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Abstract

Many state-of-the-artheuristicplannersderive their heuris-
tic functionby relaxingtheplanningtaskat hand,wherethe
relaxationis to assumethatall deletelistsareempty. Thesuc-
cessof suchplannersonmany of thecurrentbenchmarkssug-
geststhat in thosetask's statespacesrelaxed goal distances
yield a heuristicfunction of high quality. Recentwork has
revealedempiricalevidenceconfirmingthis intuition, stating
severalhypothesesaboutthelocalsearchtopologyof thecur-
rentbenchmarks,concerningthenon-existenceof deadends
andof localminima,aswell asa limited maximaldistanceto
exits onbenches.
Investigatinga large rangeof planningdomains,we prove
thattheabovehypothesesdoin factholdtruefor themajority
of the currentbenchmarks.This explainsthe recentsuccess
of heuristicplanners.Specifically, it follows thatFF's search
algorithm, using an idealizedheuristicfunction, is polyno-
mial in (at least)eightcommonlyusedbenchmarkdomains.
Our proof methodsshedlight on what thestructuralreasons
arebehindthe topologicalphenomena,giving hints on how
thesephenomenamightbeautomaticallyrecognizable.

Intr oduction
In the last threeyears,planningsystemsbasedon the idea
of heuristicsearchhave beenverysuccessful.At theAIPS-
1998 planningsystemscompetition,HSP1comparedwell
with theothersystems(McDermott2000),andat theAIPS-
2000competition,out of five awardedfully automaticplan-
ners,FFandHSP2werebasedonheuristicsearch,while an-
othertwo, Mips andSTAN, werehybridsthatincorporated,
amongstotherthings,heuristicsearch(Bacchus2001).

Interestingly, four of thesefiveplannersusethesamebase
approachfor deriving their heuristicfunctions: they relax
theplanningtaskdescriptionby ignoringall deletelists,and
estimate,to eachsearchstate,the lengthof an optimal re-
laxedsolutionto thatstate.This generalideahasfirst been
proposedby Bonet et al. (1997). The length of an opti-
mal relaxed solution would yield an admissibleheuristic.
However, aswasprovenby Bylander(1994),computingthe
optimal relaxedsolutionlengthis still NP-hard.Therefore,
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Bonetet al. introduceda techniquefor approximatingopti-
mal relaxedsolutionlength,which they usein bothversions
of HSP(Bonet& Geffner2001).Theheuristicenginesin FF
(Hoffmann& Nebel2001)andMips (Edelkamp& Helmert
2001)usedifferentapproximationtechniques.

Threeof the above planners,HSP1,FF, and Mips, use
their heuristicestimatesin variationsof local searchalgo-
rithms, wherethe searchspaceto a taskis the statespace,
i.e., thespaceof all statesthatarereachablefrom theinitial
state. Now, the behavior of local searchdependscrucially
on the topologyof thesearchspace(ashasbeenstudiedin
the SAT community, for exampleby Franket al. (1997)).
Thus,thesuccessof theseheuristicplannerson many plan-
ning taskssuggeststhat in thosetask's statespacesrelaxed
goaldistancesyield a heuristicfunctionof highquality. Re-
centwork hasrevealedempiricalevidenceconfirmingthis
intuition. By computingtheoptimalrelaxedsolutionlength
to reachablestatesin smallplanningtasksfrom thecompe-
tition domains,and measuringparametersof the resulting
local searchtopology, the following wasfound (Hoffmann
2001b).In themajority of thedomains,the investigatedin-
stancesdid notcontainany deadends(statesfrom whichthe
goal is unreachable),and neitherdid they containany lo-
cal minima(regionsof thestatespacewhereall neighbours
look worse). Sometimesall instancesin a domainhadthe
sameconstantmaximalexit distance(roughly, themaximal
distanceto a statewith betterevaluation). It washypothe-
sizedthattheseobservationsonthesmallexampleinstances
carryoverdirectly to all instancesin therespectivedomains
(Hoffmann2001b).

In thepresentedinvestigation,we consider20 oftenused
planningbenchmarkdomains,includingall competitionex-
amples. We prove that the majority of thesedomainsdo
in facthave theaforementionedtopologicalproperties,con-
firming all of theabove hypothesesexceptone. Theresults
give a strongargumentfor interpretingthe recentsuccess
of heuristicplannersasutilizing thetopologyof thebench-
marks, as was suggestedby the previous empirical work
(Hoffmann2001b).Specifically, it follows thatFF's search
algorithmis apolynomialsolvingmechanismin eightof the
domains,underthe idealizingassumptionthat its heuristic
identifiesthe optimal relaxed distances.What's more,our
proofmethodsshedlight onwhichstructuralproperties—at
the level of the planningtask's definition—areresponsible



for the topologicalphenomena.As mostof the structural
properties� weidentify areof asyntacticalnature,thisknowl-
edgegiveshintsasto how thetopologicalphenomenamight
beautomaticallyrecognizable.

Thefull detailsof theinvestigationform alongarticlethat
is availableasa technicalreport(Hoffmann2001a). Here,
we summarizethedefinitions,andidentify thekey ideasin
the form of proof sketches.The paperis organizedasfol-
lows. The next sectiongivesthe background.We thenin-
cludea sectionpresentingthe key lemmataunderlyingour
proofs; the threesectionsafter that prove the topological
phenomenaconcerningdeadends,local minima,andmax-
imal exit distance,respectively. Afterwards, one section
gives the overall picture that our resultsdetermine,before
wefinish thepaperby concludingandpointingto futurere-
searchdirections.

Background
Backgroundis necessaryontheplanningframework, thein-
vestigateddomains,local searchtopology, andtheprevious
empiricalwork.

Planning Framework
To enabletheoreticalproofs to propertiesof planningdo-
mainsratherthansingletasks,we have developeda formal
framework for STRIPSandADL domains,formalizing in
a straightforwardmannertheway how domainsareusually
handledin thecommunity. Theonly otherwork weknow of
thatusesaformalnotionof planningdomainsis recentwork
by Malte Helmert(2001b). There,the semanticsof differ-
ent transportationdomainsareformalizedin orderto prove
their computationalcomplexity. In differenceto that, our
definitionsarestrictly syntax-oriented—afterall, theheuris-
tic functionweconsideris extracteddirectlyfrom thesyntax
of theplanningtask.We only summarizetheratherlengthy
definitionshere,andrefer thereaderto our technicalreport
(Hoffmann2001a)for details.

