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Abstract. This paper presents a method which allows for merging beliefs ex-
pressed thanks to logic programming with stable model semantics. This method
is based on the syntactic merging operators described in the framework of propo-
sitional logic. The study of these operators leads to a new definition of the con-
sequence relation between logic programs which is based on the logic of Here-
and-There brought by Turner. Moreover, the specificity of the non-monotonic
framework given by logic programming with stable model semantics allows for
describing a weakened version of the merging operation. Once the operators are
defined, their behaviour with respect to the Konieczny and Pino-Perez postulates
for merging are examined and discussed.

1 Introduction

Nowadays, the computer science field has to deal with distributed sources of knowledge,
especially in the context of databases. These sources are rarely synchronized, they gen-
erally conflict. Therefore, the interrogation and sharing of those distributed sources are
crucial questions for artificial intelligence.

This problem has been widely discussed within the framework of propositional
logic [5, 19, 3]. These operators have been defined in a semantic way [10], a syntac-
tic way [16, 8] or based on morphologic properties of beliefs [4]. The last two methods
has led to an implementation [9]. The main advantages of propositional logic is both its
strong formal background and its simplicity. But, this simplicity can also be a drawback
for representing real world situations. Hence, logic programming with stable model se-
mantics [7] provides a belief representation formalism which is more interesting than
classical logic for non-monotonic reasoning. Thus, the question of belief bases merging
when beliefs are represented by logic programs deserves attention.

This paper presents a method for merging belief bases represented by logic pro-
grams. This method is based on the syntactic operators defined in [9]. Moreover, the
non-monotonicity of the stable model semantics allows us to define a weakened version
of the merging operation in order to save more beliefs than the strong merging oper-
ation. A study of properties will be conducted and an implementation of the merging
operations will be provided.

The rest of the paper is organized as follows. Section 1 gives a refresher on belief
bases merging and logic programming. Section 2 gives the definition of strong and weak
version of merging operations. Section 3 presents an implementation of merging oper-
ations based on logic programming with stable model semantics before concluding.



2 Preliminaries and notations

In this section, we give the definitions and notations with respect to logic programming
with stable model semantics. We then remind the work described in [21] on the logic of
Here-and-There which is used to provide an alternative definition of stable models. We
also give a reminder on belief merging and on the Konieczny and Pino-Perez postulates
for merging operations.

We consider a finite alphabet P consisted in propositional atoms. Atoms and for-
mulas are denoted by lower case letters. Sets of atoms are denoted by capital letters. An
interpretation is a function from P to {0, 1} and the set of every interpretation is de-
noted byW . For every interpretation I and every set of atoms A, we say that I implies
A (I |= A) iff every atom of A is true for I . If A and B are two sets of formulas, then
A |= B iff I |= A implies I |= B. mod(A) represents the set of models of A.

2.1 Logic programming with stable model semantics

A normal logic program is a set of rules with the form c ← a1, . . . , an, not b1, . . .,
not bm where c, ai(1 ≤ i ≤ n), bj(1 ≤ j ≤ m) are propositional atoms and the
symbol not stands for negation as failure. A basic program is a logic program with-
out negation as failure. Let r be a rule, we introduce head(r) = c and body(r) =
{a1, . . . , an, b1, . . . , bm }. Moreover, we define body+(r) = {a1, · · · , an} which rep-
resents the set of positive atoms in the body of this rule and body−(r) = {b1, . . ., bm}
which represents the set of negative atoms in the body of this rule, hence body(r) =
body+(r) ∪ body−(r). r+ represents the rule head(r) ← body+(r), obtained from r
by withdrawing negative elements to the body of r.

A set X of atoms is closed under a logic program Π iff ∀r ∈ Π , head(r) ∈ X
when body(r) ⊆ X . The smallest set of atoms which is closed under a basic program
Π is denoted CN(Π). The reduction of Gelfond-Lifschitz [7] of a program Π with
respect to a set X of atoms is defined by ΠX = {r+ | r ∈ Π and body−(r)∩X = ∅}.
A set X of atoms is a stable model of Π iff CN(ΠX) = X . A logic program is said to
be inconsistent if it does not have any stable model.

