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Abstract—Qualitative Spatial and Temporal Reasoning is a
central topic in Artificial Intelligence. In particular, it is aimed at
application scenarios dealing with uncertain information and thus
needs to be able to handle dynamic beliefs. This makes merging
and revision of qualitative information important topics. While
merging has been studied extensively, revision which describes
what is happening when one learns new information about a
static world has been overlooked. In this paper, we propose to
fill the gap by providing two revision operations for qualitative
calculi. In order to implement these operations, we give algo-
rithms for revision and analyze the computational complexity of
these problems. Finally, we present an implementation of these
algorithms based on a qualitative constraint solver and provide
an experimental evaluation.

I. INTRODUCTION

Qualitative Spatial and Temporal Reasoning (QSTR) is a
research field which studies relation languages for representing
information about infinitely-valued domains. For example,
temporal relations between events (defined on the domain Q)
can be described by qualitative terms like a happened before
b or a takes place during b. Since spatial and temporal aspects
are usually concerned with infinite, continuous domains, many
computational tasks are undecidable in the general case. Thus,
focusing on the qualitative relations between entities is a
convenient method for crafting a calculus that can actually be
used for reasoning. Qualitative information is then represented
as constraint networks defined over such qualitative terms, so-
called qualitative constraint networks (QCNs).

As qualitative information deals with vague and uncertain
information, representing Qualitative Spatial and Temporal
beliefs is an important topic for several fields in or related
to Artificial Intelligence, e.g., Geographic Information Sys-
tems or robot navigation. So far, mainly the central task of
deciding satisfiability of QCNs has been extensively studied.
Nevertheless, many practical applications of such qualitative
languages require the ability to deal with changing beliefs, i.e.,
if one only knows uncertain or incomplete information about
the world then what happens when a more reliable piece of
information about the world arises or when the world changes?
The first problem is known as belief revision and the latter
problem is known as belief update. For this paper, we will
only concentrate on the revision problem (differences with
possible treatments of update operations will be discussed in

the conclusion). A good revision operation must solve conflicts
between the new and the old information while saving as much
as possible from the old information and respecting the new
one. Such issues arise in, e.g., the context of robots learning
a map of their surroundings [Wal10]. Several operators have
been studied for merging QCNs (see [WD10], [CKMS09a],
[CKMS10], [CKMS09b]). These merging operators are based
on the distance between solutions of each source (called
semantic operators) or based on the number of violated con-
straints (called syntactic operators). These distances in turn
can either be based on a drastic distance or a more fine-
grained distance based on proximity of the different relations
[CKS08]. To the authors knowledge, with the exception of
a bachelor’s thesis [Dos11] on classical revision operations
(partial meet and cut revisions) for QCNs, no operations
for revision of QCNs have been proposed. Moreover, in the
context of QCNs, to the authors knowledge no such revision
or merging operation has been implemented despite some
proposals such as [WD10].

In this paper, we propose revision operations for QCNs
based on the merging operations previously defined in the
literature. We show that these operations behave well with
respect to the AGM postulates which state how a correct
revision operator must behave [AGM85]. We then provide
an algorithm for revision operations of QCNs and analyze its
computational complexity. We finally exhibit an implementa-
tion of these revision operations based on qualitative constraint
reasoning techniques and provide an experimental study. We
based this implementation on the qualitative constraint solver
GQR [WWG09] since it is considered as the state-of-the-art
constraint solver for QCNs and compares favorably with other
possibilities such as SAT encodings [WW09].

The structure of this paper is as follows. In Section II a
reminder about QCNs and revision is given. Then, a formal
definition of our revision operations is provided in Section III
where their formal properties are also studied. This is followed
by a description of our implementation in Section IV as well
as a theoretical study of its complexity. In Section V we
then show first experimental results of our implementation.
We conclude the paper in Section VI with a summary and
outlook on future work.
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II. BACKGROUND AND NOTATION

In this section we introduce and define Qualitative Con-
straint Networks, some operations for merging such QCNs and
the set of AGM postulates for general revision operations.

A. Qualitative Spatial and Temporal Reasoning

The work is based on the formalisms used for qualitative
spatial and temporal reasoning. We define these qualitative
calculi along with the representation of qualitative information
in constraint networks. These standard definitions can be found
in, e.g., [Ren02], [CKMS09a].

Definition 1 (Partition Scheme). Let D be a non-empty
domain. A partition scheme is a partition of D2 into a finite
set B = {b1, . . . , bn} of non-empty binary relations on D
such that it contains the identity relation on D2, and is closed
under the converse operation (∀b ∈ B ∃b′ ∈ B : b = b′−1).
The elements of B are called base relations.