A planningdomainis definedin termsof a setof predi-
catesymbols, a setof operators, anda setof instances. All
logicalconstructsin thedomainarebasedonthesetof pred-
icatesymbols.Theoperatorsare( � -ary, where� is thenum-
berof operatorparameters)functionsfrom thesetof all ob-
jectsinto thesetof all STRIPSor ADL actions.A STRIPS
action � is the usualtriple �����
	�����
�������������
�����	
������
�
 of fact
sets;anADL actionconsistsof a first orderlogical formula
without freevariablesasprecondition,andasetof effectsof
the form �����
��������������	
��
 where ���
� canagainbea formula
withoutfreevariables.An instanceof adomainis definedin
termsof a setof objects,an initial state, anda goal condi-
tion. Theinitial stateis a setof facts,andthegoalcondition
canbe an arbitraryformula without free variables.An in-
stancetogetherwith the respective operatorsconstitutesa
propositionalplanningtask ��� ��!���"#
 wherethe action set� is theresultof applyingtheoperatorsto theobjects,and
the initial state! andgoal condition " arethoseof the in-
stance.We identify instanceswith the respective proposi-
tional tasks.The result $%	'&)(*�,+���&�����
 of applyinga STRIPS
or ADL action � to a state & is definedin the usualman-
ner: the result is definedonly if the preconditionis true in

& ; in that case,the action's addeffectsaremadetrue and
thedeleteeffectsaremadefalse—foranADL action,only
thoseeffectsareappliedthathavetheirconditionfulfilled in& . A plan,or solution,for a task ���#��!���"#
 is a sequenceof
actions-/.0�21 that,whensuccessively appliedto ! , yields
a goalstate,i.e.,a statethatfulfills " . - is optimal if there
is noshorterplanfor ��� ��!���"#
 .

We investigatetopologicalpropertiesthatarisewhenus-
ing the optimal relaxedsolutionlengthasa heuristicfunc-
tion. We namethat function 3�4 . It is formally definedas
follows. For any state& that is reachablein a propositional
planningtask ���#��!���"#
 , the relaxedtaskto & is ���546�7&���"#
 :
thetaskdefinedby the initial state& , theoriginal goalcon-
dition, andtheoriginal actionsetexceptthatall deletelists
areempty. Then, 3�46��&

 is the lengthof anoptimalplanfor��� 4 �7&���"#
 or 3 4 ��&8
:9<; if thereis no suchplan. We will
frequentlymake useof thefollowing abbreviations: if a se-
quenceof actions-=4 is a planfor ���>4?��&���"#
 , thenwe also
saythat - 4 is arelaxedplanfor ���#�7&@��"#
 , or shortarelaxed
plan for & . 1 To give an examplefor a relaxed plan, con-
sidertheGripperdomain,asit wasusedin theAIPS-1998
competition.A realsolutionpicksup two balls in roomA,
movesto roomB, dropstheballs,movesback,anddoesthe
sameagainuntil all ballshave beentransported.A relaxed
plansimply picksup all ballswith thesamehand—thefree
predicatefor thehandis notdeleted—movesto roomB, and
dropsall balls. While this might seemvery simplistic, we
will see,in factprove, that it yieldsa high-qualityheuristic
functionin a lot of benchmarkdomains.

InvestigatedDomains

We investigatethe propertiesof 20 different STRIPSand
ADL benchmarkdomains,including all 13 domainsthat
have beenusedin theAIPS-1998andAIPS-2000planning
systemcompetitions. The competitiondomainsare As-
sembly, Blocksworld-arm, Freecell, Grid, Gripper, Logis-
tics, Miconic-ADL, Miconic-SIMPLE, Miconic-STRIPS,
Movie, Mprime, Mystery, and Schedule. We assumethat
the readeris familiar with thesedomains,and do not de-
scribethemhere.Descriptionscanbelookedup in thearti-
cleson thecompetitions(McDermott2000;Bacchus2001),
and detailsare in our technicalreport (Hoffmann2001a).
Apart from the 13 competitiondomains,we investigate7
morebenchmarkdomainsoftenusedin theliterature.These
domainscanbebriefly describedasfollows.

1. Blocksworld-no-arm: unlike in the competitionversion,
this encodingdoesnot useanexplicit robotarm;instead,
blocks are moved arounddirectly by operatorsmoving
themfrom oneblock to anotherblock, or from the table
to ablock,or from ablock to thetable.

1Ignoring the deletelists simplifiesa taskonly if all formulae
arenegationfree. In STRIPS,this is thecaseby definition.In gen-
eral,for afixeddomain,any taskcanbepolynomiallytransformed
to have thatproperty:computethenegationnormalform to all for-
mulae(negationsonly in front of atoms),thenintroducefor each
negatedatom ACB a new atomnot-B andmake sureit is true in a
stateiff B is false(Gazen& Knoblock1997).



2. Briefcaseworld: transportationdomainusingconditional
efD fects;D objectscanbeput into or takenoutof the(single)
briefcase,anda move operator, which canbeappliedbe-
tweenany two locations,movesall objectsalongthatare
currentlyinside.

3. Ferry: alsoa transportationdomain,with operatorsthat
boardacarontothe(single)ferry, or debarkacarfrom it;
the ferry canonly transportonecar at a time, anda sail
operatorcan be appliedto move the ferry betweenany
two locations.

4. Fridge: for a numberof fridges,thebrokencompressors
mustbe replaced. This involvesun-fasteninga number
of screws that hold the compressors,removing the old
compressorsand attachingthe new ones,and fastening
all screwsagain.

5. Hanoi: encodingof the classicalTowersof Hanoi prob-
lem,usingamove�,EF��G*��H�
 operatorto moveadisc E from
adisc G to adisc H (thepegsareencodedasdiscsthatcan
notbemoved).

6. Simple-Tsp: a trivial versionof theTSPproblem,where
thegoalis thatall locationshavebeenvisited,andamove
operatorcan be appliedbetweenany two locations(all
actioncostsbeingequal,asusualin STRIPS).

7. Tyreworld: anumberof flat tyresmustbereplaced,which
involvesinflating thesparetyres,looseningthenuts,and
in turn jacking up the hubs,undoingthe nuts,removing
the flat tyre and putting on the spareone, doing up the
nuts, and jacking down the hub again; finally, all nuts
mustbe tightened,and the tools mustbe put away into
theboot.

For formally defininga domain,onemustamongstother
things decidewhat exactly the instancesare. For almost
noneof the investigateddomainsis theresucha definition
in the literature.Theobviousapproachwe have takenis to
abstractfrom the known examplesuits. Full detailsfor all
domainsaregivenin ourtechnicalreport(Hoffmann2001a).