Extended logic programs In order to represent more complete information, it is pos-
sible to consider classical negation ¬ in addition to the negation as failure. Therefore,
an extended logic program is a set of rules in the form: c ← a1, . . . , an, not b1, . . .,
not bm where c, ai(1 ≤ i ≤ n), bj(1 ≤ j ≤ m) are literals (atoms or negation of
atoms). The previous definition of a stable model remains valid for any set of atoms X
which is consistent (does not contain an atom and its negation).

During the last years, logic programming with stable model semantics has been
considered as a convenient tool to handle non-monotonic reasoning. It especially led
to several efficient systems, called ASP solvers: smodels [17], DLV [6], NoMore [1],
ASSAT [13], CLASP [2].

In [21], H.Turner gave an alternative definition of stable models of a logic program
based on the logic of Here-and-There. This logic, which is monotonic, represents in-
terpretations of a logic program in the form of pairs of sets of atoms. Intuitively, the



collection of all HT-interpretations can be constructed as follows. Let Π be a logic
program and X and Y be sets of atoms from Π . First, Y is a set of atoms which is
consistent with the program Π . Then, for every set Y , X is a set of atoms such that
X ⊆ Y and which is a set of plausible consequence of Π knowing Y .

Definition 1 (HT-interpretations). Let Π be a logic program and X and Y be con-
sistent sets of atoms such that X ⊆ Y . A pair (X,Y ) is a HT-interpretation of Π iff
Y |= Π and X |= ΠY . We denote by HT (Π) the set of all HT-interpretations of
program Π .

Example 1. Let us consider the following program Π = {a ← not b. b ← not a.}.
The sets of atoms consistent for every rule of Π are: {a}, {b} and {a, b}. It is not
possible to have an HT-interpretation with ∅ as a second element because the absence
of a entails the deduction of b (by the rule a ← not b.) and vice versa. For Y = {a},
ΠY = {a ←} then X = {a} is the only set of atoms which is consistent with ΠY ;
Similarly for Y = {b} then X = {b}; for Y = {a, b}, ΠY = ∅ then every X ⊆ Y is a
set of plausible consequences of ΠY .

Finally HT (Π) = {({a}, {a}), ({b}, {b}), (∅, {a, b}), ({a}, {a, b}), ({b}, {a, b}),
({a, b}, {a, b})}

If there is only one HT-interpretation ({Y }, {Y }) with a given Y as a second ele-
ment then Y is consistent with Π and every of its atom is justified.

Definition 2 (Stable models). Let Π be a logic program and Y be a set of atoms. Y is
a stable model of Π iff (Y, Y ) is the only element of HT (Π) where the second element
is Y .

Lemma 1. Let Π1 and Π2 be two logic programs then HT (Π1 ∪Π2) = HT (Π1) ∩
HT (Π2). This result is provided by [21].

Example 2. In the example 1, the only HT-interpretation of Π with a as a second
element is ({a}, {a}) then {a} is a stable model of Π . ({b}, {b}) is the only HT-
interpretation with {b} as a second element then {b} is a stable model of Π .

2.2 Belief merging and Removed Sets Fusion

First works on belief merging came from the database area [20] and, later, Konieczny
[12] focused on belief merging from a semantical point of view. Belief merging aims
at associating a consistent interpretation or a consistent belief base to an inconsistent
set of belief bases (called belief profile). The interpretation or belief base resulting of
this operation has to be as close as possible to the original belief profile. Let Ψ =
{ϕ1, . . . , ϕn} be a belief profile. We denote ∆(Ψ) the result of the merging operation.
There are two straightforward ways to define ∆(Ψ) depending on if the sources are
conflicting or not, the classical conjunctive merging: ∆(Ψ) =

∧
ϕi∈Ψ ϕi suitable when

the sources are not conflicting and the classical disjunctive merging:∆(Ψ) =
∨
ϕi∈Ψ ϕi

appropriate in case of conflicting sources. These two opposite cases are not satisfactory,
so several methods have been proposed for fusion depending on if the bases have the
same importance or not.



