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Abstract. In table soccer, humans can not always thoroughly observe
fast actions like rod spins and kicks. However, this is necessary in order
to detect rule violations for example for tournament play. We describe
an automatic system using sensors on a regular soccer table to detect
rule violations in realtime. Naive Bayes is used for kick classi�cation, the
parameters are trained using supervised learning. In the on-line experi-
ments, rule violations were detected at a higher rate than by the human
players. The implementation proved its usefulness by being used by hu-
mans in real games and sets a basis for future research using probability
models in table soccer.

1 Introduction

Table soccer � also known as �Foosball � � is a popular game, often played in pubs
or other social contexts. Two teams of up to two players compete at scoring goals
by controlling and kicking a ball on a game table with playing �gures attached
to rods. Playing table soccer requires skill at controlling the rods and quick
reactions, because it is a very fast game. The ball can be kicked by rotating the
rods, and professional players can shoot the ball across the table within a few
hundred milliseconds.

Currently, the sport is also becoming more and more popular on a tournament
level. There are various local and national leagues, and internationally, the ITSF1

is organizing championships with a set of uni�ed rules.
Because of the high speed of table soccer, a human is not always able to

thoroughly observe all actions in the game, such as the fast turning of a kicking
rod. However, this is necessary to make objective decisions about rule violations.

We present an approach to automatically detect rule violations on-line, using
high frequency sensor data to classify and evaluate game situations. This helps
humans playing table soccer, for example when practising for tournament games.

Most rules covering game mechanics depend on the detection of a playing
�gure kicking the ball. Thus, we concentrate on this key element, and detect
violations of one of the most important rules: Rods may not be rotated by more
than 360 degrees before or after ball contact, the angles before and after ball

1 International Table Soccer Federation, http://www.table-soccer.org/



contact are not added. This prevents players from spinning the rods in an un-
controlled manner when kicking. In this paper, the coherent rotation movement
of a rod is referred to as a spin.

The sequential sensor data for the game rods and ball is segmented, and game
situations are classi�ed as kicks. Because the sensor data is noisy, a probabilistic
model for kick detection is needed. We use supervised learning to train a naive
Bayes classi�er for continuous variables.

The paper is organized as follows. We will �rst describe related work in the
domain of table soccer and probability models, while deriving the theoretical
background in Section 2. The methods used for segmentation and classi�cation
are described in Section 3, followed by the experimental setup and results in
Section 4. Finally, we will conclude our work in Section 5.

2 Related Work

2.1 Robotic Table Soccer

The �rst work on a robot playing table soccer was published by Weigel and
Nebel [1] in 2002. A regular soccer table was equipped with control units to
manipulate the rods. The state was perceived by a camera mounted over the
table. Analyzing the game state and controlling the actuators with a regular
PC, KiRo (�Kicker Robot�) won most games against amateur players. In 2005,
the �rst commercial product based on KiRo became available under the name
�Star-Kick �, posing a challenge even to advanced players [2].

The current implementations of KiRo and Star-Kick do not take the enemy
�gures into consideration, the world model includes just the positions of the ball
and the controlled �gures. Future improvements could be to play on a profes-
sional level using a more advanced ball control, avoiding the enemy �gures and
planning actions such as passes.

For research in this direction and the work presented in this paper, a regular
game table was out�tted with sensors to record ball positions as well as rod
positions and angles [3].

2.2 Probability models

A common approach to model dependencies between random variables is a
Bayesian network in the form of a directed graph [4]. Nodes represent random
variables or classes, while directed edges denote dependencies. In a classi�ca-
tion problem, the network is used to compute the posterior probabilities of all
classes ck given the observed values of the attributes: P (ck|x1, . . . , xn). The class
with the highest probability is then assigned to the observation. Using Bayes'

Theorem, the posterior of a class c can be computed as

P (c|x1, . . . , xn) =
P (x1, . . . , xn|c)P (c)

P (x1, . . . , xn)
, (1)



which �ips the conditioning to make the distribution easily learnable.
We assume that all classes are equally probable, all attributes independent

given the class and that the prior is independent of the class. This greatly sim-
pli�es computation to:

P (c|x1, . . . , xn) = α

n∏
i=1

P (xi|c) . (2)

With α being a normalization constant, this is the naive Bayes classi�er. Even
though the �naive� assumptions seldom hold in reality, naive Bayes has been
attested a good performance in many domains and can even be the optimal
classi�er with respect to the misclassi�cation rate in some cases [5, 6].

In this work, observed values are not discrete but continuous. One common
approach is to discretize the attributes [7]. However, we believe that discretiza-
tion will lead to system degradation by discarding information like the probabil-
ity for a kick. Instead, we model the random variables to be Gaussian-distributed
and use the joint probability of the distributions for each variable.

