
Termination of Logic Programs Using Various
Dynamic Selection Rules

Jan–Georg Smaus

Institut für Informatik, Universität Freiburg, Georges-Köhler-Allee 52, 79110
Freiburg im Breisgau, Germany, smaus@informatik.uni-freiburg.de

Abstract. We study termination of logic programs with dynamic sched-
uling, as it can be realised using delay declarations. Following previous
work, our minimum assumption is that derivations are input-consuming,
a notion introduced to define dynamic scheduling in an abstract way.
Since this minimum assumption is sometimes insufficient to ensure ter-
mination, we consider here various additional assumptions on the permis-
sible derivations. In one dimension, we consider derivations parametrised
by any property that the selected atoms must have, e.g. being ground
in the input positions. In another dimension, we consider both local and
non-local derivations. In all cases, we give sufficient criteria for termina-
tion. The dimensions can be combined, yielding the most comprehensive
approach so far to termination of logic programs with dynamic schedul-
ing. For non-local derivations, the termination criterion is even necessary.

1 Introduction

Termination of logic programs has been widely studied for the LD selection rule,
i.e., derivations where the leftmost atom in a query is selected [1, 4, 8–11, 16].
This rule is adequate for many applications, but there are situations, e.g., in the
context of parallel executions or the test-and-generate paradigm, that require
dynamic scheduling, i.e., some mechanism to determine at runtime which atom
is selected. Dynamic scheduling can be realised by delay declarations [12, 23],
specifying that an atom must be instantiated to a certain degree to be selected.

Termination of logic programs with dynamic scheduling has been studied for
about a decade [3, 6, 7, 13–15, 17, 19, 22], starting with observations of surpris-
ingly complex (non-)termination behaviour of simple programs such as APPEND
or PERMUTE with delay declarations [17]. In our own research [7, 19, 22], we found
that modes (input and output), while arguably compromising the “pure logical”
view of logic programming, are the key to understanding this behaviour and
achieving or verifying termination. We have proposed input-consuming deriva-
tions (where in each resolution step, the input arguments of the selected atom
do not become instantiated) as a reasonable minimum assumption about the
selection rule, abstracting away from the technicalities of delay declarations.

In this paper, we study termination of logic programs for input-consuming
derivations with various additional assumptions about the selection rule, e.g. say-
ing that the selected atom must be ground in its input positions. Some au-
thors have considered termination under such strong assumptions [13–15, 17, 22],

partly because certain programs do not terminate for input-consuming deriva-
tions, but also because termination for input-consuming derivations is so hard
to show: termination proofs usually use level mappings, which measure the size
of an atom; an atom is bounded if its level is invariant under instantiation. Now,
the usual reasoning that there is a decrease in level mapping between a clause
head and the clause body atoms does not readily apply to derivations where
selected atoms are not necessarily bounded.

After intensive studies of the semantics [6], and restricting to a class of pro-
grams that is well-behaved wrt. the modes, we now have a sufficient and neces-
sary criterion for termination of input-consuming derivations [7]. The key con-
cept of that approach is a special notion of model, bottom-up computable by a
variant of the well-known TP -operator. The notion reflects the answer substitu-
tions computed by input-consuming derivations. We build on this work here.

We consider additional assumptions in two dimensions. Certain additional
assumptions about derivations, e.g. the one above, can be formulated in terms of
the selected atoms alone. We do this abstractly by saying that each selected atom
must have a property P. There are some natural conditions on P mentioned later.
It turns out that the approach of [7] can be easily adapted to give a sufficient
criterion for termination of P-derivations [20]. The semantic notions (model) of
[7] could be used without change. In this paper we give a criterion that is also
necessary. To this end, the approach of [7] required some small modifications in
many places. More specifically, the model notion had to be modified.

Other additional assumptions about derivations cannot be expressed in terms
of the selected atoms alone. We consider here one such assumption, that of
derivations being local, meaning that in a resolution step, the most recently
introduced atoms must be resolved first [14]. This is not a property of a single
atom, but of atoms in the context of a derivation. To deal with local selection
rules, we modify the model notion of [7] so that it reflects the substitutions
computed by local derivations. Based on such models, we can give a sufficient
criterion for termination of local derivations, parametrised by a P as before.

We thus present a framework for showing termination of logic programs with
dynamic scheduling. The initial motivation for this work was our impression
that while stronger assumptions than that of input-consuming derivations are
sometimes required, locality is too strong. More specifically, by instantiating the
framework appropriately, we can now make the following five points:

1. There is a class of recursive clauses, using a natural pattern of program-
ming, that narrowly misses the property of termination for input-consuming
derivations. Put simply, theses clauses have the form p(X) ← q(X, Y), p(Y),
where the mode is p(input), q(input , output). Due to the variable in the
head, it follows that an atom using p may always be selected, and hence we
have non-termination. Sometimes, just requiring the argument of p to be at
least non-variable is enough to ensure termination. This can be captured by
setting (the relevant subset of) P to {p(t) | t is non-variable} (Ex. 17).

