o o × o × × × ×
mi × × × × o × o o
f × o × × o × o ×
fi o o × × × × o ×
s × o × o × × o ×
si × o × × × × o o
< o o o o × × × ×
> × × × × o o o o
= × o × × × × o ×

Fig. 5. Representation of the minimal decomposition for Allen’s Interval Algebra

implementing SAT encodings thanks to decompositions. We
will compare the performance achieved by this encodings with
a state-of-the-art encoding given in [17]. These encodings are
described in the next section.

We also implemented a prototype solver based on a DPLL
procedure in order to evaluate how good such a solver would
be. Results of the prototype are comparable with those of the
GQR solver. Both system description and compared running
times are given next.

A. Propositional SAT Encoding

We use two different but related encodings of qualitative
CSP instances into propositional SAT instances in conjunctive
normal form. The first encoding based on [17], grounds the
composition table and thus can be applied to any qualitative
calculus. The second encoding applies our decomposition
technique by only grounding the composition inferences of
a decomposition instead of the entire composition table. We
briefly describe both procedures in the following and assume
that the input is a normalized qualitative constraint network
with l variables and constraints {Rij ⊆ 2B | 1 ≤ i < j ≤ l}.

In the first encoding, each constraint Rij = {B1, . . . , Bm}
is translated into a clause B1ij ∨ . . . ∨ Bmij

. We further add
clauses

∧
B,B′∈Rij ,B 6=B′(¬Bij ∨ ¬B′ij) to ensure that only

one base relation holds between variables i and j. To ground
the composition table, for every triple 1 ≤ i < j < k ≤
l and for all Bij ∈ Rij , Bjk ∈ Rjk we introduce clauses
(Bij∧Bjk)→ (B′1ik∨· · ·∨B

′
mik

) where {B′1ik , . . . , B
′
mik
} =

Rik ∩ (Rij ◦ Rjk). We refer to this as the support encoding.
For details see [17], [24].

The second encoding utilizes forbidden clauses. This is
similar to another encoding approach by Pham et al. [17],
which is based on composition, while we consider forbidden
clauses generated from the calculus decomposition (which also
allows for negated predicates). Given a decomposition into
predicates A = {A1, . . . , An}, for each pair i, j, i < j we have
a forbidden clause ¬(L1

ij∧ . . .∧Ln
ij), if ∀B ∈ Rij : L1

ij∧ . . .∧
Ln
ij 6= TB . This encodes the input by ruling out any assignment

of propositional atoms that does not correspond to an input
relation. Next, we extensionally represent compositional in-
ferences by instantiating them for triples of entities. For every
triple 1 ≤ i < j < k ≤ l and every compositional inference in

N , we have ¬(L1
ik ∧ . . .∧Ln

ik ∧L1
ij . . .∧Ln

ij ∧L1
jk . . .∧Ln

jk).
We refer to this as the decomposition encoding.

We note here that both encodings suffer from a cubic
blow-up due to the extensional representation of composition
(or compositional inference), and thus the size of instances
becomes a crucial issue as described in [24]. Nevertheless,
the decomposition-based encoding results in much smaller
instance. For example, if we consider RCC8 instances with
200 variables and average degree 8.5, the classical encoding
of the problem has around 155.000 boolean variables and
81 million clauses while the new encoding only has 119.000
variables and 48 million clauses.

B. Prototype Implementation

The main algorithm in our implementation is a classic DPLL
procedure using the weighted domain over degree heuristic [5],
in which compositional inferences are used as a propagation
procedure. It has been written in C++ and for now does not
include tractable subclasses. From now on, we will refer to
our implementation as DaS (for Decompose-and-Solve).

C. Experimental study

We now present the results of an experiment comparing
SAT encodings and also the DaS solver and GQR. Namely,
we compare DaS to the qualitative CSP solver GQR [10],
version 1418, The SAT solver used is Minisat [9], version
2.2.0, applied on the presented propositional SAT encodings.

The tests were run on an Intel Quad-Core Xeon 2.66 GHz
with 4 GB of memory for each core and 4 MB of secondary
cache. The test protocol is as follows: since we are interested
in two criteria (the number of entities in the problem and the
average degree of the graph), we created for every pair of
size and degree 200 random normalized qualitative constraint
networks according to the A-model used in [24]. That is, a
random graph with given size and degree is generated, and
random relations are assigned to its edges. The tests have been
conducted for RCC5 and RCC8.

Concerning the SAT encodings, the time necessary for the
translation into the SAT format are not included. The objective
here is to evaluate the overall value of the approach and as
DaS does not yet incorporate tractable subclasses, GQR is

7

 0

 2

 4

 6

 8

 10

 12

 14

 16

 150 160 170 180 190 200 210

DaS
Minisat (decomposition)

Minisat (support)
GQR

(a) Runtimes for RCC5 w.r.t. size.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 1.5 2 2.5 3 3.5 4 4.5 5

DaS
Minisat (decomposition)

Minisat (support)
GQR

(b) Runtimes for RCC5 w.r.t. degree.