Base relations from a partition schemes provide an exhaus-
tive set of qualitative terms for describing relations between
entities on D. In order to deal with uncertain and vague
information, we consider unions of base relations as well. This
gives us the set 2B as the full set of qualitative terms we
can use to describe relations on D. In particular, it contains
the empty set (an unsatisfiable relation) and the universal
relation (which is always satisfied). We represent qualitative
information in constraint networks.

Definition 2 (Qualitative Constraint Network). A Qualitative
Constraint Network (QCN) N over 2B is a pair (V,C) where:
• V is a finite set of variables {v1, . . . , vn} such that every

variable vi ∈ V represents an entity of the domain D;
• C is a finite set of constraints which are triplets

(v1, R, v2) where v1, v2 ∈ V and R ∈ 2B . If
(v1, R, v2) ∈ C then the relation R must hold between
v1 and v2. Further, for every pair v1, v2 ∈ V there is
exactly one such triplet.

From now on, we will denote (vi, R, vj) by Rij . Finally,
to allow for reasoning on constraint networks we consider
inference rules defined on constraints Rij in the network.
Firstly, we have converse rules:

Rij → R−1
ji (1)

for every R ∈ 2B and pair of variables. Secondly, we
have rules on every triple of relations R,S, T ∈ 2B and
variables (vi, vj , vk):

Rij ∧ Sjk → Tik ∈ {b ∈ B | ∃vi, vj , vk ∈ D : bik ∧Rij ∧ Sjk} (2)

Rule (2) expresses the set of valid descriptions involving
three variables. It ensures the possible relations to be locally
consistent wrt. real world instantiations.

Note that there is only a finite number of these inference
rules as they are defined on 2B and not directly D.

Definition 3 (Qualitative Calculus). The symbols of a fixed
partition scheme B together with the corresponding set of in-
ference rules (1) and (2) define an entirely symbolic formalism,
a so-called qualitative calculus.

Region Connection Calculi as an Example: An important
family of qualitative calculi are the Region Connection Calculi
(RCC), which comprises different formalisms for reasoning
about topological relations between spatially extended objects
(called regions) [RCC92], [RC89], [CH01]. The theory of
Region Connection Calculi is built on a binary connectedness
predicate and can be cast as a first-order theory. Different frag-
ments can be obtained depending on further distinctions being
made (e.g., distinctions between interior, bounding points, or
the convex hull of regions). Regions are typically interpreted
as regular open (or regular closed) sets of a topological space,
and we do so here as well, when we illustrate regions by
simple regions in R2.

The simplest of the RCC is RCC5 [Ben94] which deals with
relations that can be defined in terms of parthood of simple
regions or closed disks. The language of RCC5 contains five
binary relations B = {DR,EQ ,PO ,PP ,PC} with the fol-
lowing interpretation: DRab means that a and b are completely
disconnected; EQab means that a and b are identical; POab

means that a and b partially overlap; PPab means that a is a
proper part of b; PC ab means that b is a proper part of a.

When considering the border of these regions, DR can
be divided into DC (DisConnected) and EC (Externally
Connected), PP can be divided into TPP (Tangential Proper
Part) and NTPP (Non-Tangential Proper Part) and PC into
TPPI and NTPPI . These relations are illustrated in Fig. 1.
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Fig. 1. Relations defined in the RCC8 calculus

Further, we recall the definition of (conceptual) neigh-
borhood graphs. Neighborhood graphs are undirected graph
aiming at representing conceptual proximity between base
relations. This conceptual proximity is usually based on the
number of topological transformation needed to go from one
state to one another considering only two entities.

Definition 4 (Neighborhood Graph [EAT92]). A neighborhood
graph of a qualitative calculus with base relations B is an
undirected graph with vertices as elements of B and an edge
between b and b′ iff b and b′ are considered to be conceptually
close.

As an example, Fig. 2 depicts a possible neighborhood
graph for RCC8.

Finally, with these concepts we can define the notion of
scenarios and consistency of QCNs.

Definition 5 (Scenario). A scenario s is a QCN in which every
constraint is defined by a base relation and we cannot derive
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Fig. 2. A neighborhood graph for RCC8

the empty relation by the inference rules (1) and (2).
We say a scenario sN is a scenario of a QCN N iff every

base relation bij in sN is a subset of the relation Rij in N .

Definition 6 (Consistency). Let N be a QCN. N is said to be
consistent iff it admits at least one scenario.

The set of all scenarios of N is denoted by [N ]. The
relations holding between vi and vj in N are denoted by
N [i, j]. These concepts also motivate the de-facto standard
way of deciding consistency of QCNs by applying constraint
programming to find some scenario using backtracking search
while applying the inference rules to establish local consis-
tency during search [WW09]. This is also the basis for the
qualitative constraint solver GQR [WWG09] which utilizes
optimized constraint propagation algorithms combined with
heuristic backtracking search.