2. Some programs require for termination that selected atoms must be bounded
wrt. a level mapping |.|. This is related to speculative output bindings, and

the PERMUTE program is the standard example [17]. This can be captured in
our approach by setting P to the set of bounded atoms (Ex. 14).

3. For some programs it is useful to consider “hybrid” selection rules, where
differently strong assumptions are made for different predicates. For exam-
ple, one might require ground input positions for some predicates but no
additional assumptions for other predicates. This can be captured by setting
P accordingly (Ex. 18).

4. A method for showing termination of programs with delay declarations has
been proposed in [14], assuming local selection rules. In our opinion, this
assumption is unsatisfactory. No implementation of local selection rules is
mentioned. Local selection rules do not permit any coroutining. But most
importantly, while “the class of local selection rules [. . .] supports simple
tools for proving termination” [14], in practice, it does not seem to make
programs terminate that would not terminate otherwise. In fact, we can show
termination for PERMUTE without requiring local selection rules (Ex. 14).

5. In spite of point 4, there are programs that crucially rely on the assumption of
local selection rules for termination. We are only aware of artificial examples,
but our treatment of local selection rules helps to understand the role this
assumption plays in proving termination and why this assumption is not
required for more realistic examples (Ex. 23).

The rest of this paper is organised as follows. The next section gives some pre-
liminaries. In Sec. 3, we adapt the semantics approach of [7] to P-derivations.
In Sec. 4, we study termination for such derivations. In Sec. 5, we adapt our
approach to local selection rules. In Sec. 6, we conclude.

2 Preliminaries

We assume familiarity with the basic notions and results of logic program-
ming [1]. For m,n ∈ N0, m ≤ n, the set {m, . . . , n} is denoted by [m..n]. For
any kind of object that we commonly denote with a certain letter, we use the
same letter in boldface to denote a finite sequence of such objects [1].

We denote by Term and Atom the set of terms and atoms of the language
in which the programs and queries in question are written. The arity n of a
predicate symbol p is indicated by writing p/n. We use typewriter font for logical
variables, e.g. X, Ys, and lower case letters for arbitrary terms, e.g. t, s, xs.

For any syntactic object o, we denote by Vars(o) the set of variables occurring
in o. A syntactic object is linear if every variable occurs in it at most once.

A substitution is a finite mapping from variables to terms. The domain
(resp., set of variables in the range) of a substitution σ is denoted as Dom(σ)
(resp., Ran(σ)). We denote by σ|o the restriction of a substitution σ to Vars(o).
The result of the application of a substitution σ to a term t is called an instance
of t and it is denoted by tσ. We say t is a variant of t′ if t and t′ are instances
of each other. A substitution σ is a unifier of terms t and t′ if tσ = t′σ. We
denote by mgu(t, t′) any most general unifier (mgu) of t and t′.

A query is a finite sequence of atoms A1, . . . , Am, denoted 2 when m = 0.
A clause is a formula H ← B where H is an atom (the head) and B is a
query (the body). H ← 2 is simply written H ←. A program is a finite set
of clauses. We denote atoms by H,A, B, C, D,E, queries by Q,A,B,C,D,E,
clauses by c, d and programs by P . We often suppress reference to P .

If A, B,C is a query and c = H ← B is a fresh variant of a clause, and B
and H unify with mgu σ, then (A,B,C)σ is called a resolvent of A, B,C and
H ← B with selected atom B and mgu σ. We call A, B,C σ=⇒c (A,B,C)σ
a derivation step, in short: step. If c is irrelevant then we drop the reference.
A sequence δ = Q0

σ1=⇒c1 Q1
σ2=⇒c2 · · · is called a derivation of P ∪ {Q0}.

If δ = Q0
σ1=⇒c1 · · ·

σn=⇒cn
Qn is a finite derivation, we also denote it as

δ = Q0
σ−→ Qn where σ = σ1 · · ·σn. We call len(δ) = n the length of δ.

2.1 Moded Programs

For a predicate p/n, a mode is an atom p(m1, . . . ,mn), where mi ∈ {I ,O} for
i ∈ [1..n]. Positions with I (O) are called input (output) positions of p. To
simplify the notation, an atom p(s, t) means: s is the vector of terms filling in
the input positions, and t is the vector of terms filling in the output positions.

We assume that the mode of each predicate is unique. One way of ensuring
this is to rename predicates whenever multiple modes are desired.

Several notions of “modedness” have been proposed, e.g. nicely-modedness
and well-modedness [1]. We assume here simply moded programs [2], a special
case of nicely moded programs. Most practical programs are simply moded [7],
although we will also give an example of a clause that is not.

Note that the use of the letters s and t is reversed for clause heads. We
believe that this notation naturally reflects the data flow within a clause.

Definition 1. A clause p(t0, sn+1)← p1(s1, t1), . . . , pn(sn, tn) is simply
moded if t1, . . . , tn is a linear vector of variables and for all i ∈ [1..n]

Vars(ti) ∩Vars(t0) = ∅ and Vars(ti) ∩
i⋃

j=1

Vars(sj) = ∅.

A query B is simply moded if the clause dummy←B is simply moded. A
program is simply moded if all of its clauses are simply moded.