Fig. 6. Runtimes (seconds) for network sizes (150-210) and degree (1-5)

 0

 500

 1000

 1500

 2000

 2500

 3000

 150 160 170 180 190 200 210

Minisat (decomposition)
Minisat (support)

(a) Memory usage of Minisat for RCC5.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 150 160 170 180 190 200 210

Minisat (decomposition)
Minisat (support)

(b) Size of CNF for RCC5.

Fig. 7. Memory usage (Mb) for RCC5 SAT encodings of networks with
sizes (150-210) and degree (1-5)

configured not to use tractable subclasses. Further, no time
limit has been set.

We can see in Figure 6(a) and Figure 6(b) that the
decomposition-based SAT encoding is clearly superior to the
support-based SAT encoding. Further, we can see that DaS has
an overall better performance than GQR.

For the RCC5 calculus, we obtain a very impressive reduc-
tion of the size of the CNF encodings shown in Figure 7(b)
and Figure 7(a). The new encodings is 34% of the support
SAT encodings on average. The memory usage for Minisat
is also improved being more than halved for some instances.
This gain in memory usage may be the main explanation for
the gain in running times, this is confirmed by the lesser gain

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 200 400 600 800 1000 1200 1400

DaS
Minisat (decomposition)

Minisat (support)
GQR

Fig. 8. Number of solved RCC5 instances with degree 3 (1400 in total) over
time (seconds)

for RCC8.
For DaS and GQR the running times are highly dependent

on whether the instance is satisfiable (SAT) or unsatisfiable
(UNSAT). We illustrate this for problem instances with a
degree of 3, as this is the hardest spot. Figure 8 shows the
number of solved instances over time. GQR performs better on
UNSAT instances, which are the data points close to a runtime
of 0 seconds. This behaviour can also be seen for DaS, but
it is less distinctive here. For the rest of the instances (which
are SAT), DaS is clearly faster. This difference does not exist
between the two SAT encodings.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 100 110 120 130 140 150 160

DaS
Minisat (decomposition)

Minisat (support)
GQR

(a) Runtimes for RCC8 w.r.t. size.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 8 8.5 9 9.5 10 10.5 11 11.5 12

DaS
Minisat (decomposition)

Minisat (support)
GQR

(b) Runtimes for RCC8 w.r.t. degree.

Fig. 9. Runtimes (seconds) for network sizes (100-160) and degree (8-12)

The results for RCC8 are shown in Figure 9(a) and Fig-
ure 9(b). DaS and GQR reach comparable running times for
RCC8. The decomposition-based SAT encoding still performs
slightly better than the support-based SAT encoding even if
the difference is less clear than in the case of RCC5.

We can see in Figure 10(b) and Figure 10(a) that the gain in
memory usage is still very good (40% of the size of the support
SAT encodings on average) but is slightly inferior to the RCC5
calculus. This may be one explanation of the differences in
running times.

Overall, even if the improvement depends on the considered
calculus, the decomposition seems to allow faster reasoning

8

 500

 1000

 1500

 2000

 2500

 3000

 100 110 120 130 140 150 160

Minisat (decomposition)
Minisat (support)

(a) Memory usage of Minisat for RCC8.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 110 120 130 140 150 160

Minisat (decomposition)
Minisat (support)

(b) Size of CNF for RCC8.

Fig. 10. Memory usage (Mb) for RCC8 SAT encodings of networks with
sizes (100-160) and degree (8-12)

compared to utilizing composition tables.

V. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a framework for automatically
decomposing Qualitative Spatial and Temporal Reasoning for-
malisms into representations with equivalent inference rules.
Such decompositions can be automatically computed from the
composition table of the calculus thanks to a SAT program we
presented. We discussed the complexity of the problem at hand
and provided experimental results to underline its hardness.
We then applied it to several QSTR calculi and obtained new
minimal definitions for standard calculi such as RCC5, RCC8
and Allen’s Interval Calculus. Moreover, we showed that the
proposed decompositions considerably improve propositional
logic encodings in both instance size and runtime of the
Minisat solver. Further, we also presented a prototype solver
based on the decomposition technique in order to evaluate the
efficiency gains of the new representation. Our results show
that this solver compares favorably with respect to the state-
of-the-art GQR solver.

Future work will concern approximation techniques for
decompositions in order to deal with larger formalisms such
as RCC23 or OPRA which currently are beyond the reach
of our programs. Another research question is how tractable
subclasses, such as Horn theories [16] and classes built on
k-consistency [4], can be integrated into our decomposition
approach.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive
comments. This work was supported by DFG (Transregional
Collaborative Research Center SFB/TR 8 Spatial Cognition,
project R4-[LogoSpace]).