When the solution provided by the merging operation is an interpretation, it is called
semantic merging. When the solution is a belief base, it is called syntactic merging, like
in [8]. In particular, the following classical fusion operators have been proposed ac-
cording to various strategies. The Sum operator, denoted by Σ, [15, 18] which follows
the point of view of the majority of the belief bases of Ψ . The Cardinality operator,
denoted by Card, [3] which is similar to Σ but without taking repetitions into account.
The Max-based operator, denoted by Max [19], which tries to best satisfy all the be-
lief bases of Ψ . The Leximax-based operator, denoted by GMax, [11] which is the
lexicographic refinement of Max.

Some methods have been proposed within the context of semantic merging [5, 14,
3]. Among the approaches within the syntactic merging framework, Removed Sets Fu-
sion [9] provides a method and an implementation with the central idea to determine
maximal consistent subsets of formulas. As an heuristic, we consider the set of formulas
to remove in order to restore consistency.

Definition 3 (Potential Removed Set). Let Ψ = {ϕ1, . . . , ϕn} be a belief profile con-
strainted by the belief base µ such that ϕ1 t . . . t ϕn t µ is inconsistent. Let X be a
subset of formulas of ϕ1 t . . .tϕn. X is a potential Removed Set of ϕ1 t . . .tϕn with
µ for constraints iff ((ϕ1 t . . . t ϕn)\X) t µ is consistent.

The Removed Sets Fusion framework captures the classical merging strategies thanks
to total pre-orders over Potential Removed Sets.

Definition 4 (Pre-order and strategies). Let Ψ = {ϕ1 t . . . t ϕn} be a belief pro-
file constrainted by the belief base µ and X and Y be potential Removed Sets of Ψ
constrainted by µ. For every strategy P , a pre-order ≤P over potential Removed Sets
is defined. X ≤P Y means that X is preferred to Y according to the strategy P . We
define <P as the strict pre-order associated with ≤P (i.e. X <P Y iff X ≤P Y and
Y 6≤P X).

Therefore, potential Removed Sets of ϕ1 t . . . t ϕn with µ for constraints which
are minimal according to the chosen strategy will be considered as the solutions of
our merging operation. These potential Removed Sets which are minimal for the <P
pre-order are called Removed Sets according to P .

Definition 5 (Removed Sets according to P ). Let Ψ = {ϕ1, . . . , ϕn} be a belief pro-
file constrainted by the belief base µ such that ϕ1t . . .tϕntµ is inconsistent. Let P be
a merging strategy.X ⊆ ϕ1t . . .tϕn is a Removed Set of ϕ1t . . .tϕn with µ for con-
straints according to the strategy P iff (i)X is a potential Removed Set of ϕ1t . . .tϕn
with µ for constraints; (ii) There is no potential Removed Set Y of ϕ1 t . . . t ϕn with
µ for constraints such that Y <P X .

The collection of Removed Sets of Ψ with µ for constraints according to the strategy
P is denoted by FPµ R(Ψ). The Removed Set Fusion operation is defined by:

Definition 6 (Removed Sets Fusion). Let Ψ = {ϕ1, . . . , ϕn} be a belief profile con-
strainted by the belief base µ, the Removed Sets Fusion operation∆P

µ (Ψ) is defined by:
∆P
µ (Ψ) =

∨
X∈FPµ R(Ψ){((ϕ1 t . . . t ϕn)\X) t µ}



Konieczny and Pino-Perez postulates for merging operation In [12], Konieczny and
Pino-Perez defined a set of postulates for belief bases merging. Let Ψ = {ϕ1, . . . , ϕn}
be a belief profile and µ be a belief base.