B. Merging Qualitative Constraints Networks

We briefly recall concepts of merging information in
the context of QCNs as detailed in recent works [WD10],
[CKMS10]. Some of these works even propose a framework
for merging heterogeneous QCNs [CKMS09a], but in this
paper we will only consider revising beliefs according to
QCNs expressed over the same calculus. An extension to
heterogeneous formalisms is possible but not our focus here.

Similar to the general case, merging a multi-set of QCNs
N = {N1, . . . , Nn}, called a belief profile, consists in
providing a QCN which represents the information in the
sources Ni. The merging operation can be constrained by a
QCN denoted by IC which represents absolute constraints that
have to be respected by the solution. There can be no such
constraints and in this case we consider that IC = >. The
result of the merging operation is denoted ∆IC(N ) possibly
with decoration.

Merging operators can be of two types. These merging
operators are based on the distance between solutions of each
source (called semantic operators) or based on the number of
violated constraints (called syntactic operators). The semantic
merging operations first compute the distance between a
scenario and QCNs, these distance are then aggregated in order
to obtain a distance between a scenario and the whole belief
profile. The syntactic operations compute the distance between
a scenario and all constraints between two variables expressed
in the profile before aggregating those distances. The solution
then is the set of scenarios closest to N .

An aggregation function is a function that associates to
every finite tuple of non-negative integers a non-negative

integer and which respects non-decreasingness, minimality and
identity (as in [KLM04]). Known examples of aggregation
functions are sum or average functions.

1) Distances: In the general case, both Wallgrün and
Condotta et al. use a drastic distance (or Hamming distance)
between base relations.

Definition 7 (Drastic distance between base relations). Let
b, b′ be base relations.

dD(b, b′) =

{
0 if b = b′

1 otherwise

An alternative is to consider a more fine-grained distance
based on proximity of the base relations in the conceptual
neighborhood graph [CKS08].

Definition 8 (Neighborhood distance between base relations).
Let NG be a conceptual neighborhood graph on elements
of B and b, b′ base relations. We define the conceptual
neighborhood distance

dNG(b, b′) = length of shortest path b to b′ in NG

Finally, the distance between scenarios s, s′ is defined as
the sum of the distances between every pair of corresponding
constraints (bij , b

′
ij) where bij ∈ s and b′ij ∈ s′.

2) Semantic merging operators Θ: The semantic operators
return the set of the consistent scenarios of IC which are the
closest to N with respect to a given distance function. They
are characterized by a pair (dX , f) where dX is a distance
function between scenarios and f is an aggregation function.

Definition 9 (Distance between a scenario and a QCN). Let
N be a belief profile, N be a QCN, s be a scenario of N
and dX be a distance function, then the distance between a
scenario and a QCN is defined as:

dΘ
X(s,N) =

{
min{dX(s, s′) | s′ ∈ [N ]} if N is consistent

0 otherwise

Thus the distance between a scenario and a belief profile
according to the aggregation function f is defined as:

dΘ
X,f (s,N ) = f{dΘ

X(s,N) | N ∈ N}

Definition 10 (Θ merging operation). LetN be a belief profile,
IC be a QCN representing constraints, f be an aggregation
function, s be a scenario of N and dX be a distance function,
then the semantic merging operation is defined as:

ΘX,f
IC (N ) = { s ∈ [IC] | @s′ ∈ [IC] s.t.

dΘ
X,f (s′,N ) < dΘ

X,f (s,N ) }

3) Syntactic merging operator ∆2: Another way to define
QCN merging operators is to compute for every pair (vi, vj)
the distance between a relation and the set of constraints
holding between vi and vj in the belief profile N . Then these
distances are aggregated over every pair of variables. Each
operator is characterized by a triple (dX , f, g) where dX is
a distance between scenarios and f and g are aggregation
functions.

Definition 11. Let N be a belief profile, N be a QCN, vi
and vj be two variables of N , f and g be two aggregation
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functions, b be a base relation of B and dX be a distance
function, then the distance between a base relation and a pair
of variables in N is defined as:

dX,f (b,N [i, j]) = f{dX,B(b,N [i, j]) | N ∈ N}

where

dX,B(b, R) = min{dX(b, b′) | b′ ∈ R}

Thus the distance between a scenario and a belief profile is
defined as:

d∆2

X,g,f (s,N )=g{dX,f (sij ,N [i, j]) | (vi, vj) ∈ V 2 and i < j}

Definition 12 (∆2 merging operation). Let N be a belief
profile, IC be a QCN representing constraints, s be a scenario
of N , f and g be two aggregation functions, b be a base
relation of B and dX be a distance function, then the semantic
merging operation is defined as:

∆X,g,f
2,IC (N ) = { s ∈ [IC] | @s′ ∈ [IC] :

d∆2

X,g,f (s′,N ) < d∆2

X,g,f (s,N ) }

For more details, see [CKMS10].