Thus, a clause is simply moded if the output positions of body atoms are filled
in by distinct variables, and every variable occurring in an output position of a
body atom does not occur in an earlier input position.

As an example of a clause that is not simply moded, consider the clause

reverse([X|Xs],Ys) ← append(Zs,[X],Ys), reverse(Xs,Zs).

in mode reverse(O , I), append(O ,O , I): [X] is not a variable. In Ex. 16, we give
a slightly modified version of the NAIVE REVERSE program that is simply moded.
Robustly typed programs [22] are in some sense a generalisation of simply moded
programs, and include the above clause. However, the results of this paper have
so far not been generalised to robustly typed programs.

2.2 Norms and Level Mappings

Proofs of termination usually rely on the notions of norm and level mapping for
measuring the size of terms and atoms. These concepts were originally defined
for ground objects [10], but here we define them for arbitrary objects (in [18], we
call such norms and level mappings generalised). To show termination of moded
programs, it is natural to use moded level mappings, where the level of an atom
depends only on its input positions [7].

Definition 2. A norm is a function |.| : Term→ N0, and a level mapping
is a function |.| : Atom→ N0, both invariant under renaming. A moded level
mapping is a level mapping where for any s, t and u, |p(s, t)| = |p(s,u)|.

An atom A is bounded wrt. the level mapping |.| if there exists k ∈ N such
that for every substitution σ, we have k > |Aσ|.

Our method of showing termination, following [7], inherently relies on measuring
the size of atoms that are not bounded. In Def. 13, a decrease in level mapping
must be shown (also) for such atoms. So it is important to understand that
stating |A| = k is different from stating that A is bounded by k.

One commonly used norm is the term size norm, defined as

|f(t1 , . . . , tn)| = 1 + |t1|+ . . . + |tn| if n > 0,
|t| = 0 if t constant/variable.

Another widely used norm is the list-length function, defined as

|[t|ts]| = 1 + |ts|,
|t| = 0 if t 6= [|] (in particular, if t variable).

For a nil-terminated list [t1, . . . , tn], the list-length is n.

2.3 Selection Rules in the Literature

A selection rule is some rule stating which atom in a query may be selected in
each step. We do not give any formal definition here; instead we define various
kinds of derivations and state our formal results in terms of those.

The notion of input-consuming derivation was introduced in [19] as formalism
for describing dynamic scheduling in an abstract way.

Definition 3. A derivation step A, p(s, t),C σ=⇒ (A,B,C)σ is input-
consuming if sσ = s. A derivation is input-consuming if all its steps are
input-consuming.

Local derivations were treated in [14]. Consider a query, containing atoms A and
B, in a derivation ξ. Then A is introduced more recently than B if the step
introducing A comes after the step introducing B, in ξ.

Definition 4. A derivation is local if in each step, there is no more recently
introduced atom in the current query than the selected atom.

Intuitively, in a local derivation, once an atom is selected, that atom must be
resolved away completely before any of its siblings may be selected.

3 Input-Consuming P-Derivations

We consider derivations restricted by some property P of the selectable atoms.
There are two conditions on P. Some of our results would hold without these
conditions, but the conditions are so natural that we do not bother with this.

Definition 5. A P-derivation is a derivation such that each selected atom is
in P, where

1. P is a set of atoms closed under instantiation;
2. for any s, t and u, p(s, t) ∈ P implies p(s,u) ∈ P.

Note that the atoms of a simply moded query have variables in their output posi-
tions, and so it would clearly be pathological to require a particular instantiation
of the output arguments of an atom for that atom to be selected.

This is the first published work introducing the concept of P-derivations.
Of course, a P-derivation can be qualified further by saying input-consuming
P-derivation etc.

Input-consuming (P-)derivations may end in a query where no atom can be
selected. This situation is called deadlock. It is a form of termination.

We now define simply-local substitutions, which reflect the way simply moded
clauses become instantiated in input-consuming derivations [7]. Given a clause
c = p(t0, sn+1)← p1(s1, t1), . . . , pn(sn, tn), first t0 becomes instantiated, and the
range of that substitution contains only variables from outside of c. Then, by
resolving p1(s1, t1), t1 becomes instantiated, and the range of that substitution
contains variables from outside of c and from s1. Continuing in the same way,
finally, tn becomes instantiated, and the range of that substitution contains
variables from outside of c and from s1 . . . sn.

Definition 6. The substitution σ is simply-local wrt. the clause c =
p(t0, sn+1)← p1(s1, t1), . . . , pn(sn, tn) if there exist substitutions σ0, σ1 . . . , σn

and disjoint sets V0, V1, . . . , Vn consisting of fresh (wrt. c) variables such that
σ = σ0σ1 · · ·σn, where for i ∈ [0..n],

– Dom(σi) ⊆ Vars(ti),
– Ran(σi) ⊆ Vars(siσ0σ1 · · ·σi−1) ∪ Vi.1

σ is simply-local wrt. a query B if σ is simply-local wrt. the clause dummy←B.

In the case of a simply-local substitution wrt. a query, σ0 is the identity.