(KP0) ∆µ(Ψ) ` µ.
(KP1) If µ is consistent, then ∆µ(Ψ) is consistent.
(KP2) If Ψ is consistent with µ, then ∆µ(Ψ) =

∧
Ψ ∧ µ.

(KP3) If Ψ1 ≡ Ψ2 and µ1 ≡ µ2, then ∆µ1(Ψ1) ≡ ∆µ2(Ψ2).
(KP4) If ϕ1 ` µ and ϕ2 ` µ, then ∆µ(ϕ1 tϕ2)∧ϕ1 6` ⊥ → ∆µ(ϕ1 tϕ2)∧ϕ2 6` ⊥.
(KP5) ∆µ(Ψ1) ∧∆µ(Ψ2) ` ∆µ(Ψ1 t Ψ2).
(KP6) If ∆µ(Ψ1) ∧∆µ(Ψ2) is consistent, then ∆µ(Ψ1 t Ψ2) ` ∆µ(Ψ1) ∧∆µ(Ψ2).
(KP7) ∆µ1(Ψ) ∧ µ2 ` ∆µ1∧µ2(Ψ).
(KP8) If ∆µ1(Ψ) ∧ µ2 is consistent, then ∆µ1∧µ2(Ψ) ` ∆µ1(Ψ) ∧ µ2.

3 Syntactic merging of belief bases represented by logic programs

We here propose to study Removed Sets Fusion when beliefs are expressed in terms
of logic programs with stable model semantics. The principle remains identical to the
propositional case: the removal of some formulas in order to restore consistency. For
the rest of this section, we consider that the belief bases are expressed in the form of
logic progams. We now give the definition of Removed Sets Fusion in this context, this
definition deals with constraints.

Definition 7 (Strong Potential Removed Set). Let Ψ = {ϕ1, . . . , ϕn} be a belief pro-
file constrainted by the belief base µ such that ϕ1 t . . . t ϕn t µ is inconsistent. Let
X be a subset of formulas of ϕ1 t . . . t ϕn. X is a strong potential Removed Set of
ϕ1 t . . . t ϕn constrainted by µ iff ((ϕ1 t . . . t ϕn)\X) t µ is consistent.

Definition 8 (Strong Removed Sets according to P ). Let Ψ = {ϕ1, . . . , ϕn} be a
belief profile constrainted by the belief base µ such that ϕ1t. . .tϕntµ is inconsistent.
Let P be a merging strategy. X ⊆ ϕ1 t . . . t ϕn is a Removed Set of ϕ1 t . . . t ϕn
constrainted by µ according to the strategy P iff (i) X is a strong potential Removed
Set of ϕ1 t . . . t ϕn constrainted by µ; (ii) There is no strong potential Removed Set
Y of ϕ1 t . . . t ϕn constrainted by µ such that Y <P X .

The collection of Strong Removed Sets of Ψ according to the strategy P is denoted
by FPµ R(Ψ). The Removed Sets Fusion operation is defined by:

Definition 9 (Strong Removed Sets Fusion). Let Ψ = {ϕ1, . . . , ϕn} be a belief profile
constrainted by the belief base µ , the Strong Removed Sets Fusion operation ∆P

µ (Ψ) is
defined by: ∆P

µ (Ψ) =
∨
X∈FPµ R(Ψ){((ϕ1 t . . . t ϕn)\X) t µ}

3.1 Consequence relation between logic programs

In propositional logic, the consequence relation between two set of formulas is clearly
defined (A |= B iff ∀I ∈ W , if I |= A then I |= B). This definition can hardly be
applied to logic programs.



Example 3. Let Π = {a} be a belief profile constrainted by the belief base µ = {c ←
not a. ¬b.}. Thus, the consequences of µ are {¬b, c} and the consequences of Π ∪ µ
are {¬b, a}.

One can easily see that the consequences of Π ∪ µ are completely different from
the consequences of µ and that a definition of a consequence relation given in terms
of stable models inclusion will not properly fit the logic programming framework. This
problem can be overcome by chosing a definition of the consequence relation in terms
of inclusions of HT-interpretations.