Local Search Topology
We now definea numberof topologicalphenomenathatare
relevantfor localsearch.Thedefinitionsaresummarizations
of whatwasgivenin thepreviousempiricalwork (Hoffmann
2001b),slightlysimplifiedto improvereadability;detailsare
in the technicalreport(Hoffmann2001a). A propositional
planningtaskis associatedwith its statespace��IJ��K 
 , which
is a graphstructurewhere I areall statesthatarereachable
from the initial state,and K is the setof all pairs ��&@�7&8LM
N.IPONI of stateswherethereis anactionthatleadsto &8L when
executedin & . Thegoal distanceQ��R��&

 for a state&S.TI is
thelengthof ashortestpathin ��IJ��K 
 from & to a goalstate,
or Q��R��&

U9V; if thereis nosuchpath.In thelattercase,& is
a deadend.

Whentherearesingle-directedstatetransitions,therecan
be deadends. A deadend & is recognizedif 3�46��&

N9W; ,
andunrecognizedotherwise. To explain that terminology,
notethat 3�46��&8
=9X;ZY[Q��R��&

29\; : if a taskcannot be
solvedeven whenignoring the deletelists, thenthe taskis

unsolvable.With respectto deadends,any statespacefalls
into oneof thefollowing four classes:thestatespaceis
1. undirected, if ]���&���&8L^
_.PKa`���&bL���&

?.cK ,

2. harmless, if dC��&���&8LM
e.fKg`:��&8L���&

ih.VK , and ]C&j.kIX`Q�����&

_lm; ,

3. recognized, if d�&f.\In`%Q��R��&

o9[; , and ]p&q.rIn`Q�����&

U9s;tYu3�46��&8
U9V; ,

4. unrecognized, if d�&=.PIT`vQ��R��&

w9q;yxc3�46��&

_lz; .
In thefirst class,therecanbeno deadendsbecauseevery-
thing canbe undone;in the secondclass,somethingscan
not beundone,but thosesingle-directedstatetransitionsdo
notdoany harm;in thethird class,therearedeadendstates
but all of themarerecognizedby theheuristicfunction.The
only critical casefor localsearchis classfour, wherea local
searchalgorithmcanruninto anunrecognizeddeadend,and
betrapped.

A differentway of getting trappedis when local search
endsup in a region of the statespacewhereall neighbors
look worse from the point of view of the heuristic func-
tion, i.e.,whensearchencountersa localminimum:with all
neighborslooking worse,it is not clear in which direction
searchshouldproceed.The formal definitionof local min-
ima,andof benchesbelow, follows thedefinitionsof Frank
et al. (1997) for SAT problems;in differenceto the undi-
rectedsearchspacesFranket al. consider, we needto take
careof single-directedstatetransitions. The adapteddef-
initions are the following. A flat path is a path in ��IJ��K 

on which theheuristicvaluedoesnot change.A plateauof
level � is a setof statesthat have the sameheuristicvalue� , andthat form a stronglyconnectedcomponentin ��IJ��K 
 .
An exit of a plateauis a state& thatcanbereachedfrom the
plateauon a flat path,andthathasa betterevaluatedneigh-
bor, i.e., ��&���&8L{
|.zK with 3�46��&8L}
NlX3�46��&

 . A local mini-
mumis a plateauof level ~Nl��Jl�; thathasnoexits. Note
that we allow exits to not lie on the plateauitself, namely
whenthe flat path leavesthe plateau(which canhappenif
thereis a single-directedstatetransitionto a statewith the
same3 4 value); themaincharacteristicof local minima is
that,startingfrom them,onemusttemporarilyincreasethe
heuristicvaluein orderto improveit.

Finally, localsearchcangetlostonlargeflat regionsof the
statespace,usuallyreferredto asbenches(Frank,Cheese-
man, & Stutz 1997). Theseare regions from which the
heuristicvaluecanbeimprovedwithouttemporarilyincreas-
ing it, i.e.,plateauswith exits. Thehardbit for local search
is to find the exits. The difficulty of doing this canbe as-
sessedby a varietyof parameterslike thesizeof thebench,
or theexit percentage;in thepreviousempiricalwork (Hoff-
mann2001b),theso-calledmaximalexit distancewasmea-
sured.This parameteris especiallyrelevantfor FF's search
algorithm,aswill beexplainedin thenext subsection.The
definitionis asfollows. Theexit distanceof any stateis the
lengthof a shortestflat pathconnectingthestateto anexit,
or ; if thereis no suchpath. Themaximalexit distancein
a statespaceis the maximumover the exit distancesof all
states& with 3�46��&

Sl�; , i.e., we ignorerecognizeddead
ends—thesecan be skippedby searchanyway. Note that
stateson localminimahave infinite exit distance.



PreviousWork: The Hypotheses
As describedabove, previous work hasbeendoneon em-
pirically investigatingtopologicalpropertiesin thecompeti-
tion domains,with respectto 3�4 (Hoffmann2001b);theap-
proachbeingto compute3�4 for thestatesin examplestate
spacesandmeasureparametersof theresultinglocal search
topology. Becausecomputing3�4 is NP-hard,theinvestiga-
tion wasrestrictedto smallinstances.Amongstotherthings,
themeasuredparameterswerethedead-endclassof the in-
stances,thenumberof stateson localminima,andthemax-
imal exit distance.Theobservationsaresummarizedin the
tableshown in Figure1.

Gripperm
ed

 <
 c

Logistics

Blocksworld-arm

no
 lo

ca
l m

in
im

a
lo

ca
l m

in
im

a

undirected

Movie
Miconic-STRIPS
Miconic-SIMPLE

Grid

harmless

Assembly

Schedule

unrecognizedrecognized

Freecell
Miconic-ADL
Mprime
Mystery

Figure1: Overview of the empiricalobservationsin small
instancesof thecompetitiondomains.

The x-axis in Figure 1 shows the different dead-end
classesby increasingdifficulty (for the domainsin a dead-
endclass� , all investigatedinstancesbelongto aclass�|��� ,
andat leastoneinstancebelongsto class� ). They-axiscom-
bineslocal minimapercentagewith maximalexit distance:
in the uppermostpart of the table, the domainsareshown
were local minima were found; below that, domainsare
shownweretherewerenolocalminimaatall in thesmallin-
stances(unrecognizeddeadendsimply theexistenceof local
minima,sothatpartof thetableis crossedout); in thelower
mostpartof thetabledomainsareshown wereall instances
hadthesameconstantmaximalexit distance(rememberthat
thisparameteris infinity in thepresenceof localminima).