Example 7. Consider DELETE in Fig. 1, with mode delete(I ,O ,O). The sub-
stitution σ = {Y/V, Zs/[W], Xs/[], X/W} is simply-local wrt. the recursive clause:
let σ0 = {Y/V, Zs/[W]}, σ1 = {X/W, Xs/[]}, and σ2 = ∅; then Dom(σ0) ⊆ {Y, Zs},
Ran(σ0) ⊆ V0 where V0 = {V, W}, Dom(σ1) ⊆ {Xs, X}, Ran(σ1) ⊆ Vars(Zsσ0).

1 Note that s0 is undefined. By abuse of notation, Vars(s0 . . .) = ∅.

permute([],[]).

permute(Ys,[X|Xs]) ←
delete(Ys,Zs,X),

permute(Zs,Xs).

delete([X|Xs],Xs,X).

delete([Y|Zs],[Y|Xs],X) ←
delete(Zs,Xs,X), call late.

call late.

Fig. 1. PERMUTE (DELETE)

We can safely assume that all the mgu’s employed in an input-consuming deriva-
tion of a simply moded program with a simply moded query are simply-local,
that is to say: if A, B,C =⇒ (A,B,C)σ is an input-consuming step using clause
c = H ← B, then σ = σ0σ1 and σ0(= σ|H) is simply-local wrt. the clause H←
and σ1(= σ|B) is simply-local wrt. the atom2 B [7, Lemma 3.8]. This assumption
is crucial in the proofs of the results of this paper.

In [7], a particular notion of model is defined, which reflects the substitutions
that can be computed by input-consuming derivations. According to this notion,
a model is a set of not necessarily ground atoms. Here, we generalise this notion
so that it reflects the substitutions that can be computed by input-consuming
P-derivations. This generalisation is crucial for the results in Subsec. 4.3.

Definition 8. Let M ⊆ Atom. We say that M is a simply-local P-model of
c = H ← B1, . . . , Bn if for every substitution σ simply-local wrt. c,

if B1σ, . . . , Bnσ ∈M and Hσ ∈ P then Hσ ∈M . (1)

M is a simply-local P-model of a program P if M is a simply-local P-model
of each clause of P .

We denote the set of all simply moded atoms2 for the program P by SMP .
Least simply-local P-models, possibly containing SMP , can be computed by

a variant of the well-known TP -operator [7].

Definition 9. Given a program P and I ⊆ Atom, we define

T slP
P (I) = {Hσ | ∃ c = H←B1, . . . , Bn variant of a clause in P,

σ is simply-local wrt. c, B1σ, . . . , Bnσ ∈ I, Hσ ∈ P},
TSLP

P (I) = I ∪ T slP
P (I).

We denote the least simply-local P-model of P containing SMP by PM SLP
P .

Example 10. Consider the program DELETE (see Fig. 1) ignoring the call late
predicate. Recall Ex. 7. Let P be the set containing all atoms using delete.
SMP consists of all atoms of the form delete(vs, Us, U) where Us, U /∈ Vars(vs).
To construct PM SLP

P , we iterate TSLP
P starting from any atom in SMP (the

resulting atoms are written on the l.h.s. below) and the fact clause (r.h.s.). Each

2 We sometimes say “atom” for “query containing only one atom”.

line below corresponds to one iteration of TSLP
P . We have PM SLP

P =

{ delete(vs, Us, U),
delete([y1|vs], [y1|Us], U), delete([x1|xs1], xs1, x1),
delete([y2, y1|vs], [y2, y1|Us], U), delete([y1, x1|xs1], [y1|xs1], x1),
.
| vs, xs1, x1, y1, y2, . . . arbitrary where Us, U /∈ Vars(vs)}.

(2)

Observe the variable occurrences of U, Us in the atoms on the l.h.s. In Ex. 14, we
will see the importance of such variable occurrences.

In the above example, we assume that P is the set of all atoms, and so the simply-
local P-model is in fact a simply-local model [7]. In order to obtain a necessary
termination criterion, the approach of [7] required some small modifications in
many places, one of them being the generalisation of simply-local models to
simply-local P-models. However, we are not aware of a practical situation where
one has to consider a simply-local P-model that is not a simply-local model.

The model semantics given here is equivalent to the operational semantics.
We do not formally state this equivalence here for lack of space, but it is used
in the proofs of the termination results of the following sections [21].

4 Termination without Requiring Local Selection Rules

4.1 Simply P-Accceptable Programs

The following concept is adopted from Apt [1].

Definition 11. Let p, q be predicates in a program P . We say that p refers to
q if there is a clause in P with p in its head and q in its body, and p depends
on q (written p w q) if (p, q) is in the reflexive, transitive closure of refers to.
We write p = q if p w q and q 6w p, and p ' q if p w q and q w p.

We extend this notation to atoms, e.g. p(s, t) ' q(u,v) if p ' q.

Definition 12. A program is input P-terminating if all input-consuming P-
derivations starting in a simply-moded query are finite.

Previously, we had defined input termination, which is input P-termination for
P being the set of all atoms [7]. We now give a sufficient and necessary criterion
for input P-termination.