C. Belief Revision and AGM postulates

Belief revision is an operation describing what happens to
the belief of an agent when he learns more reliable information
about the state of the world. Let K be a belief base and A be
a formula, then the revision of K by A is denoted by K ◦A.
The result of a revision operation should resolve the conflicts,
be consistent with the new information and be as close as
possible to the old belief state.

In order to evaluate the revision operations Alchourròn,
Gärdenfors and Makinson introduced postulates in [AGM85]
for characterizing good behaviors of revision operators.
These postulates were later revised by Katsuno and Mendel-
zon [KM91].

Definition 13 (AGM Postulates). Let K be a belief base and
A,B be formulas, then the belief base K ◦A is such that:

(KM1) K ◦A ` A.
(KM2) If K ∧A is satisfiable, then K ◦A ≡ K ∧A.
(KM3) If A is satisfiable, then K ◦A is also satisfiable.
(KM4) If K1 ≡ K2 and A1 ≡ A2, then K1◦A1 ≡ K2◦A2

(KM5) (K ◦A) ∧B ` K ◦ (A ∧B)
(KM6) If (K ◦A) ∧B is satisfiable, then

(K ◦A) ∧B ` (K ◦A) ∧B

The meaning of these postulates are the following. (KM1)
ensures that the new information is present in the result of
revision. (KM2) and (KM3) states that if the new information
is not contradictory with the old one, then the result of revision
is just their conjunction. (KM4) is the principle of irrelevance
of syntax. (KM5) and (KM6) are called additional postulates,
and states the principle of minimality of change.

III. REVISION OF QUALITATIVE CONSTRAINT NETWORKS

A. From merging to revision operations

The operations we define in this paper are inspired by
the qualitative merging operations found in the related work
described supra. The idea is to consider the operation K ◦ A
of revising K by A as a special case of merging where K is
merged under the constraint A, i.e., ∆A(K). We adapted both
the semantic and the syntactic operators. We first give their
definition before a short study about their properties relatively
to the AGM postulates.

The semantic revision operation, denoted by ◦X,Θ, provides
as a result the scenarios of A which are the closest to the
scenarios of K. Formally, this is defined as follows:

Definition 14 (◦X,Θ revision operator). Let K and A be two
QCNs, s and s′ be two consistent scenarios and dX a distance
function. The semantic revision operation of K by A, denoted
by K ◦X,Θ A, is defined as:

K ◦X,ΘA = {s ∈ [A] | @s′ ∈ [A] s.t. dΘ
X(s′,K) < dΘ

X(s,K)}

Example 1. Lets consider the following example with
K = {(a, TPPI, b) (a,EQ NTPP DC, c) (a,NTPPI, d)
(b,NTPP PO, c)} and A = {(a,NTPPI, b)
(a, PO DC, d) (b, PO, c) (c,DC EC, d)}. Please note
that the relations which are not explicitly specified here
are considered to be the universal relations. There are 22
scenarios for A and 3 scenarios of K.

c d

a bTPPI

EQ,NTPP,DC
NTPPI

NTPP,PO

c d

a b

K A

NTPPI

PO
PO,DC

DC,EC

Fig. 3. Qualitative Constraint Networks K and A from Example 1

For K ◦X,Θ A with a neighborhood distance, there is
only one scenario of A which is minimal wrt. its distance
to K. The result of K ◦NG,Θ A is thus: K ◦NG,Θ A =
{s = { (a,NTPPI, b) (a, PO, c) (a, PO, d) (b, PO, c)
(b, PO, d) (c,DC, d)}} whose closest scenario from K is
s′ = {(a, TPPI, b) (a,DC, c) (a,NTPPI, d) (b,DC, c)
(b, PO, d) (c,DC, d)} (The distance between s and s′ thus
is 1 + 1 + 2 + 1 + 0 + 0 = 5).

The syntactic revision operation, denoted by ◦X,∆2
, pro-

vides as a result the scenarios of A which are the closest to
the constraints given in K. This operation is defined as:

Definition 15 (◦X,∆2
revision operator). Let K and A be two

QCNs, s and s′ be two consistent scenarios and dX a distance
function. The syntactic revision operation of K by A, denoted
by K ◦X,∆2 A, is defined as:

K◦X,∆2
A ={s ∈ [A] |@s′∈ [A] s.t. d∆2

X (s′,K) < d∆2

X (s,K)}

where d∆2

X (s,K) =
∑

vi,vj∈V 2 dX(bij ,K[i, j]).
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These operations take networks as input but the result
is given in the form of a set of scenarios. From a purely
theoretical point of view, this would be a situation to be
avoided and one would expect the result and the inputs to be
in the same form. One solution might be to provide a minimal
network which generates all of the scenarios in the solutions
like in [WD10]. From a practical point of view, this solution
has two major drawbacks: first on some instances (particularly
when using the neighborhood distance) the resulting graph
may be bigger than the input, second this new constraint
network may have scenarios which were not scenarios of
K ◦A. There is a trade-off here between discontinuity in the
knowledge representation and a loss of information.