Definition 10 (Inference). Let Π1 and Π2 be logic programs, we define that Π1 im-
plies Π2, denoted by Π1 |= Π2 iff HT (Π1) ⊆ HT (Π2).

Example 4. Let us consider again the example 3 in order to illustrate the consequence
relation between two sets of rules. In this example, we have:

HT (µ) = {({¬b}, {¬b, a}), ({¬b, a}, {¬b, a}), ({¬b, c}, {¬b, c}),
({¬b}, {¬b, a, c}), ({¬b, a}, {¬b, a, c}), ({¬b, c}, {¬b, a, c}), ({¬b, a, c}, {¬b, a, c})}

HT (Π ∪ µ) = {({¬b, a}, {¬b, a}), ({¬b, a}, {¬b, a, c}), ({¬b, a, c}, {¬b, a, c})}
We have HT (Π ∪ µ) |= HT (µ) and therefore according to the previous definition

(Π ∪ µ) |= µ

This new definition allows us to study properly the KP postulate for the Strong
Removed Sets Fusion operation.

3.2 KP postulates with respect to Removed Sets Fusion for logic programs

The Strong Removed Sets Fusion operation for logic programs verifies the following
KP postulates:

Strategies (KP0) (KP1) (KP2) (KP3) (KP4) (KP5) (KP6) (KP7)
Σ yes yes yes no no no no no

Card yes yes yes no no no no no
Max yes yes yes no no no no no

Gmax yes yes yes no no no no no

Sketch of proofs The counter-examples are explained only for the Σ operator but also
make sense for the other operators.

(KP0) Thanks to the theorem 1, we know that HT (Π ∪ Π ′) = HT (Π) ∩ HT (Π ′).
By contruction, we have that HT (∆Σ

µ (Ψ)) ⊆ HT (µ) and then ∆Σ
µ (Ψ) |= µ.

(KP1) and (KP2) True by construction

(KP3) Consider Ψ1 = {p. q.}, Ψ2 = {p. q ← p.} and µ = {¬p.}.
∆Σ
µ (Ψ1) = {¬p, q} HT (∆Σ

µ (Ψ1)) = {({¬p, q}, {¬p, q})}
∆Σ
µ (Ψ2) = {¬p, q ← p} HT (∆Σ

µ (Ψ2)) = {({¬p}, {¬p}) ({¬p}, {¬p,¬q}
({¬p,¬q}, {¬p,¬q})}

(KP4) and (KP5)



Π1 =

{
a← not ¬h. c← b.
c← a. b← not ¬h.
¬c.

}
Π2 =

{
d← not ¬c. h← e.
h← d. e← not ¬c.
¬h.

}

∆Σ
>(Π1) = {a ← not ¬h. b ← not ¬h. c ← a. c ← b.} and every HT-

interpretation has c in the first set of atoms of the pair.∆Σ
>(Π2) = {d← not ¬c. e←

not ¬c. h← d. h← e.} and every HT-interpretation has h in the first set of atoms
of the pair. Hence, ∆Σ

>(Π1 t Π2) = Π1 ∪ Π2 and ¬c and ¬h are in the first set of
atoms of the pair.

(KP6) and (KP7)

Π =

{
a← not c. ¬d. d← a.
d← b. b← not c.

}
with µ2 = {c.}. ∆Σ

>(Π) = {a ← not c. b ← not c. d ← a. d ← b.}.
Each HT-interpretation of ∆Σ

>(Π) has d in the first set of atoms of the pair and each
HT-interpretation of ∆Σ

>∧µ2
(Π) has ¬d in the first set of atoms of the pair.

Discussion The KP postulates have been defined in the framework of monotonic propo-
sitional logic. It is normal that the operators described in this paper do not fully respect
them. For instance, the postulates (KP4) and (KP5) mean that if two sets of rules agree
on some consequences, their union should respect the consensus; which is clearly not
the case in logic programming with stable model semantics.