Definition 13. Let P be a simply moded program, |.| a moded level mapping
and M a simply-local P-model of P containing SMP . A clause H←B1 , . . . , Bn

is simply P-acceptable by |.| and M if for every substitution σ simply-local
wrt. it, for all i ∈ [1..n],

B1σ, . . . , Bi−1σ ∈M and H ' Bi and Hσ ∈ P and Biσ ∈ P imply |Hσ| > |Biσ|.
(3)

The program P is simply P-acceptable by |.| and M if each clause of P is
simply P-acceptable by |.| and M .

The difference to the definition of a simply acceptable clause [7] is in the con-
ditions Biσ ∈ P and Hσ ∈ P. The condition Biσ ∈ P may seem more natural
than the condition Hσ ∈ P, since σ, due to the model condition, reflects the
degree of instantiation that Bi may have when it is selected. But for i = 1, σ
reflects the degree of instantiation of the entire clause obtained by unification
when the clause is used for an input-consuming P-derivation step. Moreover, the
condition Hσ ∈ P is important for showing necessity (Subsec. 4.3).

Note that a decrease between the head and body atoms must be shown only
for the atoms where H ' Bi. The idea is that termination is shown incrementally,
so we assume that for the Bi where H = Bi, termination has been shown already.
One can go further and explicitly give modular termination results [7, 10], but
this is a side issue for us and we refrain from it for space reasons.

The following is the standard example of a program that requires bounded-
ness as additional condition on selected atoms (see point 2 in the introduction).

Example 14. Consider PERMUTE in mode permute(I ,O), delete(I ,O ,O)
(Fig. 1). Recall Ex. 10. As norm we take the list-length function, and we de-
fine the level mapping as |permute(zs, xs)| = |zs| and |delete(xs, zs, x)| = |xs|.
Now for all atoms delete(ys, zs, x) ∈ PM SLP

P , we have |ys| ≥ |zs|; for the ones
on the r.h.s. even |ys| > |zs|. Let P be the set of bounded atoms wrt. |.|.

Now let us look at the recursive clause for permute. We verify that the second
body atom fulfils the requirement of Def. 13, where M is PM SLP

P . So we have to
consider all simply-local substitutions σ such that delete(Ys, Zs, X)σ ∈ PM SLP

P .
For the atoms on the l.h.s. in (2), this means that

σ ⊇ {Ys/[yn, . . . , y1|vs], Zs/[yn, . . . , y1|Us], X/U} (n ≥ 0).

Clearly, permute(Zs, Xs)σ /∈ P, and hence no proof obligation arises. For the
atoms on the r.h.s. in (2), this means that

σ ⊇ {Ys/[yn, . . . , y1, x1|xs1], Zs/[yn, . . . , y1|xs1], X/x1} (n ≥ 0).

But then |permute(Ys, [X|Xs])σ| > |permute(Zs, Xs)σ|.
The other clauses are trivial to check, and so PERMUTE is simply P-acceptable.

Observe that only the model of DELETE played a role in our argument, not the
model of PERMUTE.

The atom call late only serves the purpose of allowing for non-local deriva-
tions, to emphasise that locality is not needed for termination (see point 4 in
Sec. 1). Without this atom, all P-derivations would automatically be local.

The following infinite derivation (ignoring call late), input-consuming but
not a P-derivation, demonstrates that the program does not input-terminate:

permute([1], W) =⇒ delete([1], Zs′, X′), permute(Zs′, Xs′) =⇒
delete([], Xs′′, X′), permute([1|Xs′′], Xs′) =⇒
delete([], Xs′′, X′), delete([1|Xs′′], Zs′′′, X′′′), permute(Zs′′′, Xs′) =⇒
delete([], Xs′′, X′), delete(Xs′′, Xs′′′′, X′′′), permute([1|Xs′′′′], Xs′) =⇒ . . .

reverse([X|Xs],Ys) ←
append sing(Zs,X,Ys),

reverse(Xs,Zs).

reverse([],[]).

append sing([X|Xs],Y,[X|Zs]) ←
append sing(Xs,Y,Zs).

append sing([],Y,[Y]).

Fig. 2. NAIVE REVERSE

4.2 Sufficiency of Simply P-Acceptability

In [7], we find a result stating that simply acceptable programs are input ter-
minating. The following theorem generalises this result to P-derivations. The
proofs of all results of this paper can be found in [21].

Theorem 15. Let P be a simply moded program. Let M be a simply-local P-
model of P containing SMP . Suppose that P is simply P-acceptable by M and
a moded level mapping |.|. Then P is input P-terminating.

We give three further examples. The first supports point 2 in the introduction.

Example 16. The program NAIVE REVERSE (Fig. 2) in mode reverse(O , I),
append sing(O ,O , I) is not input terminating, but it is input P-terminating
for P chosen in analogy to Ex. 14.

The next example illustrates point 1 in the introduction.

Example 17. Let PERMUTE2 be the program obtained from PERMUTE by replacing
the recursive clause for delete by its most specific variant [17]:

delete([Y,H|T],[Y|Xs],X) ←delete([H|T],Xs,X).