1) Formal properties of the operators: We now provide a
study of both our syntactic and semantic revision operations
with respect to the AGM postulates.

Proposition 1. For dX being either dD or dNG, the ◦X,Θ re-
vision operation respects the (KM1), (KM2), (KM3), (KM4),
(KM5) and (KM6) postulates.

Proof:
(KM1) If s ∈ [K ◦X,Θ A], then by definition s ∈ [A]. Thus,
K ◦X,Θ A ` A.
(KM2) If K ∧ A is consistent, then all consistent scenario s
such that s ∈ [A] and s ∈ [K].
K ◦ A ⊆ K ∧ A. We assume s ∈ K ◦ A, then s ∈ [A]
and s ∈ min(dΘ(s,K)). As we know, there exist scenarios
which are models of both A and K, then dΘ

X(s,K) = 0.
Thus, s ∈ [A] and s ∈ [K]. Thus s ∈ [K ∧A].
K ∧A ⊆ K ◦A. We assume s ∈ [K ∧A]. Thus, s ∈ [A] and
s ∈ [K]. Then s ∈ [A] and s ∈ min(dΘ

X(s,K)) and s ∈ K◦A.
(KM3) The solutions of K ◦X,Θ A is, by definition, a set of
consistent scenarios. Thus, it is consistent.
(KM4) is trivial according to the definition of ◦X,Θ.
(KM5) If (K ◦X,Θ A)∧B is inconsistent, the result is trivial.
Otherwise, there exists at least a consistent scenario s where
s ∈ [K ◦A] (and thus s ∈ [A]) and s ∈ [B]. Now, we assume
there exists a consistent scenario s′ where s′ ∈ [K ◦X,Θ (A∧
B)] and s 6∈ [K ◦X,Θ (A ∧ B)]. We know that s ∈ [A] and
s ∈ [B], thus dΘ

X(s′,K) < dΘ
X(s,K) which is impossible

because s′ would have been a scenario of (K ◦X,Θ A) ∧B.
(KM6) We assume that there exists a consistent scenario s
such that s ∈ (K ◦X,Θ A)∧B and s 6∈ K ◦X,Θ (A∧B). That
means, it exists a consistent scenario s′ such that s′ ∈ [A∧B]
and dΘ

X(s′,K) < dΘ
X(s,K). But, in that case s′ would have

been a scenario of (K ◦X,Θ A)∧B and thus s could not have
been one which is impossible.

Proposition 2. For dX being either dD or dNG, the ◦X,∆2
re-

vision operation respects the (KM1), (KM2), (KM3), (KM5)
and (KM6) postulates.

Proof:
(KM1), (KM2), (KM3), (KM5) and (KM6). For these pos-
tulates, the proofs are similar to the Proposition 1.
(KM4) A1 ≡ A2 means that the set of consistent scenarios of
A1 is exactly those of A2. Counter-example in RCC5 Calculus
for the neighborhood distance (a counter-example can also be
found for the drastic distance):

A = {(v1 EQ v2), (v1 EQ,PP v3), (v2 EQ,PP v3)}
K1 = {(v1 PC v2), (v1 PP, PC v3), (v2 PC v3)}
K2 = {(v1 PC v2), (v1 PC v3), (v2 PC v3)}
In this case, d∆2

NG(s1,K1) = 1+0+2 = 3, d∆2

NG(s2,K1) = 1+
1 + 1 = 3, d∆2

NG(s1,K2) = 1 + 1 + 2 = 4 and d∆2

NG(s2,K2) =
1 + 1 + 1 = 3.
We thus have K1 ◦NG,∆2

A = {{(v1 EQ v2), (v1 PP v3),
(v2 PP v3)}, {(v1 EQ v2), (v1 EQ v3), (v2 EQ v3)}} and
K2 ◦NG,∆2 A = {{(v1 EQ v2), (v1 PP v3), (v2 PP v3)}}.
Thus K1 ◦NG,∆2

A 6≡ K2 ◦NG,∆2
A.

The syntactic operation does not respect the (KM4) pos-
tulate. This is due to the fact that it measures the distance
between the scenario of A and the constraints in K. The
◦X,∆2 operation is thus attached to syntax of K. This is not
to be considered as a drawback as it is an intended feature of
syntactic operations to take syntax into account.

In [JT07], Jin and Thielscher defined a weaker version of
the (KM4) postulate. Namely, the weak syntactic irrelevance
postulate, denoted by (KM4’), is the following:

(KM4’) If A1 ≡ A2, then K ◦A1 ≡ K ◦A2.