3.3 Weak Removed Sets Fusion for logic programs

Some sets of rules do not have stable models because they imply inconsistent sets of
atoms and some others because it is impossible to justify their consequences. For in-
stance, the program Π = {¬a. a ← b. b.} has for immediate consequences the set
of atoms {a,¬a, b} which is inconsistent. On the contrary, the program Π ′ = {a ←
not b. b← not c. c← not a.} which does not imply inconsistent sets of atoms but
does not have any stable models because it is impossible to find any self-justifying set
of atoms. In one hand, in the case of Π , there are no set of rules ϕ such that Π ∪ ϕ has
stable models. Though, the only way to restore consistency in those beliefs is to remove
some rule. On the other hand, the program Π ′ is not intrinsincally inconsistent. It is
possible to restore consistency without losing beliefs, for instance, the union Π ′ ∪ {a.}
has a stable model ({a, b}).

It seems reasonable to consider an operation which would keep as much rules as
possible as long as consistency can still be restored. We can call this operation a weak
merging operation.

Formally, a set of formulas which has at least one HT-interpretation can still have its
consistency restored. Generally speaking, consider a logic program which has several
HT-interpretations where the second element is Y . If a set of facts Y is added, then this
new program will have Y as stable model. Actually, a set of atoms Y is a stable model
of Π iff the only HT-interpretation of Π where the second element is Y is (Y, Y ). Let



Ψ = {ϕ1, . . . , ϕn} be a belief profile and µ be a belief base such that ϕ1 t . . .tϕn tµ
does not have any stable model, a set of rulesX such that ((ϕ1t. . .tϕn)\X)tµ has at
least one HT-interpretation, it is called weak potential Removed Set. A weak potential
Removed Set of Ψ constrainted by µ which is minimal according to the strategy P , is
called weak Removed Set of Ψ constrainted by µ according to P .

Definition 11 (Weak potential Removed Set). Let Ψ = {ϕ1, . . . , ϕn} be a belief pro-
file constrainted by the belief base µ such that ϕ1 t . . . t ϕn t µ does not have any
HT-interpretation. Let X be a subset of rules of ϕ1 t . . . t ϕn. X is a weak potential
Removed Set of ϕ1 t . . . t ϕn constrainted by µ iff ((ϕ1 t . . . t ϕn)\X) t µ has at
least one HT-interpretation.

Definition 12 (Weak Removed Set). Let Ψ = {ϕ1, . . . , ϕn} be a belief profile con-
strainted by the belief base µ such that ϕ1 t . . . t ϕn t µ does not have any HT-
interpretation. Let P be a merging strategy. X ⊆ ϕ1 t . . . t ϕn is a weak Removed
Set of ϕ1 t . . . t ϕn constrainted by µ iff (i) X is a weak potential Removed Set of
ϕ1 t . . .tϕn constrainted by µ; (ii) There is no Y which is a weak potential Removed
Set of ϕ1 t . . . t ϕn constrainted by µ such that Y <P X .

The collection of Weak Removed Sets of Ψ according to the strategy P is denoted
by FP,wµ R(Ψ). The Removed Sets Fusion operation is defined by:

Definition 13 (Weak Removed Sets Fusion). Let Ψ = {ϕ1, . . . , ϕn} be a belief pro-
file constrainted by the belief base µ and P be a merging strategy, the Weak Removed
Sets Fusion operation ∆P,w

µ (Ψ) is defined by: ∆P,w
µ (Ψ) =

∨
X∈FP,wµ R(Ψ){((ϕ1t . . .t

ϕn)\X) t µ}

4 Implementation of the merging problem

The implementation of Removed Sets Fusion for logic programs stems from an ap-
proach similar to the propositional cases described in [8]. Let Ψ be a belief profile and
µ be a belief base representing constraints on Ψ . It constructs a logic program ΠΨ,µ,
such that for any strategy P , the preferred stable models of ΠΨ,µ according to P corre-
spond to the Removed Sets of Ψ constrainted by µ according to P . In the same way, we
construct a logic program Πw

Ψ,µ to solve the weak merging operation.
The first part of the program gives the potential Removed Sets of Ψ constrainted

by µ and the second part selects Removed Sets amongst them. It is done thanks to
the enumeration of possible interpretations which will provide the maximal consistent
subsets of logic program. There is however some differences with the propositional
case:

– A model for a propositional logic base can contain either a or ¬a. A stable model
can contain a, ¬a or none of them.