Assume |.| and the modes as in Ex. 14. As in Ex. 10 we have

SMP = {delete(vs, Us, U) | vs arbitrary},

but when we start applying TSLP
P to the atoms in SMP , then due to the mod-

ified clause above, only the atoms of the form delete([v|vs ′], Us, U) contribute;
delete([], Us, U) does not contribute:

PM SLP
P = {delete(vs, Us, U),

delete([y1, v, vs ′], [y1|Us], U), delete([x1|xs1], xs1, x1),
delete([y2, y1, v|vs ′], [y2, y1|Us], U), delete([y1, x1|xs1], [y1|xs1], x1),
.
| vs, v , vs ′, xs1, x1, y1, y2, . . . arbitrary where Us, U /∈ Vars(vs, v , vs ′)}.

We show that the program is simply P-acceptable by |.| and PM SLP
P , where P

is the set of atoms that are at least non-variable in their input positions. As in
Ex. 14, we focus on the second body atom of the recursive clause for permute. We
have to consider all simply-local substitutions σ such that delete(Ys, Zs, X)σ ∈
PM SLP

P , and moreover permute(Zs, Xs)σ ∈ P. It is easy to see that for all such
σ, we have |permute(Ys, [X|Xs])σ| > |permute(Zs, Xs)σ|. The important point is
that the atoms of the form delete(vs, Us, U) ∈ PM SLP

P do not give rise to a
proof obligation since permute(Us,) /∈ P.

The following is an example of “hybrid” selection rules (point 3 in Sec. 1).

Example 18. For space reasons, we only sketch this example. A program for the
well-known n-queens problem has the following main clause:

nqueens(N,Sol) ←
sequence(N,Seq), permute(Seq,Sol), safe(Sol).

We could implement permute as in Ex. 14 or as in Ex. 17. In either case, we
have a non-trivial P. In contrast, P may contain all atoms using safe. In fact,
for efficiency reasons, atoms using safe should be selected as early as possible.

Note that such a hybrid selection rule can be implemented by means of the
default left-to-right selection rule [22]. To this end, the second and third atoms
must be swapped. Since any results in this paper do not actually depend on the
textual position of atoms, they still apply to the thus modified program.

4.3 Necessity of Simply P-Acceptability

We now give the converse of Theorem 15, namely that our criterion for proving
input P-termination wrt. simply moded queries is also necessary. The level map-
ping is constructed as a kind of tree that reflects all possible input-consuming
P-derivations, following the approach of [7] which in turn is based on [5]. But
for space reasons, we only state the main result.

Theorem 19. Let P be a simply moded program and P a set of atoms accord-
ing to Def. 5. If P is input P-terminating then P is P-simply acceptable. In
particular, P is P-simply acceptable by PM SLP

P .

5 Local Selection Rules

In this section, we adapt the results of the two previous sections to local selection
rules. First note that local derivations genuinely need special treatment, since
one cannot express locality as a property P of the selected atoms. Note also that
local [14] and simply-local [6, 7] are completely different concepts.

Assuming local selection rules is helpful for showing termination, since one
can exploit model information almost in the same way as for LD derivations [4].
In fact, some arguments are simpler here than in the previous two sections,
manifest in the proofs [21]. However, this is also due to the fact that we currently
just have a sufficient termination criterion for local derivations. How this criterion
must be adapted to become also necessary is a topic for future work.

A simply-local model [7] is a simply-local P-model where P is the set of all
atoms. Analogously, we write PM SL

P instead of PM SLP
P in this case. To reflect

the substitutions that can be computed by local derivations, we need as model
the union of a simply-local model (for the completely resolved atoms) and the
set of simply moded atoms (for the unresolved atoms).

Let M be the least simply-local model of P (note: not the least simply-local
model of P containing SMP) We define LM SL

P := SMP ∪M . So LM SL
P contains

SMP , but unlike PM SL
P , does not involve applications of TSL

P to atoms in SMP .

Example 20. Let P be the following program in mode even(I), minus2(I ,O):

even(X) ← minus2(X,Y), even(Y).
even(0).

minus2(X,s(X)) ← fail.
minus2(s(s(X)),X).

We have

SMP = {even(x), minus2(x, Z), fail | x arbitrary where Z /∈ Vars(x)}
PM SL

P = SMP ∪ {even(0), minus2(s(s(x)), x), minus2(x, s(x)),
even(s(s(x))), even(x) | x arbitrary}.

The minimal simply-local model of P , not containing SMP , is the following:

M = {even(s2n(0)), minus2(s(s(x)), x) | n ∈ N0, x arbitrary}.

Then LM SL
P = SMP∪M . In contrast to PM SL

P we have minus2(x, s(x)) /∈ LM SL
P .

This reflects that in a local derivation, resolving an atom with the clause head
minus2(X, s(X)) will definitely lead to finite failure. For this program, locality is
crucial for termination (see point 5 in Sec. 1).

The example3 is contrived since the first clause for minus2 is completely
unnecessary, yet natural enough to suggest that there might be a “real” example.

We now proceed with the treatment of termination.

Definition 21. A program is local P-terminating if all input-consuming local
P-derivations starting in a simply-moded query are finite.