Proposition 3. For dX being either dD or dNG, the ◦X,∆2

and ◦X,Θ revision operations respect the (KM4’) postulate.

Thus, the syntactic revision operations respect almost all
postulates and all postulates if we accept their weaker version.
On the other hand, the semantic operation respects all the
AGM postulates.

IV. AN IMPLEMENTATION BASED ON GQR

In order to perform the revision operation, we here propose
an adaptation of the depth-first search algorithm usually em-
ployed in checking the consistency of qualitative constraint
networks. More specifically, the revision operations can be
handled with a branch-and-bound approach. We implemented
our algorithms in the qualitative constraint solver GQR, thus
taking advantage of fast computations of inference rules and
the existing 2-way branching code with heuristics. Originally,
the search algorithm terminates once a scenario has been
found, so we have modified it into a branch-and-bound ap-
proach that computes distances according to some distance
function d on two QCNs and keeps iterating until no better
scenarios can be computed. For this it keeps track of the best
scenarios and the best distance encountered so far and prunes
the tree according to this information.

A direct search for the solution to a revision problem
requires us to explore the whole search space in order to
compute all optimal scenarios, which is costly. On the other
hand, searching for just one scenario with a given distance
can be stopped as soon as such a scenario is found. For
this reason, we search for the minimal distance prior to the
computation of all scenarios with this optimal distance. To
compute the minimal distance, we use a dichotomy search.
Here, we maintain and revise an interval [min,max ] that
includes the optimal distance. We can easily estimate the
maximum distance for both dD and dNG to initialize this
interval. We run the branch-and-bound algorithm with the
mean of min,max as the bound and abort as soon as a
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scenario with at maximum this bound has been found. Such
a scenario (or the result that none exists) than refines our
interval, and we can continue with another branch-and-bound
search until we have proven the minimal bound. Algorithm 1
gives the pseudo code for this approach.

Algorithm 1 Dichotomy search on networks K and A.
1: function DICHOTOMY-SEARCH(K, A for the optimal

distance.)
2: max ← maximum possible distance K,A
3: min ← 0
4: while true do
5: if min = max then
6: return max
7: Sol ← BNB-GQR(K, A, max+min

2 )
8: if Sol = ∅ then
9: min ← max+min

2 + 1
10: else
11: max ← d(s,K), s ∈ Sol

Algorithm 2 gives pseudo code for the branch-and-bound
search within GQR. A slight variation of Algorithm 2 that
returns the first found scenario is used for the initial dichotomy
search of the minimal distance.

Algorithm 2 Branch-and-bound within GQR. Global variables
Sol initialized with Sol ← ∅.

1: function BNB-GQR(K, A, min score)
2: Apply inference rules and converses to A
3: if ∃Rij ∈ A : Rij = ∅ then
4: return
5: score ← d(A,K)
6: if score > min score then
7: return
8: if ∀Rij ∈ A s.t. Rij is not a base relation then
9: if score = min score then

10: Sol ← Sol ∪ {A}
11: return
12: pick some constraint Rij ∈ A not a base relation
13: pick some b ∈ Rij

14: BNB-GQR(K,A ∧ (R′ij = {b}))
15: BNB-GQR(K,A ∧ (R′ij = Rij \ {b}))

In Algorithm 2 we can set d to be

d(N,N ′) =
∑
i,j

min{dX(b, C ′ij) | b ∈ Cij}

for dX either dD or dNG , to compute syntactic revision ◦∆2
.

In order to allow for a simple and space-efficient computation
of semantic revision ◦Θ, we set:

d(N,N ′) = BNB-GQR(N,N ′,min score)

where this invocation of BNB-GQR uses either dD or dNG as
distance function and the current bound min score to prune
the search space. It further does not need to compute more
than one scenario per current score.

A. Complexity Result

The complexity of our algorithm is what one can ex-
pect when comparing with revision in propositional logic
(see [EG92]).

Proposition 4. For dX being either dD or dNG, determining
if K ◦X,∆2

A |= B or K ◦X,Θ A |= B is in O(NP log(n2))
where n is the number of variables.

This result directly follows from the algorithm. The di-
chotomic search requires log(n2) calls to find the size of the
optimal scenarios then finding all scenarios of that size is one
additional call.

V. EXPERIMENTAL STUDY

We ran an experimental evaluation of the proposed revision
and distance functions. For this we have focused on the RCC8
calculus as it is one of the most well-known calculi with
applications in Geo-Information Systems. Our experiments
were run on an AMD Opteron 2.3 GHz with 4 GB of memory
and a time limit of 2 hours. Due to a lack of real world data
we use randomly generated benchmark instances according to
two models. Both models rely on random constraint graphs,
taking the graphs size and degree as parameters.