– In Removed Sets Fusion, the subset of formulas generated by an interpretation has
to be consistent (the interpretation which generates it being the model), which is not
the case for logic programs because an interpretation can satisfy every rule without
being a stable model of the program.



Let Ψ = {ϕ1, . . . , ϕn} be a belief profile and µ be a belief base representing
constraints. The set of all positive (resp. negative) literals of ΠΨ,µ is denoted by V +

(resp. V −). The set of atoms representing rules is defined by R+ = {rif | f ∈ ϕi}
and FO(rif ) denotes the rule of ϕi corresponding to rif in ΠΨ,µ. Namely, ∀rif ∈
R+, FO(rif ) = f . To each answer set of ΠΨ,µ we associate the potential Removed
Set FO(R+ ∩ S). Considering this, we will describe the logic program which will
represent the merging problem. Our program will have four steps:

– The first step generates the set of interpretations of V which can be stable models
of a subset of rules. (4.1)

– The second step assures that there exists a rule which allows the atom to be present
in the current interpretation. (4.2)

– The third step allows to point out the rules that should be removed. (4.3)
– The last step, finally, is used to encode the strategy. (4.4)

Example 5. We illustrate each part of the translation with the following example. Con-
sider Ψ = {ϕ1, ϕ2} with ϕ1 = {f1 : a ← not b. f2 : b ← not c.},
ϕ2 = {f3 : c← not a. f4 : d← a.} and µ = {← a.}.

4.1 First step: generating interpretations

Generating all the interpretations of V for the set of atoms {a1, . . . , an} is done through
the rules {a1, a

′
1, . . . , an, a

′
n} where a′i represents the negation of ai. Finally, to avoid

the presence of an atom and its negation in the same interpretation, we introduce, for
every atom ai, the contrainst← ai, a

′
i.

Case of basic program When dealing with basic programs (which do not contain any
negation), this part can be reduced to the instruction {a1, . . . , an}.

Example 6. Continuing the example 5. Their interpretations are generated thanks to the
statement {a, b, c, d}.

4.2 Second step: rules to remove

It is impossible that a set of atoms S is a stable model of a logic program ΠΨ,µ if there
exists a rule f such that S satisfies body(f) and head(f) 6∈ S. Such a rule should
therefore be removed in order to allow the interpretation to be a model.

Hence, for every rule f : head(f) ← body(f), we introduce the rule rf ←
not head(f), body(f). The presence of the atom rf means that the rule f should not
be considered in the stable model corresponding to S.

Example 7. Consider the example 5. The selection of rules to remove is done thanks to
r1 ← not a, not b. r2 ← not b, not c. r3 ← not c, not a r4 ← not d, a. 3

3 For the sake of readability, we will note ri instead of rfi .



4.3 Third step: necessity of the presence of an atom

Generally speaking, a stable model represents the set of reasonable consequences of
a logic program. It means that an atom only belongs to a stable model if it has been
deduced thanks to a rule or a fact. It is necessary, for every set of atoms S, that there
exists a very reason for any atom to be true.

For every atom a, we define an atom auth(a) representing the fact that an atom
a has been authorized to be deduced. Therefore, for every atom a, we introduce the
rule← a, not auth(a) which implies the impossibility for an atom to be present if its
presence is not justified.

Logically, auth(a) is deduced if a rule has not been removed and if body(f) ⊆ S.
For every rule f , we introduce the rule auth(head(f))← not rf , body(f).