The table in Figure 1 was namedthe planning domain
taxonomy, andit washypothesizedthat theseobservations
hold true for all instancesin the respective domains: that
all instancesof a domainshown in dead-endclass� arein a
class�S�T� ; thatno instanceof adomainshown in thelower
partsof the tablecontainsany local minima; that for a do-
mainshown in thelowestpartthereis a constant� suchthat
themaximalexit distancein all instancesis at most � . The
practicalrelevanceof this is thefollowing. Thedomainson
theleft bottomsideof thetaxonomyare“simple” for heuris-
tic plannerslikeHSPandFFbecausetherethe 3�4 function,
which thoseplannersapproximate,is a heuristicfunctionof
highquality. Themajorityof thecompetitiondomainsseem
to lie onthesimpleside.So,if theseobservationscarryover
to all instancesin the respective domains,then the taxon-
omy canserve asan explanationfor the goodbehavior of
theaforementionedplanners.

For domainsin thelowermostpartof thetaxonomy, FF's
searchalgorithmis in factpolynomialin thesensethat(as-
sumingtheheuristicfunctionis given)it looksatpolynomi-
ally many statesbeforereachingthegoal(Hoffmann2001b).

FF'ssearchalgorithmis thefollowing.

& := !
while 3�46��&

2h9s~ do

dobreadthfirst searchfor & L , 3 4 ��& L 
6l�3 4 ��&

& := &bL
endwhile

Without local minima each iteration of this algorithm
crossesa benchso breadthfirst searchfinds a betterstate
at maximaldepth �:�k� ; the branchingfactoris limited by
the numberof actionsin the task; eachiteration improves
the heuristicvalueby at leastone,so after at most 3�46��!�

iterationsa goalstateis reached.

In thesubsequentinvestigation,weverify how muchtruth
thereis in thehypothesesissuedfrom observationsonsmall
examples.Going beyond that, we look at a larger number
of domains,anddetermineexactly which partof thetaxon-
omythey belongto. Obviously, weneedonly provepositive
results(likethenon-existenceof localminima)for thosedo-
mainsweretheempiricalinvestigationdid not reveala neg-
ativeexample.As it turnsout,all of thehypothesesaretrue
exceptthoseabouttheAssemblydomain.Like in theprevi-
ousinvestigation,our main aim is to explain the goodper-
formanceof local searchplanners,sowe focuson solvable
instancesonly—onunsolvableinstances,localsearchis lost
anyway.

A Theoretical Core
Thefollowing is thecoreof ourtheory, i.e.,thekey lemmata
underlyingour proofs in the singledomains. This simpli-
fies the subsequentproofs, and givesan insight into what
themainstructuralreasonsarebehindthe topologicalphe-
nomenathatwe identify. The lemmataformulatesufficient
criteriaimplying that(thestatespaceof) aplanningtaskhas
certaintopologicalproperties.Proofsfor domainswill pro-
ceedby applyingthelemmatato arbitraryinstances.For the
sake of simplicity, we give our definitionsonly for STRIPS
tasks.Theproofsfor ADL tasksarealongthesamelinesof
argumentation.

DeadEnds
We first identify sufficient criteria for a planningtaskcon-
taining no dead ends. Our starting point is a reformu-
latedversionof resultspublishedby KoehlerandHoffmann
(2000). We needthe notion of inconsistency, which is de-
fined as follows. Two factsare inconsistentif thereis no
reachablestatethatcontainsbothof them.Two setsof facts�

and
� L areinconsistentif eachfact in

�
is inconsistent

with at leastonefactin
� L .

If to eachactionthereis aninverseactionthatundoesthe
action's effects,thenthecorrespondingstatespaceis undi-
rected.

Definition 1 Givena planning task ���#��!���"#
 . An action�|.P� is invertible, if

1. there is anaction ��.e� such that
(a) ���'	�� ��
_�f�����'	�����
p�e����������
�
��_��	
������
 ,
(b) �����R� ��
U9s��	
������
 , and



(c) ��	
��� ��
w9������R����
 ,
2. �����R����
 is inconsistentwith ���'	�����
 , and
3. ��	
������
_�i���'	�����
 .
Lemma 1 Givena planning task ��� ��!���"#
 . If all actions�S.c� are invertible, thenthestatespaceto thetaskis undi-
rected.

Proof Sketch: For any state& andapplicableaction � , � is
applicablein $2	'&b(*�,+���&�����
 dueto part 1(a) of Definition 1.
Parts2 and3 of thatdefinitionmake surethat � 's effectsdo
in factappear, andparts1(b)and(c) makesurethat � undoes
exactly thoseeffects.

Thenext is anew criterionthatis weakerandonly implies
the non-existenceof deadends. For an actionnot to lead
into sucha deadend, it is alreadysufficient if the inverse
actionre-achievesat leastwhathasbeendeleted,anddoes
notdeleteany factsthathavebeentruebefore.

Definition 2 Givena planning task ��� ��!���"#
 . An action�c.�� is at leastinvertible, if there is an action �c.�� such
that

1. ���'	�� ��
?�q�����'	�����
F�e����������
�
F�_��	8������
 ,
2. �����R� ��
_����	
������
 , and
3. ��	
��� ��
 is inconsistentwith ���'	�����
 .

NotethatthepreviousDefinition1 is strictlystrongerthan
Definition 2: if ��	
��� ��
N9�����������
 , and �����R����
 is inconsis-
tentwith ���'	�����
 , then,of course,��	
��� ��
 is inconsistentwith���'	�����
 .

Anotherreasonfor anactionnot leadinginto a deadend
is this. If theactionmustbeappliedat mostonce(because
its addeffectswill remaintrue),andit deletesnothingbut its
own preconditions,thenthatactionneedsnotbeinverted.

Definition 3 Givena planning task ��� ��!���"#
 . An action�S.c� hasstaticaddeffects, if

�����R����
p�n����,�@� ��	
����� L 
w9��
Anactionhasirrelevantdeleteeffects, if

��	
������
C�o��"z� ��@�� ���,�@� ���'	���� L 
�
U9s�
If all actionsin a taskareeitherat leastinvertibleor have

staticadd-andirrelevantdelete-effects,thenthestatespace
is atmostharmless.