The first model we use is the A′-model that generates
graphs with n nodes and a degree d. To form QCNs the
edges in these graphs are labeled with random relations drawn
from 2B without the empty relation. In particular, the degree
parameter d controls how constrained the instances are. With
a low degree instances are under-constrained and most likely
satisfiable. Similarly, with a high degree instances are over-
constrained and thus most likely unsatisfiable. As usual we
can use the parameter d to generate instances from the phase
transition. This is the de-facto standard model for QCNs,
used e.g., in [WW09]. We here restrict ourselves to satisfiable
instances only, that is, generated instances that are inconsistent
are discarded upon generation.

As an alternative second model we consider extracting a
scenario s with n nodes from a hard problem instance (e.g.,
an A′ model instance from the phase transition region) and
then overlaying it with an instance a from the A′ model – also
with n nodes – in the following way: if there is no relation
between variables vi and vj in a we use the relation in s; if
there is a relation between variables vi and vj in a we use
the union of this relation with the corresponding relation in s.
The instance a thus acts like noise on top of the scenario s.
Instances from this model can be seen as noisy input and we
denote this model by N . The degree of N is the degree of the
used a from the A′ model.

It should be noted here that the size parameter n corresponds
to the number of variables and thus the number of relations
is n2. The number of relations is however more important as
the number of possible scenarios in these models is bounded
by O(8n

2−d·n · 4d·n) = O(2(n2)).
For each considered setup (model, size, degree) we gener-

ated 1 000 pairs of random networks to conduct our revision
experiments. We then ran the suggested algorithm for syntactic
and semantic revision with both given distance functions.
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For the A′ model we present in Fig. 4, Fig. 5, and Fig. 6
the running times (in seconds), the average distances of the
best scenarios and the number of scenarios in the solutions for
QCNs of size 10 with different degrees. Please note here that
a constraint network of size 10 has 45 non-trivial relations.
With these random instances K ∧A was never consistent.

Revision ◦D,∆2
◦NG,∆2

◦D,Θ ◦NG,Θ

avg. time 2.244 1.026 54.696 9.079
std. dev 7.699 3.790 183.168 32.414

optimal bound 8.326 9.867 14.066 20.887
avg. scen. 562 452 174 399 61 853 6 444
std. dev 1 976 716 695 716 238 899 33 332

Fig. 4. Running times (s), minimal distance of solutions and number of
scenarios in the solutions for A′ with size 10 and degree 7.

Revision ◦D,∆2
◦NG,∆2

◦D,Θ ◦NG,Θ

avg. time 0.235 0.120 10.961 1.535
std. dev 0.761 0.348 33.953 2.835

optimal bound 10.865 12.924 17.446 26.374
avg. scen. 46 757 13 603 10 988 343
std. dev 173 028 50 817 35 531 1 330

Fig. 5. Running times (s), minimal distance of solutions and number of
scenarios in the solutions for A′ with size 10 and degree 8.

Revision ◦D,∆2
◦NG,∆2

◦D,Θ ◦NG,Θ

avg. time 0.030 0.019 3.404 0.550
std. dev 0.066 0.030 9.834 0.735

optimal bound 13.626 16.322 20.857 32.593
avg. scen. 3 624 863 4 030 45
std. dev 10 416 2 174 13 478 96

Fig. 6. Running times (s), minimal distance of solutions and number of
scenarios in the solutions for A′ with size 10 and degree 9.

For the A′ model, we can observe two interesting results.
With semantic revision we almost always get drastically less
scenarios in a solution than with syntactic revision, as semantic
revision is more fine-grained when it comes to differences
between a scenario and a network. However, we can also see
that syntactic revision is always faster here even though there
are far more scenarios to be computed. Further, these results
highlight that the distance functions have a severe impact on
the efficiency of the revision operation. The drastic distance
seems rather impractical here as it leads to larger solutions
and worse runtime.

As expected, the running times are high compared to
standard satisfiability tests for QCNs where sizes of more than
100 nodes are common. This may be explained by several
factors: firstly it is necessary to calculate all optimal scenarios
as opposed to satisfiability test that terminate on the first
scenario, secondly the total number of scenarios in instances
from the A′ model are extremely high (for a degree of 8 we
have seen instances with more than 1.3 billion scenarios and
there are even more scenarios in instances with lower degrees).

As can be seen from our results the problem caused by
the number of scenarios in solutions tends to disappear when
the degree of the networks increases and thus the networks
are tighter and have less scenarios in total (see Fig. 7 for an
overview of runtimes according to degree). While this is a
problem with the A′ model in particular, it is of course also
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Fig. 7. Overview of running times (s) according to degree for A′ model
with 10 nodes.

the case that such instances can appear in practice making
revision of QCNs very hard. We did not expect such issues
and as far as we know we are the first to discuss this very
important issue. Given the number of scenarios encountered
here, turning towards A′ instances with more nodes seems
infeasible for revision as there will be far too many scenarios
(in particular with drastic distances).