REFERENCES

[1] James F. Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832–843, 1983.

[2] Brandon Bennett. Spatial reasoning with propositional logics. In Jon
Doyle, Erik Sandewall, and Pietro Torasso, editors, KR, pages 51–62.
Morgan Kaufmann, 1994.

[3] Brandon Bennett. Logical Representations for Automated Reasoning
about Spatial Relationships. PhD thesis, School of Computing, The
University of Leeds, 1997.

[4] Manuel Bodirsky and Hubie Chen. Qualitative temporal and spatial
reasoning revisited. Journal of Logic and Computation, 19(6):1359–
1383, 2009.

[5] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar
Sais. Boosting systematic search by weighting constraints. In Ra-
mon López de Mántaras and Lorenza Saitta, editors, ECAI, pages 146–
150. IOS Press, 2004.

[6] Sebastian Brand. Relation variables in qualitative spatial reasoning. In
Susanne Biundo, Thom W. Frühwirth, and Günther Palm, editors, KI,
volume 3238 of Lecture Notes in Computer Science, pages 337–350.
Springer, 2004.

[7] Anthony G. Cohn and Shyamanta M. Hazarika. Qualitative spatial
representation and reasoning: An overview. Fundamenta Informaticae,
46(1-2):1–29, 2001.

[8] Ivo Düntsch, Hui Wang, and Stephen McCloskey. Relation algebras
in qualitative spatial reasoning. Fundamenta Informaticae, 39:229–248,
1999.

[9] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proc.
of SAT 2003, volume 2919 of Lecture Notes in Computer Science, pages
502–518. Springer, 2003.

[10] Zeno Gantner, Matthias Westphal, and Stefan Wölfl. GQR - A fast
reasoner for binary qualitative constraint calculi. Technical Report WS-
08-11, AAAI Workshop on Spatial and Temporal Reasoning, 2008.

[11] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten
Schaub. clasp: A conflict-driven answer set solver. In Chitta Baral,
Gerhard Brewka, and John S. Schlipf, editors, LPNMR, volume 4483 of
Lecture Notes in Computer Science. Springer, 2007.

[12] Robin Hirsch. A finite relation algebra with undecidable network
satisfaction problem. Bulletin of the IGPL, 7:547–554, 1999.

[13] Jason Jingshi Li and Jochen Renz. In defense of large qualitative calculi.
In Maria Fox and David Poole, editors, AAAI. AAAI Press, 2010.

[14] Sanjiang Li and Mingsheng Ying. Extensionality of the RCC8 compo-
sition table. Fundamenta Informaticae, 55(3-4):363–385, 2003.

[15] Gérard Ligozat and Jochen Renz. What is a qualitative calculus?
A general framework. In Chengqi Zhang, Hans W. Guesgen, and
Wai-Kiang Yeap, editors, PRICAI, volume 3157 of Lecture Notes in
Computer Science, pages 53–64. Springer, 2004.

[16] Bernhard Nebel and Hans-Jürgen Bürckert. Reasoning about temporal
relations: A maximal tractable subclass of Allen’s Interval Algebra.
Journal of the ACM, 42(1):43–66, 1995.

[17] Duc Nghia Pham, John Thornton, and Abdul Sattar. Towards an efficient
SAT encoding for temporal reasoning. In Frédéric Benhamou, editor,
CP, volume 4204 of Lecture Notes in Computer Science, pages 421–436.
Springer, 2006.

[18] D.A. Randell and A. G. Cohn. Modelling topological and metrical prop-
erties in physical processes. In Raymond Reiter Ronald J. Brachman,
Hector J. Levesque, editor, KR, pages 55–66. Morgan Kaufmann, 1989.

[19] David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial
logic based on regions and connection. In William R. Swartout
Bernhard Nebel, Charles Rich, editor, KR, pages 165–176. Morgan
Kaufmann, 1992.

[20] Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57–95, 1987.

[21] Jochen Renz and Bernhard Nebel. Qualitative spatial reasoning using
constraint calculi. In Handbook of Spatial Logics, pages 161–215.
Springer Verlag, Berlin, 2007.

[22] Carsten Sinz. Towards an optimal cnf encoding of boolean cardinality
constraints. In Peter van Beek, editor, CP 2005 (LNCS 3709), volume
3709 of Lecture Notes in Computer Science, pages 827–831. Springer
Berlin / Heidelberg, 2005.

[23] Marc Vilain, Henry Kautz, and Peter van Beek. Constraint propagation
algorithms for temporal reasoning. In Readings in Qualitative Reasoning
about Physical Systems, pages 377–382. Morgan Kaufmann, 1986.

[24] Matthias Westphal and Stefan Wölfl. Qualitative CSP, finite CSP, and
SAT: Comparing methods for qualitative constraint-based reasoning. In
Craig Boutilier, editor, IJCAI, pages 628–633. AAAI Press, 2009.