Lemma 2 Givena solvableplanning task ��� ��!���"#
 . If it
holdsfor all actions��.P� thateither

1. � is at leastinvertible, or
2. � hasstaticaddeffectsandirrelevantdeleteeffects,

thenthere are no deadendsin the statespaceto the task,
i.e., Q��R��&

_lz; for all &#.cI .

ProofSketch: For any state&29�$%	'&b(R��+���!���-#
 aplancanbe
constructedby inverting - (applyingtherespective inverse
actionsin theinverseorder),andexecutinganarbitraryplan
for ��� ��!���"#
 thereafter. In thefirst process,actionsthatare

not (at least)invertible can be skipped: for thosethe sec-
ond prerequisiteholds true, so oncethey areappliedtheir
addeffectsremaintrueandtheirdeleteeffectsareno longer
needed.In thesecondprocess,all actionsaresafelyapplica-
bleexceptthosenotinvertibleonesthathavebeenskippedin
thefirst process.But for thesamereasonsasoutlinedabove
thoseactionsneednotbeappliedanyway.

The two propertieshandledso far, undirectedandharm-
lessstatespaces,arepropertiesof theplanningtasksthem-
selves,independentof the 3�4 function.Differentfrom that,
thethird deadendclass,recognizeddeadends,doesdepend
on theheuristicfunction. We did, however, not find a gen-
eral sufficient criterion for this case.Anyway, only two of
our domains,ScheduleandAssembly, belongto that class
accordingto thehypotheses,andasit will turn out for As-
semblythehypothesisis wrong.

Local Minima
We now identify a sufficient criterionfor thenon-existence
of local minima under evaluation with 3�4 . As will be
shown, thecriterioncanbedirectlyappliedto (theinstances
of) 6 of our20domains,andcanbeappliedwith slightmod-
ificationsto 4 moredomains.Thecriterion is basedon ac-
tions that fulfill a weaknotion of invertibility, andthat are
respectedby therelaxationin thesensedefinedbelow.

Whenusinga relaxedactionto invert anaction's effects,
it is alreadyenoughif theinverseactionre-achievesall facts
thathave beendeleted—asthe deleteeffectsof the inverse
actionwill beignoredanyway, thereneedsbeno constraint
abouttheir form.

Definition 4 Givena planning task ���#��!���"#
 . An action�<.X� is at leastrelaxed invertible, if there is an action�|.P� such that

1. ���
	�� ��
_�f�����'	�����
p�e�����R����
�
��_��	
������
 ,
2. and ������� ��
6����	8������
 .

Note that the previous Definitions 1 and 2 are strictly
strongerthanDefinition4.

The following property is the key behind the non-
existenceof local minima in mostof our domains:actions
thataregoodfor thereal taskarealsogoodfor therelaxed
task.

Definition 5 Givena solvableplanningtask ���#��!���"#
 . An
action �S.P� is respectedby therelaxationif, for anyreach-
ablestate & such that � startsan optimalplan for ��� ��&���"#
 ,
thereis anoptimalrelaxedplanfor ��� ��&���"#
 thatalsostarts
with � .

As a simple examplefor an action that is respectedby
therelaxation,considerpicking up a ball in Gripper: if that
action startsan optimal plan, then the ball mustbe trans-
ported;any relaxedplanneedsto transporttheball,andthere
is nootherwayof accomplishingthis(exceptusingtheother
hand,whichdoesnotyield a shortersolution).A similarar-
gumentappliesto loadingor unloadinga truck in Logistics:
the only way of transportinga packagewithin its initial or
destinationcity is by usingthelocal truck,soall plans,real
or relaxed,mustusetherespectiveaction.



Lemma 3 Givena solvableplanning task ��� ��!���"#
 , such
that the state spacedoesnot contain unrecognizeddead
ends.If each action �S.c� either

1. is respectedby therelaxationandat leastrelaxedinvert-
ible, or

2. hasirrelevantdeleteeffects,

thentherearenolocal minimain thestatespaceundereval-
uationwith 3�4 .

Proof Sketch: States& whereQ�����&8
U9V; have 3�46��&

w9q;
by prerequisiteandarethereforenot on local minima. We
show below that, from states& with ~�l�Q�����&

Sl\; , 3�4
decreasesmonotonicallyon any optimal path to the goal.
This finishesthe argument: the goal statehasa better 3�4
valuethan & , andthepathto it doesnot increase.

Sayan action � startsan optimal plan in a state & . We
identify, for thesuccessorstate$%	'&)(*�,+���&�����
 , a relaxedplan
thathasat mostthesamelengthasanoptimalrelaxedplan
for & . If the first caseof the prerequisiteholds, then �
startsan optimal relaxed plan -=4 for & . A relaxed plan
for $%	'&b(R��+���&�����
 canbe constructedby replacing � in -=4
with theinverseaction � : theinverseactionis applicablein$%	'&)(*�,+���&�����
 , andit re-achievesall factsthat � hasdeleted.
In the secondcaseof the prerequisite,if � has irrelevant
deleteeffects,we distinguishtwo cases.Let - 4 beanop-
timal relaxed plan for & . First case,� is containedin -=4 :
thenit canberemovedfrom -=4 to form a relaxedplanfor$%	'&)(*�,+���&�����
 , as � doesnotdeleteanythingthatis neededby
otheractions.Secondcase,� is not containedin -=4 : then-=4 is still a relaxedplan for $%	
&b(*�,+���&@����
 dueto thesame
reason.

Planningtaskswherethereareunrecognizeddeadends
do containlocal minimaanyway (Hoffmann2001b),sowe
mustpostulatethatthis is not thecase;like whenthetaskat
handis undirectedor harmless.

Maximal Exit Distance

Concerningthemaximalexit distance,we remarkonly the
following simplepropertywhich underliesour proof tech-
nique.

Proposition1 Givena planningtask ���#��!���"#
 , a reachable
state & , andan action � that startsan optimal relaxedplan-=4 for ���#��&���"#
 . If removing � from -=4 yieldsa relaxed
plan for $%	
&b(*�,+���&@����
 , then 3�46��$%	'&b(R��+���&�����
�
VlZ3�46��&

 ,
i.e., & is anexit stateunder 3�4 .

Theprerequisiteholds,for example,if theaction � is re-
spectedby therelaxationandhasirrelevantdeleteeffects.

In thefollowing sections,we will focuson deadends,lo-
cal minima, and maximal exit distancein turn. For each
of thesethreephenomena,we summarizeour proofsfor all
domainsin a singleproof sketch. This improvesreadabil-
ity, andmakesit easierto seethecommonideasbehindthe
proofs.