We now give a sufficient criterion for local P-termination.

Definition 22. Let P be a simply moded program, |.| a moded level mapping
and M a set such that SMP ⊆ M and for some simply-local model M ′ of P ,
M ′ ⊆ M . A clause A←B1 , . . . , Bn is local P-acceptable by |.| and M4 if
for every substitution σ simply-local wrt. it, for all i ∈ [1..n],

(B1, . . . , Bi−1)σ ∈M and A ' Bi and Biσ ∈ P implies |Aσ| > |Biσ|.

The program P is local P-acceptable by |.| and M if each clause of P is local
P-acceptable by |.| and M .

Example 23. Consider again the program in Ex. 20, in particular the recursive
clause. Let P be the set of atoms where all input arguments are non-variable and
|even(x)| = |minus2(x, y)| = |x| where |.| is the term size norm. We verify that
the second body atom fulfils the requirement of Def. 22, taking M = LM SL

P . We
have to consider all simply-local σ such that minus2(X, Y)σ ∈ LM SL

P . So

σ ⊇ {X/x, Y/Z} or σ ⊇ {X/s(s(x)), Y/x}.
3 Thanks to Felix Klaedtke for inspiring the example!
4 This terminology should be regarded as provisional. If a sufficient and necessary con-

dition for local P-termination different from the one given here is found eventually,
then it should be called “local P-acceptable” rather than inventing a new name.

In the first case, even(Y)σ /∈ P and hence no proof obligation arises. In the second
case, |even(X)σ| > |even(Y)σ|. Hence the clause is local P-acceptable. Note that
the clause is not simply P-acceptable (due to minus2(x, s(x)) ∈ PM SL

P).

Observe that unlike [14], we do not require that the selected atoms must be
bounded. In our formalism, the instantiation requirements of the selected atom
and the locality issue are two separate dimensions.

Theorem 24. Let P be a simply moded program. Let M be a set such that
SMP ⊆ M and for some simply-local model M ′ of P , M ′ ⊆ M . Suppose that
P is local P-acceptable by M and a moded level mapping |.|. Then P is local
P-terminating.

6 Conclusion

We have presented a framework for proving termination of logic programs with
dynamic scheduling. We have considered various assumptions about the selection
rule, in addition to the assumption that derivations must be input-consuming.
On the one hand, derivations can be restricted by giving a property P that the
selected atoms must fulfil. On the other hand, derivations may or may not be
required to be local. These aspects can be combined freely. We now refer back
to the five points in the introduction.

Some programs terminate under an assumption about the selection rule
that is just slightly stronger than assuming input-consuming derivations (point
1). Others need what we call strong assumptions: the selected atom must be
bounded wrt. a level mapping (point 2). Different versions of PERMUTE, which is
the standard example of a program that tends to loop for dynamic scheduling
[17], are representatives of these program classes. Then there are programs for
which one should make hybrid assumptions about the selection rule: depend-
ing on the predicate, an atom should be bounded in its input positions or not
(point 3). Considering our work together with [7], it is no longer true that “the
termination behaviour of ‘delay until nonvar’ is poorly understood” [14].

The authors of [14] have assumed local selection rules. There are programs
for which this assumption is genuinely needed. Abstractly, this is the case for a
query A1, . . . , An where for some atom Ai and some clause c, the subderivations
associated with Ai and c all fail, but at the same time, the unification between Ai

and c’s head produces a substitution that may trigger an infinite derivation for
some atom Aj , where j > i. In this case, locality ensures failure of Ai before the
infinite derivation of Aj can happen. The comparison between our model notions
(see Ex. 20) also clarifies the role of locality: substitutions obtained by partial
resolution of an atom can be disregarded (point 5). But we are not aware of a
realistic program where this matters (point 4). As an obvious consequence, we
have no realistic program that we can show to terminate for local derivations and
the method of [14] cannot. But the better understanding of the role of locality
may direct the search for such an example.

For derivations that are not assumed to be local, we obtain a sufficient and
necessary termination criterion. For local derivations, our criterion is sufficient
but probably not necessary. Finding a necessary criterion is a topic for future
work. This would be an important advance over [14], since the criterion given
there is known not to be necessary.

The concepts of input-consuming derivations and P-derivations are both
meant to be abstract descriptions of dynamic scheduling. Delay declarations
that check for arguments being at least non-variable, or at least non-variable
in some sub-argument [12, 23], are often adequate for ensuring input-consuming
derivations with P stating that the input arguments are at least non-variable
(see Ex. 17). Delay declarations that check for groundness are adequate for en-
suring boundedness of atoms (see Ex. 14). In general groundness is stronger
than boundedness, but we are not aware of delay declarations that could check
for boundedness, e.g., check for a list being nil-terminated. This deficiency has
been mentioned previously [13]. Hybrid selection rules can be realised with delay
declarations combined with the default left-to-right selection rule (see Ex. 18).