As the A′ model has proven troublesome we also consider
the N model. This model has in general less scenarios than
the A′ model for low degrees, as low degree here implies more
base relations from a scenario appear in the input. This allows
us to scale the number of nodes without introducing too many
scenarios. We present in Fig. 8, Fig. 9, and Fig. 10 the running
times (in seconds), the average distances of the best scenarios
and the number of scenarios in the solution set for instances
of the N model with 25 nodes and degree 10, 50 nodes and
degree 5, and 50 nodes and degree 8.

For the N -model there are much fewer scenarios with all
approaches. The general trends observed with the A-model
apply here as well. However, the difference in the number of
scenarios in the solution for drastic and neighborhood graph
distance is far more distinct than before. We conjecture this is
due to the lower number of scenarios in the instances which
makes the neighborhood distance more discriminative.

Unlike with the A′ model were all problems were solved by

Revision ◦D,∆2 ◦NG,∆2 ◦D,Θ ◦NG,Θ

avg. time 702.640 7.277 1711.857 102.412
std. dev 1284.515 24.426 1752.225 298.782

optimal bound 127.415 238.376 147.895 302.010
avg. scen. 47 654 662 102 835 283 818 221
std. dev 97 586 857 392 583 405 064 719
fail. (%) 18.2 0.1 58.5 0.6

Fig. 8. Running times (s), minimal distance of solutions and number of
scenarios in the solutions for N with size 25 and degree 10.

Revision ◦D,∆2
◦NG,∆2

◦D,Θ ◦NG,Θ

avg. time 3.244 0.048 291.703 1.695
std. dev 10.862 0.018 678.235 1.082

optimal bound 571.524 1206.413 595.610 1279.487
avg. scen. 60 950 12 19 795 3
std. dev 244 464 23 54 635 3
fail. (%) 0 0 1.6 0

Fig. 9. Running times (s), minimal distance of solutions and number of
scenarios in the solutions for N with size 50 and degree 5.



8

Revision ◦D,∆2
◦NG,∆2

◦D,Θ ◦NG,Θ

avg. time 521.108 0.240 1869.782 12.283
std. dev 1082.643 0.393 1925.819 15.778

optimal bound 546.057 1136.532 580.125 1250.131
avg. scen. 8 222 188 288 59 852 11
std. dev 19 319 972 794 79 558 18
fail. (%) 8.5 0 53 0

Fig. 10. Running times (s), minimal distance of solution and number of
scenarios in the solution for N with size 50 and degree 8.

all approaches, here many instances remained unsolved with
the drastic distance (for numbers see the tables). As the N -
model is closer to instances that can be expected in application
scenarios, this underlines the importance of the neighborhood
distance and its superiority to the drastic distance.

VI. CONCLUSION

We proposed two novel revision operations for qualitative
information based on the merging operators for such infor-
mation introduced by Condotta et al.: a syntactic operation
◦X,∆2

and a semantic operation ◦X,Θ. These operations have
been extensively studied and have shown good results rela-
tively to the AGM postulates. Further, we have proposed new
algorithms for these operators and discussed their complexity.
These revision operations have been implemented and a first
experimental study of this implementation has been provided.
Our study, which seems to be the first in this line of research,
highlights several shortcomings of the revision (and merging)
operators that have been overlooked so far.

In particular, both revision operations show good theoretical
behavior with respect to the AGM postulates, but nevertheless,
the first results show that this task is extremely difficult to
use in real applications. While solvers might be improved, the
extremely high number of solutions in even small qualitative
constraint networks will prevent any implementation to run
on reasonably sized networks. This shows the definitions
of merging operations are not yet satisfactory (the same
problem will arise in the merging case especially for the
operators involving the max-aggregation) and that, all the
more, the straightforward definition of revision from those
merging operations are not satisfactory. Maybe the use of
selection functions within the revision process can help: as
the number of solutions is extremely high, it may be useful
to have a selection function that can a priori discard most
of the solutions and thus save time. Our results further show
shortcomings of the common distance functions, as even
small input formulas can lead to far too many scenarios with
the same optimal distance. More refined and discriminating
distances are an interesting line of work.

It is also interesting to study how this revision implementa-
tion can be extended to the update problem and how it behaves
in this context. The definition of update would restrict the
change around the variable involved in the update process
(e.g., if the relation between v1 and v2 is updated then the
relation between v5 and v6 would remain unchanged in the
update process while it may change during revision). Future
work will also investigate more restrictive definitions in order
to make implementations applicable to large scale scenarios.

Further, we also want to continue the work on analyzing
postulates for classical revision operations on QCNs [Dos11].
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