DeadEnds
We first prove to which dead-endclassour domainsbe-
long. Rememberthatwe needonly considerthosedomains
wheretheempiricalwork did not reveala negativeexample
(liketheunrecognizeddeadendsin Freecell, Miconic-ADL,
Mprime, andMystery). Mostof theproofsaresimpleappli-
cationsof thelemmatapresentedin theprevioussection.

Theorem1 Thestatespaceto any solvableplanningtask
belongingto the

1. Blocksworld-arm, Blocksworld-no-arm, Briefcaseworld,
Ferry, Fridge, Gripper, Hanoi, or Logistics domainsis
undirected,

2. Grid, Miconic-SIMPLE, Miconic-STRIPS, Movie,
Simple-Tsp, or Tyreworld domainsis harmless,

3. Scheduledomainis recognizedunderevaluationwith 3�4 .

Proof Sketch: All actions in Blocksworld-arm,
Blocksworld-no-arm, Ferry, Gripper, Hanoi, and Lo-
gisticsinstancesareinvertible in the senseof Definition 1,
so we canapply Lemma1 andarefinished. In the Brief-
caseworld and Fridge domains,while not strictly obeying
the syntaxof Definition 1, there is still always an action
leadingbackto thestateonestartedfrom.

In the Movie, Simple-Tsp, and Tyreworld domains,all
actionsareeitherat leastinvertible in the senseof Defini-
tion 2 or have irrelevantdeleteeffectsandstaticaddeffects
in thesenseof Definition 3, soLemma2 canbeapplied.In
theGrid, Miconic-SIMPLE, andMiconic-STRIPSdomains,
while notstrictly adheringto thesedefinitions,similarargu-
mentsprove thenon-existenceof deadends:in Grid, to all
actionsthereis aninverseaction,exceptopeninga lock; the
latter actionexcludesonly otheractionsopeningthe same
lock (similar to irrelevant deletes),andeachlock needsto
be openedat mostonce,as locks cannot be closed(static
addeffects).In theMiconic domains,moving thelift canbe
inverted;letting passengersin- or out of the lift cannot be
inverted(asthepassengerswill only getin or outat their re-
spectiveorigin or destinationfloors),but thoseactionsneed
to beappliedatmostonce(similar to staticaddeffects)and
they donot interferewith anythingelse(similar to irrelevant
deletes).

In Schedule, any state & with Q��R��&

NlX; canbesolved
by applyingacertainsequenceof workingstepsto eachpart
in turn. If that sequencecannot be appliedfor somepart� —which mustbe the casein any deadendstate—thenit
follows that this part is hot in & . No operatoraddsthe fact
thatapartis cold. But from thedeadendstate& at leastone
neededworkingsteprequires� beingcoldasaprecondition.
It followsthattherecanbenorelaxedsolutionto & either, as
therelaxationdoesnot improveon theaddeffects.

In Assembly, onecanconstructanunrecognizeddeadend
state,falsifying thehypothesisthatall deadendsarerecog-
nizedthere.We have proventhattheconstructionof anun-
recognizeddeadendinvolvescomplex interactionsbetween
the orderingconstraintsthat can be presentin Assembly.
Thesecomplex interactionsare not likely to appearwhen



orderingconstraintsaresparselikein theAIPS-1998bench-
mark  suit, and the interactionsareparticularlyunlikely to
appearin small instancesaswereusedin the previous in-
vestigation.We refer the interestedreaderto the technical
report(Hoffmann2001a)for details.As theexistenceof un-
recognizeddeadendsimpliestheexistenceof localminima,
in consequencethehypothesisthattherearenolocalminima
in Assemblyis alsofalsified.

Local Minima
Like before,thereis no needto prove anything wherethe
empiricalwork alreadyrevealeda negative example. Most
of our positive resultsconcerninglocal minima areproven
by application,or alongthelinesof, Lemma3. A few results
make useof rather individual propertiesof the respective
domains.

Theorem2 The state space of any solvable planning
taskbelongingto theBlocksworld-no-arm, Briefcaseworld,
Ferry, Fridge, Grid, Gripper, Hanoi, Logistics, Miconic-
SIMPLE, Miconic-STRIPS, Movie, Simple-Tsp, or Tyre-
world domainsdoesnot contain any local minima under
evaluationwith 3 4 .

ProofSketch: With Theorem1,noneof thosedomainscon-
tains unrecognizeddeadends. As follows from the theo-
rem's proof sketch,all actionsin theFerry, Gripper, Logis-
tics, Movie, Simple-Tsp, andTyreworld domainsareeither
at leastrelaxed invertible,or have irrelevant deleteeffects.
With Lemma3 it suffices to show that all actionsare re-
spectedby therelaxation.In Movie, if a snackis boughtin
an optimalplan thenthe snackmustalsobe boughtin any
relaxedplan, likewise for rewinding the movie or resetting
the counter;in Simple-Tsp, the optimal plan visits a loca-
tion that is not yet visited, andany relaxed plan mustalso
visit that location; in Tyreworld, if someworking stephas
not yet beendonethentherelaxedplanmustalsodo it; the
Ferry, Gripper, andLogisticsdomainsareall variationsof
thetransportationtheme,with actionsthatloadobjectsonto
vehicles,actionsthatmovethevehicles,andactionsthatun-
load objects. As an exampleproof, considerLogistics: if
an optimal plan loadsor unloadssomepackagethen that
packagemuststill be transportedandthe relaxed plan has
no betteroptionof doingso; if anoptimalplanmovesa ve-
hicle then that vehiclemust eitherdeliver or collect some
package,andagaintherelaxedplanhasnobetterchoice.

In the Fridge, Miconic-SIMPLE, and Miconic-STRIPS
domains,the actionsdo not adherestrictly to invertibility
accordingto Definitions3 and4; but wehaveseenthatthey
have similar semantics,i.e., they caneitherbe inverted,or
deleteonly facts that are no longer neededoncethey are
applied. Furthermore,all actionsin thesedomainsarere-
spectedby the relaxation: in Fridge, similar to Tyreworld,
missing working stepsmust also be done in the relaxed
plan; in Miconic-SIMPLEandMiconic-STRIPSsimilar ar-
gumentslike abovefor thetransportationdomainsapply.

In Briefcaseworld, all actionscan be inverted. Actions
that move the briefcaseor put in objectsare respectedby
the relaxationdueto the transportationarguments.Taking
outobjectsis notrespectedbecausetheobjectsalreadyhave

their at-relationadded(asa conditionaleffect) by moving
thebriefcase.However, takingoutanobjectdoesnot delete
importantfactsif that objectis alreadyat its goal location.
Thus,in a state & wherean optimal plan startswith a take
outaction,anoptimalrelaxedplanfor & canalsobeusedfor
thesuccessorstate.It follows that 3�4 doesnot increaseon
optimalsolutionpaths.