Concerning automation of our method, the problems are not so different from
the ones encountered when proving left-termination: we have to reason about
infinite models — to do so, abstract interpretation approaches, where terms
are abstracted as their norms, may be useful [11, 16]. It seems that in our case
automation is additionally complicated because we have to consider infinitely
many simply-local substitutions. But looking at Ex. 10, we have terms y1, y2, . . .
that are arbitrary and whose form does not affect the termination problem.
Hence it may be sufficient to consider most general substitutions in applications
of TSLP

P .
Another topic for future work is, of course, a practical evaluation, looking

at a larger program suite. In this context, it would be desirable to infer a P, as
unrestrictive as possible, automatically. Also, we should consider the following
issues: (1) possible generalisations of the results in Sec. 5, leaving aside the as-
sumption of input-consuming derivations; (2) a termination criterion that would
capture programs that terminate for certain (intended) queries, but not for all
queries; (3) relaxing the condition of simply moded programs.

References

1. K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.
2. K. R. Apt and S. Etalle. On the unification free Prolog programs. In

A. Borzyszkowski and S. Sokolowski, editors, Proc. of the 18th International Sym-
posium on Mathematical Foundations of Computer Science, volume 711 of LNCS,
pages 1–19. Springer-Verlag, 1993.

3. K. R. Apt and I. Luitjes. Verification of logic programs with delay declarations.
In V. S. Alagar and M. Nivat, editors, Proc. of the 4th International Conference
on Algebraic Methodology and Software Technology, volume 936 of LNCS, pages
66–90. Springer-Verlag, 1995.

4. K. R. Apt and D. Pedreschi. Reasoning about termination of pure Prolog programs.
Information and Computation, 106(1):109–157, 1993.

5. K. R. Apt and D. Pedreschi. Modular termination proofs for logic and pure Prolog
programs. In G. Levi, editor, Advances in Logic Programming Theory, pages 183–
229. Oxford University Press, 1994.

6. A. Bossi, S. Etalle, and S. Rossi. Properties of input-consuming derivations. Theory
and Practice of Logic Programming, 2(2):125–154, 2002.

7. A. Bossi, S. Etalle, S. Rossi, and J.-G. Smaus. Semantics and termination of simply
moded logic programs with dynamic scheduling. Transactions on Computational
Logic, 2004. To appear in summer 2004.

8. D. De Schreye and S. Decorte. Termination of logic programs: The never-ending
story. Journal of Logic Programming, 19/20:199–260, 1994.

9. N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. A general frame-
work for automatic termination analysis of logic programs. Applicable Algebra in
Engineering, Communication and Computing, 2001(1/2):117–156, 2001.

10. S. Etalle, A. Bossi, and N. Cocco. Termination of well-moded programs. Journal
of Logic Programming, 38(2):243–257, 1999.

11. S. Genaim, M. Codish, J. Gallagher, and V. Lagoon. Combining norms to prove
termination. In A. Cortesi, editor, Proc. of the 3rd International Workshop on
Verification, Model Checking, and Abstract Interpretation, volume 2294 of LNCS,
pages 126–138. Springer-Verlag, 2002.

12. P. M. Hill and J. W. Lloyd. The Gödel Programming Language. MIT Press, 1994.
13. S. Lüttringhaus-Kappel. Control generation for logic programs. In D. S. Warren,

editor, Proceedings of the 10th International Conference on Logic Programming,
pages 478–495. MIT Press, 1993.

14. E. Marchiori and F. Teusink. On termination of logic programs with delay decla-
rations. Journal of Logic Programming, 39(1-3):95–124, 1999.

15. J. Martin and A. King. Generating efficient, terminating logic programs. In
M. Bidoit and M. Dauchet, editors, Proc. of the 7th International Conference
on Theory and Practice of Software Development, volume 1214 of LNCS, pages
273–284. Springer-Verlag, 1997.

16. F. Mesnard and U. Neumerkel. Applying static analysis techniques for inferring
termination conditions of logic programs. In P. Cousot, editor, Proc. of the 8th
Static Analysis Symposium, volume 2126 of LNCS, pages 93–110. Springer-Verlag,
2001.

17. L. Naish. Coroutining and the construction of terminating logic programs. Tech-
nical Report 92/5, Department of Computer Science, University of Melbourne,
1992.

18. D. Pedreschi, S. Ruggieri, and J.-G. Smaus. Classes of terminating logic programs.
Theory and Practice of Logic Programming, 2(3):369–418, 2002.

19. J.-G. Smaus. Proving termination of input-consuming logic programs. In D. De
Schreye, editor, Proc. of the International Conference on Logic Programming, pages
335–349. MIT Press, 1999.

20. J.-G. Smaus. Termination of logic programs for various dynamic selection rules.
Technical Report 191, Institut für Informatik, Universität Freiburg, 2003.

21. J.-G. Smaus. Termination of logic programs using various dynamic selection rules.
Technical Report 203, Institut für Informatik, Universität Freiburg, 2004.

22. J.-G. Smaus, P. M. Hill, and A. M. King. Verifying termination and error-freedom
of logic programs with block declarations. Theory and Practice of Logic Program-
ming, 1(4):447–486, 2001.

23. Swedish Institute of Computer Science. SICStus Prolog User’s Manual, 2003.
http://www.sics.se/isl/sicstuswww/site/documentation.html.