Example 8. Continuing the example 5. The rules allowing to determine if an atom has a
reason for being deduced are:← a, not auth(a).← b, not auth(b).← c, not auth(c).
← d, not auth(d). auth(a) ← not b, not r1. auth(b) ← not c, not r2. auth(c) ←
not a, not r3. auth(d)← a, not r4.

The whole ΠΨ,µ program has the following stable models: {b, auth(b), r3} {r1,
r2, r3} {c, auth(c), r1}.

Proposition 1. Let Ψ = {ϕ1, . . . , ϕn} be an belief profile and µ be a belief base rep-
resenting constraints. Let S ⊆ V be a set of atoms. S is a stable model of ΠΨ,µ iff IS
is an interpretation of V + which satisfies ((ϕ1 t . . . t ϕn)\FO(R+ ∩ S)) t µ.

4.4 Fourth step: optimization

The optimization statements are similar to the ones presented in [9].

Example 9. Continuing the example 5.
For the Σ strategy, the optimization statement will be:

minimize{r1, r2, r3, r4}.
For the Max strategy, the optimization statements will be:

#domain possible(U). #domain base(V ). #domain possible(W ).
possible(1..2). base(1..2). size(U)← U{rVf |F0(f) ∈ ϕV }U.
negmax(W )← size(U), U > W. max(U)← size(U), not negmax(U).
minimize[max(1) = 1,max(2) = 2]

For both strategies, the preferred stable models of ΠΨ,µ are: {b, auth(b), r3} and
{c, auth(c), r1} which correspond to the Strong Removed Sets of Ψ constrainted by µ
according to Σ and Max: {a← not b.} and {c← not a.}.

The following proposition establishes the one-to-one correspondence between the
preferred stable models ofΠΨ,µ according to P and the Strong Removed Sets of∆P

µ (Ψ)

Proposition 2. The set of Strong Removed Sets of Ψ constrainted by µ according to P
is the set of preferred stable models of ΠΨ,µ according to P . This proposition holds for
Σ, Max, Card and Gmax.



4.5 Weak merging operation

The main difference between the strong and weak merging operations is that an atom
does not need justification to belong to an interpretation. Therefore a program to solve
the weak version of merging operator will have the same rules as a strong one except
the rules described in 4.3.

Example 10. Consider again the example in 5. The program Πw
Ψ,µ is:

{a, b, c, d}. r1 ← not a, not b. r2 ← not b, not c.
← a. r3 ← not c, not a. r4 ← not d, a.

minimize{r1, r2, r3, r4}.
This program has 20 stable models and the minimal one for every strategy is {a, b,

c, d} which corresponds to the Weak Removed Set of Ψ constrainted by µ which is the
empty set.

The following proposition establishes the one-to-one correspondence between the
preferred stable models of Πw

Ψ,µ and the Weak Removed Sets of ∆P,w
µ (Ψ)

Proposition 3. The set of Weak Removed Sets of Ψ constrainted by µ according to P
is the set of preferred stable models of Πw

Ψ,µ according to P . This proposition holds for
Σ, Max, Card and Gmax.

5 Conclusions and perspectives

We presented a first approach for merging logic programs based on Removed Sets Fu-
sion. A study of the properties has been led thanks to the Konieczny and Pino-Perez
postulates. This study showed that the Konieczny and Pino-Perez postulates are not
suitable in the framework of belief bases merging when beliefs are expressed thanks to
logic programs with stable model semantics. We proposed a definition of an inference
relation between logic programs. We also defined a weakened version of the merging
operation.

Removed Sets Fusion for belief bases represented by logic programs is translated
into a logic program with stable model semantics and the one-to-one correspondence
between removed sets (both Weak and Strong version) and preferred stable models is
shown. Moreover, the paper shows how Removed Sets Fusion can be performed with
any ASP solver.

Future works will study the properties of the weak Removed Sets Fusion. A more
extensive experimentation of the Removed Sets Fusion for belief represented by logic
programs has to be performed. It also can be relevant to study KP postulates in order
to allow postulates for dealing with a broader range of frameworks for representing
beliefs.
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