Common extensions to naive Bayes include tree-augmented naive Bayesian

networks [8], where additional dependencies between the attributes can be mod-
eled. The cost is a higher algorithmic complexity. To cope with the high sampling
frequency to observe games on-line, an e�cient implementation is needed in our
case. Our experiments revealed that the classi�cation performance of naive Bayes
is good enough for this application.

With continuous and Gaussian-distributed attributes in (2), it follows that:

P (c|x1, . . . , xn) = α

n∏
i=1

ϕi(xi) = α

n∏
i=1

1√
2πσ2

i

e
−(xi−µi)

2

2σ2
i . (3)

Variance σ2
i and mean µi of each attribute i are determined with supervised

learning for a known class label c. m attribute values xi,1, . . . xi,m are sampled
for each attribute i and the unbiased estimators for mean and variance are used
on these values.

3 Segmentation and Classi�cation

3.1 Sensor Input

To cope with the high speed of the game, the sensor data is read and recorded at
roughly 250 Hz using a standard PC, distributing the data stream over network
for further evaluation on other machines.

The ball is located with a Sick LMS 400 laser measurement system, scan-
ning through the gap between table surface and feet of the playing �gures. Rod
positions are measured with optical distance sensors and rod angles are observed
with magnetic rotary encoders. Overall, there is almost no additional friction on
the rods, enabling an unhindered game play.



Fig. 1. The timestamps ts, se, ss and te de�ning one complete spin in a rotation cov-
ering an angle of more (left) and less than 4π (right).

To analyze the game state, one needs to segment the sequential sensor data
and detect key events in it. The sensors introduce Gaussian-distributed noise on
the measured signal.

Currently, three rods are observed by sensors, all in the same half of the
table: blue attacker, red defender and red goalkeeper.

3.2 Rotation Segmentation

With respect to the rule violations described in Section 1, a rod spin is com-
pletely parametrized by four timestamps: ts and te, the starting and end times
of the whole spin, as well as se and ss, the times when the �rst 2π part of the
rotation ends and the time when the last 2π part starts (Fig. 1). These discrete
timestamps need to be detected in the stream of angle measurements for each
rod i.

To do so, the di�erence in between two successive rod angles αi is observed
as approximation of the derivative:

∆i(t) = αi(t)− αi(t− 1) . (4)

When crossing from 2π to 0, the values are adjusted accordingly. As soon as
|∆i(t)| ≥ ε for some small threshold ε, the start of a spin movement is detected,
and it lasts until |∆i(t)| < ε. To reduce the in�uence of noise, the signal is
smoothed by using the running average over a window of size three.

As soon as αi(ts) is passed for the second time, the time se is detected. ss

depends on αi(te), the angle at which the spin stops, and is detected by using a
circular array or ring bu�er indexed by angle. For additional robustness against
noise, monotonicity in between start and end of the spin is enforced when storing
timestamps in the circular array. Also for noise robustness, all bins in between
storing two successive timestamps need to be emptied.

3.3 Kick Detection

Naive Bayes classi�ers are used to detect kicks, by using the relation of ball and
active �gure as input. The active �gure is the one closest to the ball on the rod
that is within range of the ball. The two directions of a kick are distinguished
by classifying two cases, forward and backward.

Input for each classi�er are the continuous attributes x1, x2, x3, computed
from coordinates of ball and active rod, and its angle. Figure 2 displays the



Fig. 2. Coordinates of ball relative to
the active �gure from the side (left) and
top(right)

Kick

x1 x2 x3

Fig. 3. Bayesian network of the kick clas-
si�er

coordinates relative to the playing �gure, Fig. 3 displays the resulting Bayesian
network. Note that x3 is directly related to the vertical distance between ball
and playing �gure, because it is assumed that the ball always touches the table
when kicking. When it is not on the surface, e.g. resulting from a fast kick, it
cannot be observed by the laser anyways.

The probability can now be computed according to (3) with n = 3 variables.
In the implementation the log-likelihood is used instead, turning the products
into sums. This is computationally more stable because very small probabilities
are avoided, while it is equivalent in terms of classi�cation. Furthermore, the
constant α is ignored for classi�cation because it is assumed to be identical for
all classes.

To detect violations of the rod-spinning rule e�ciently, the log-likelihood for
kicks is constantly recorded. As soon as a spin covering an angle of more than
2π is detected, the peak of the kick likelihood in the intervals [se, te] and [ts, ss]
(see 3.2) is compared to an experimental threshold. Depending on the direction
of the spin, the forward or backward probability is used.

4 Experiments

In the experiments, we �rst evaluate the supervised learning performance of the
kick classi�er. Then, the parameters for the kick model for on-line detection
are trained. Finally, we test the performance of violation detection in real table
soccer games on-line.

4.1 Supervised Learning Performance

To evaluate the learning performance, 50 recorded kick actions were randomly
partitioned into a test set of size 10 and a training set of size 40. In each single
action k, the instant when the playing �gure touches the ball is selected by hand,
and the variable state (x1,k, x2,k, x3,k) is extracted.