For theremainingthreedomains,theproofsaremoreso-
phisticated.In all casesit canbeproventhat thereis a path
to thegoalonwhich 3�4 doesnot increase.In Blocksworld-
no-arm, if anoptimalstartingaction � stacksablock into its
goalposition,then � alsostartsanoptimal relaxedplan. If
thereis no suchaction � in a state& , thenoneoptimalplan
startsby puttingsomeblock ¡ —thatmustbemoved—from
someblock � onto the table,yielding the state & L . Any re-
laxedplan -=4 for & alsomoves ¡ . To obtaina relaxedplan
for &8L , thatmoving actioncanbereplacedin -=4 by moving¡ from thetableinsteadof from � . Soin all statesthereis an
optimalstartingactionleadingto a statewith equalor less3�4 value.

In Grid, a rathercomplex procedurecan be appliedto
identify a flat pathto a statewith better 3�4 value.In a state& , let -=4 be an optimal relaxed plan for & , and � the first
unlockactionin -=4 or aputdown if thereis nosuchunlock
action(the last action in -=4 is a putdown without lossof
generality, as the only goalsare to have somekeys at cer-
tain locations). Identifying a flat pathto a state &8L where �
canbeappliedsufficeswith Proposition1: unlockingdeletes
only factsthat areirrelevantoncethe lock is open,andthe
deletesof putting down a key areirrelevant if thereareno
morelocksthatmustbeopened.Theselectedaction � uses
somekey � at a position E . -=4 mustcontaina sequence
of actionsmoving to E . Moving alongthe pathdefinedby
thoseactionsdoesnot increase3�4 : thoseactionsarecon-
tainedin anoptimal relaxedplan,andthey canbeinverted.
If � is alreadyheld in & , thenwe cannow apply � . If the
handis emptyin & , or someotherkey is held,thenonecan
use -=4 to identify, in a similar fashion,a flat pathto a state
whereonedoeshold theappropriatekey � .

In Hanoi, it canbeproventhat theoptimal relaxedsolu-
tion lengthfor any stateis equalto thenumberof discsthat
arenot yet in their goalposition.As no optimalplanmoves
adiscawayfrom its goalposition,3�4 doesthusnot increase
onoptimalsolutionpaths.

Maximal Exit Distance
We finally presentour resultsconcerningthe maximalexit
distance.Theproof techniqueis to walk alongoptimalsolu-
tion pathsuntil anactionis reachedwhosedeleteeffectsare
no longerneededonceit is applied.

Theorem3 To any of the Ferry, Gripper, Logistics,
Miconic-SIMPLE, Miconic-STRIPS, Movie, Simple-Tsp,
or Tyreworld domains,thereis a constant� such that,for all
solvabletasksbelongingto that domain,the maximalexit
distancein thetask's statespaceis at most � underevalua-
tion with 3�4 .

Proof Sketch: We have seenthat in all thesedomainsthe
actionsarerespectedby therelaxation,andcaneitherbein-



vertedor have irrelevant deletes. If & is a stateand � an
action¢ startinganoptimalplanfor & , then � startsanoptimal
relaxedplan -=4 for & , anda relaxedplan for $2	'&b(*�,+���&�����

can be constructedby either: replacing � in -=4 by the
respective inverseaction, which re-achieves � 's deleteef-
fects; or by removing � entirely, which canbe doneif the
deleteeffectsof � arenot neededby -=4 . In thelattercase,3�46��$%	'&)(*�,+���&�����
�
£lz3�46��&8
 follows(asis statedby Proposi-
tion 1). Soit sufficesto derive a constantnumber� of steps
on any optimalsolutionpathsuchthatafter � stepsthereis
anoptimalstartingactionfor which thesecondcaseholds.

In Movie, all actionshave no, and thereforeirrelevant,
deleteeffects, with the single exceptionof rewinding the
movie (whichdeletesthecounterbeingat zero).Obviously,
no optimal plan rewinds the movie twice in a row. Thus,�:9k� is thedesiredupperlimit.

In Simple-Tsp, �%9f~ suffices.With theterminologytwo
paragraphsabove, say we are at location � in & . Any op-
timal plan startsby visiting a yet unvisited location ��L . A
relaxedplanfor $%	
&b(*�,+���&@����
 canbeconstructedby remov-
ing � from -=4 , andreplacingall movesfrom � to some ��L L
with movesfrom ��L to ��L L .

In the transportationdomainsFerry, Gripper, Logistics,
Miconic-SIMPLE, and Miconic-STRIPS, the argumentis
the following. If theoptimalplanstartswith anunload-or
load-typeof action, then that actioncanbe removed from-=4 to form a relaxed plan for $%	'&b(R��+���&�����
 : for unloads,
onceanobjectis whereyou wantedit to be,you don't need
to have it in thevehicleanymore;similarly for loads,once
theobjectis insidetheappropriatevehicle,you do not need
it anymore at its origin location (in Gripper, “loading” a
ball alsodeletestherespectivehandbeingfree;however, the
handis madefreeagainanywayby therelaxedplan,whenit
putstheball into its goallocation;asimilarargumentapplies
in Ferry). Concerningmoves,in all thesedomainsall loca-
tionsareimmediatelyaccessiblefromall otherlocations(for
theappropriatetypeof vehicle),sonooptimalplanmovesa
vehicletwice in a row, which givesus �>9¤� astheconstant
upperlimit.

In Tyreworld, thelowestconstantupperlimit is �%9V¥ . If
theoptimalplancarriesout someworkingstep � thatneeds
to be undonelateron (like jackingup thehub with theflat
wheelon), thenthe relaxedplan for $%	'&)(*�,+���&�����
 must in-
clude the inverseaction to � (like jacking down the hub).
If theoptimalplancarriesout somefinal working stepthat
doesnot needto be undone(like putting away a tool no
longerneeded,or jacking down the hub), then that action
canberemovedfrom - 4 . As it turnsout, �:9s¥ is themaxi-
malnumberof non-finalworkingstepsthatany optimalplan
doesin a row.