The parameters of the kick model µi, σi for i ∈ {1, 2, 3} are then learned
incrementally, using k = 1, . . . , 40 samples of the training set as input. The
performance on classifying the test set is evaluated for each step.



As performance measure V , the sum over the normalized probability of each
test sample xi,l is used:

V (k) =
10∑

l=1

γk

3∏
i=1

ϕi,k(xi,l) . (5)

The Gaussian distribution ϕi,k is parametrized by mean and variance of variable
xi, using k samples of the training set. The normalization constant is determined
by the maximum of the joint probability, reached at the mean:

γk =
3∏

i=1

(ϕi,k (µi,k))−1
. (6)

This scales all Gaussian distributions in (5) to the range of [0, 1]. Otherwise, their
probabilities would not be comparable, because a more general model creates a
more shallow distribution.

The resulting learning curve is shown in Fig. 4. A �rst peak is reached after
using only six samples for training, and the performance of the learned model
stays stable after using 16 samples for training. A training set signi�cantly larger
than 20 samples only leads to small improvements.
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Fig. 4. Learning curve for 40 kick sam-
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Fig. 5. Angles and �rst derivative for one
spin, lasting about 0.3s. The detected
times of ts, se, ss, te are marked.

4.2 Parameter Learning

To classify kicks in running games, only the model for a forward kick is learned.
The parameters for a back kick are obtained by negating µ2.

To train the parameters of the kick model, the variable state (x1, x2, x3) is
sampled from several con�gurations with the ball in front of a playing �gure,
varying positions, angles and playing �gures.



Table 1. Parameters obtained from training by sampling kick positions

i = 1 2 3

Mean µi -1.37 23.54 13.02

Variance σ2
i 30.30 7.09 3.21

Table 1 displays the parameters trained through the sampling process, using
27 samples. As expected, the peak is centered in front of the playing �gure. The
rectangular footprint of the playing �gure results in a larger variance in x1 than
in x2.

4.3 Spin Detection

Spins covering angles of more than 2π and the classifying timestamps ts, se, ss

and te are successfully detected. Figure 5 exemplarily shows the sensor recording
of one spin movement starting at ts = 31 and ending at te = 105, with the
detected timestamps marked. Note the noisy signal for α(t), and that the whole
spin from the angle α(ts) ≈ 5.85 to α(te) ≈ 4.75 (rad) lasts only 74 sensor ticks,
which is about 0.3s.

4.4 Detecting violations on-line

To evaluate the detection rate in real games, test subjects not familiar with the
system played several games on the table. The position of the players on the
table (attacker or defender for the blue or red team) were exchanged regularly.
Two players rated themselves as �good�, two �average� and the remaining seven
as �amateurs�. In total, 9 games were recorded for about 1 hour and 45 minutes,
silently logging the detected rule violations. Before the games, the rod spinning
rule was explained to the players, and they were asked to evaluate whether they
think they violated the rule after each shot. Afterwards, the recorded sensor logs
were manually inspected in slow-motion for rule violations, and compared to the
detections of the system and the players.

All in all, there were 42 rod spins of more than 360 degrees on the observed
three rods, of which 19 were illegal kicks. The players themselves were aware
of only two of them (10.52%), while the system detected 17 violations correctly
(89.47%). Two violations were missed by the system, and one false positive de-
tected. When a rod is spun and misses the ball closely instead of kicking it, there
is a chance that a rod spin violation is detected. The noise on the rod and ball
data might add up so that the ball is falsely located as being touched by the
rotating �gure, resulting in the false positive detection. False negatives occur for
similar reasons.

The referee system runs e�ciently on a standard PC with a 2.66 GHz Pentium
4 CPU and 1 GB RAM, running SuSE Linux 10.1. The application uses just a
small fraction of the available CPU power. Most of the CPU power is used
for a 3D display of the soccer table in the user interface, which shows the live



representation of the soccer table and slow-motion replays of rule violations.
The distributed implementation of the system allows the display to be easily
outsourced to a dedicated machine, leaving more processing power for example
to detect additional rules.

5 Conclusion

In this work, we presented an approach to automatically detect rule violations
in table soccer games. A naive Bayes classi�er is trained o�-line to detect kicks,
using the relation of ball and closest playing �gure as input.

The classi�er demonstrated a good performance in the on-line classi�cation
experiments, detecting 89.47% of all rule violations, while the human players
only detected 10.52%. The e�cient implementation of naive Bayes enables the
system to run e�ortless on a standard PC, evaluating the high-frequency sen-
sor data on-line during a running game. All this demonstrates the usefulness
of our implementation. Additional robustness on the classi�cation method can
be achieved in future work by taking the ball movement into account for kick
detection.

Finally, future research on table soccer can bene�t from the classi�cation
method described here, such as learning by imitation or game analysis. The
classi�er could be used to detect various relations between ball and playing
�gures.
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