For the Blocksworld-no-arm, Briefcaseworld, Fridge,
Grid, andHanoidomains,Theorem2 provesthat thereare
no local minima. Thus, thosedomainsstanda chanceof
having a constantupperlimit to the maximalexit distance.
However, in all of thesedomainsonecaneasilyconstruct
instanceswherethemaximalexit distancetakesonarbitrar-
ily high (finite) values. In Grid, for example,considerthe
instanceswheretherobotis locatedon a �jOj� grid (a line)

without lockedlocations,therobotstartsat the leftmostlo-
cation, and shall transporta key from the rightmostloca-
tion to the left end. The initial valueof 3�4 is �P�z¦ (walk
over to thekey, pick it up, andput it down—theat relation
is not deleted),and the valuedoesnot get betteruntil the
robothasactuallypickedup thekey. In Hanoi, themaximal
exit distancegrows in fact exponentiallywith the number
of discs. For detailsthe readeris referredto our technical
report(Hoffmann2001a).

The Taxonomy
Ourresultstogetherwith thenegativeexamplesfoundin the
previous empirical investigation(Hoffmann 2001b)prove
thepicturespecifiedin Figure2.
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Figure2: Theextendedandrevisedplanningdomaintaxon-
omy, overviewing our results.

All of the competitiondomainsbelongto exactly those
partsof thetaxonomy, shown in Figure2, wheretheempir-
ical observationssuggestedto put them;excepttheAssem-
bly domain.Obviously, mostof thedomainsareto befound
neartheleft bottomsideof thetaxonomy.

As discussedin the previous work, from the point of
view of heuristicplannerslikeHSPor FFwhichderivetheir
heuristicfunctionby approximating3�4 , theleft bottomside
of thetaxonomyis intuitively the“simple” corner:thereare
no or only recognizeddeadends,and 3�4 is a heuristicof
high quality. In contrast,the top right cornerof the taxon-
omy containsthe“demanding”domains:therecanbedead
endsthatarenot recognizedby 3�4 , andlocalminima.Con-
sistentlywith this, theFreecellandMiconic-ADL domains
constitutedmuchmoreof a problemto the heuristicplan-
nersin the AIPS-2000competitionthan, for example,the
Logisticsdomaindid. More intriguingly, we have seenthat
FF's searchalgorithmis polynomialwhentheheuristichas
thequality correspondingto thelower mostpartof thetax-
onomy, i.e.,a limited maximalexit distance.For 8 of our20
domains,3 4 doesin facthavethisquality.

Conclusionand Outlook
Lookingat a largecollectionof commonlyusedbenchmark
domains,we have proven that in the majority of thesedo-
mainsthe 3�4 heuristicfunction hasthe qualitieshypothe-
sizedby previous work (Hoffmann2001b). As many cur-
rentstate-of-the-artheuristicplannerswork by approximat-



ing that same3�4 function, this suggeststo interpretthose
planner'§ ssuccessasutilizing thequalityof 3�4 .

In theprocessof proving our results,we have alsodeter-
mined the reasonsbehindthe quality of 3�4 , from a more
structuralpoint of view: the reasonsare mainly that in
many domainsall actionsare (at least) invertible or need
not be inverted(like when their addsare static and their
deletesare irrelevant); and that the actionsare respected
by the relaxation,i.e., often thereis simply no other way
to achieve thegoal thanby applyingthem. Theknowledge
aboutthesestructuralimplicationsmaybeusefulwhende-
signingnew benchmarks.Moreover, onemight try to rec-
ognizethe structuralpropertiesautomatically, and thereby
predict the performanceof plannerslike FF. In fact, most
of the definitionsgiven in our theoreticalcore are purely
syntactical. Lemma3 gives a new sufficient criterion for
recognizingplanning taskswhere thereare no deadends
in the statespace(a problemwhich Hoffmannand Nebel
(2001) have proven to be PSPACE-hard). The only non-
syntacticalprerequisiteof Lemma 3 is inconsistency, for
which thereare several good approximationtechniquesin
theliterature(Fox & Long1998;Gerevini & Schubert2000;
Rintanen2000). Thechallengeis how to determinethatan
actionis respectedby therelaxation,andtherebyrecognize
taskswhere3 4 doesnotyield localminima.

The main pieceof work left to do is to corroboratethe
argumentationthatplannerslike FF andHSParein essence
utilizing the quality of 3�4 —that is, it must be verified to
which extent thoseplanner's approximative heuristicfunc-
tionsreally have thesamequality as 3�4 . On thecollection
of smallexampleslookedat in thepreviousempiricalinves-
tigation,FF's heuristicfunctionis similar to 3�4 (Hoffmann
2001b).To verify this observationin general,onecanlook
at fragmentsof thestatespacesof largerplanningtasks,and
computestatisticsaboutthedistributionof localminimaetc.

Another interestingfuture direction is to try and prove
propertiesof 3�4 for domainclassesratherthan for single
domainsin turn. Recentwork by MalteHelmert(2001b)has
defineda hierarchyof transportationdomainsin thecontext
of investigatingtheir complexity. Judgingfrom our results,
it seemsto bethecasethat,with Helmert'sterminology, any
transportationdomainwherethereis unlimitedfuel doesnot
containlocal minimaunder 3�4 . Themaindifficulty in such
aninvestigationis thedefinitionof thedomainclass:in dif-
ferenceto Helmertwho focuseson thesemanticsof thedo-
mains,for our purposeswe needa strictly syntacticaldef-
inition: after all, 3�4 dependsdirectly on the syntaxof the
operators.

LookingatHelmert's results(someof whichareyet only
to be found in his master's thesis(Helmert2001a)),there
is onemore intriguing parallelity to our investigation:the
domainsin the top right cornerof our taxonomycoincide,
except the Assemblydomain,exactly with thosedomains
whereHelmert found that decidingplan existenceis NP-
hard. The questionis whetherthereis any provablephe-
nomenonbehindthis observation(with Assemblybeingan
exceptionof somesort).
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165, Albert-Ludwigs-Universiẗat, Institut für Informatik,
Freiburg,Germany.
Hoffmann,J. 2001b. Local searchtopologyin planning
benchmarks:An empirical analysis. In Proc. IJCAI-01,
453–458.Seattle,Washington,USA: MorganKaufmann.
Koehler, J., andHoffmann,J. 2000. On reasonableand
forced goal orderingsand their use in an agenda-driven
planningalgorithm. Journal of Artificial IntelligenceRe-
search 12:338–386.
McDermott,D. 2000.The1998AI planningsystemscom-
petition. TheAI Magazine21(2):35–55.
Rintanen,J. 2000. An iterative algorithmfor synthesizing
invariants. In Proc. AAAI-00, 806–811.Austin, TX: MIT
Press.


