Plan and Goal Recognition as HTN Planning

Daniel Holler and Pascal Bercher and Gregor Behnke and Susanne Biundo
Institute of Artificial Intelligence, Ulm University, D-§9069 Ulm, Germany
{daniel.hoeller, pascal.bercher, gregor.behnke, susanne.biundo } @uni-ulm.de

Abstract

Plan- and Goal Recognition (PGR) is the task of inferring the
goals and plans of an agent based on its actions. A few years
ago, an approach has been introduced that successfully ex-
ploits the performance of planning systems to solve it. That
way, no specialized solvers are needed and PGR benefits from
present and future research in planning. The approach uses
classical planning systems and needs to plan (at least) once
for every possible goal. However, models in PGR are often
structured in a hierarchical way, similar to Hierarchical Task
Networks (HTNs). These models are strictly more expressive
than those in classical planning and can describe partially or-
dered sets of tasks or multiple goals with interleaving plans.
We present the approach PGR as HTN Planning that enables
the recognition of complex agent behavior by using unmod-
ified, off-the-shelf HTN planners. Planning is thereby needed
only once, regardless of how many possible goals there are.
Our evaluation shows that current planning systems are able
to handle large models with thousands of possible goals and
that the approach results in high recognition rates.

1 Introduction

For systems that interact with other agents, it may be impor-
tant to know which goals their counterparts want to achieve
and what actions might be performed next. This information
may be useful to planning its own behavior, to decide when
to trigger own behavior (e.g. when to offer help to a user), or
to prior the activity recognition, i.e., the component recog-
nizing the performed actions. The task is commonly known
as Plan and Goal Recognition (PGR) and it is usually solved
based on a sequence of actions that the observed agent per-
formed. There have been different approaches to solve it,
e.g., rule-based, based on abduction, probabilistic inference,
or techniques from parsing (Sukthankar et al. 2014).

A few years ago, an approach has been introduced that
exploits the performance of classical planning systems to
solve it. The earliest work in this sub-field was presented
by Ramirez and Geffner, in a first step by using modified
planning systems (2009), later by using off-the-shelf sys-
tems (2010). By using unchanged systems, such an approach
also benefits from ongoing research in planning, without any
adaptation. Their approach runs the planner twice for each

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

possible goal, once by enforcing any solution to start with
the given prefix, and once planning from scratch. By com-
paring the costs of the found solutions, the system estimates
how likely the goal is. Recently, there has been work to ex-
tend the approach to support features like observations over
fluents (instead of actions) or uncertainty in the observa-
tions (Sohrabi, Riabov, and Udrea 2016).

Since the models in PGR express the behavior of one or
more observed agents, using models from automated plan-
ning seems to be a good choice. However, using STRIPS
means to restrict the models to a basic level of expres-
sivity (that equals that of regular languages (Holler et al.
2016)). Models in PGR often use hierarchical (grammar-
like) structures (e.g. Geib and Goldman 2011). These are
also common in planning: the most widely used (hierarchi-
cal) formalism is Hierarchical Task Network (HTN) plan-
ning (Erol, Hendler, and Nau 1996). HTN models can ex-
press (non-context-free) context-sensitive structures (Holler
et al. 2014), and have also been proposed to be used in
PGR (Geib 2004), though its expressivity makes PGR, in
the general case, undecidable (Behnke, Holler, and Biundo
2015). The hierarchy enables a natural definition of the
agents’ goals as the top-most tasks. From a modeling per-
spective, HTN models combine STRIPS-like state-based defi-
nitions with expressive grammar structures. These may even
include partially ordered tasks. This is especially useful to
recognize several goals of an agent with interleaving plans,
or the goals of several observed agents.

We present the approach PGR as HTN Planning that en-
ables the recognition of complex agent behavior by using
unmodified, off-the-shelf HTN planners. The behavior of the
observed agent(s) is described by arbitrary HTN definitions.
We present a transformation that restricts the set of solutions
to an HTN planning problem to those starting with a given
prefix of observed actions. Our overall approach allows us
to plan only once, regardless of how many possible goals
there are. Our empirical evaluation shows that the approach
works well on a large plan and goal recognition corpus that
includes nearly 2000 distinct goals the agent may pursue.

Section 2 introduces the formal framework and defines
the PGR problem. Section 3 introduces the approach that is
evaluated in Section 4. We finally discuss the approach in
Section 5.



2 Planning Framework

This section introduces the HTN formalism of Geier and
Bercher (2011) and defines the PGR problem in this context.

2.1 Hierarchical Planning

In HTN planning, there are two types of tasks, compound (or
abstract) and primitive tasks (or actions). Abstract tasks are
successively decomposed into other tasks (that may be ab-
stract or primitive) until only primitive tasks are left. These
can directly be executed and are similar to actions in STRIPS.

The sets of primitive task names (actions) and compound
task names are denoted as A and C, respectively. Tasks are
organized in task networks. A task network tn is a triple
(T, <,a). T is the (possibly empty) set of unique task iden-
tifiers. These are mapped to task names by the function
a: T — CUA. This enables a single task name (e.g. move-
a-b) to appear multiple times in a task network. < C T'x T'
defines a partial order on the task identifiers. Two task net-
works tn = (T,<,a) and tn’ = (T',<’,a’) are called
isomorphic (tn = tn') if they differ solely in their identi-
fiers, i.e., if there is a bijection o : T — T so that for all
t,t" € T holds that [(¢,t') € <] < [(o(t),0(t')) € <'] and
a(t) = d(a(t)).

Abstract tasks are decomposed by using (decomposition)
methods. Let M be the set of all methods. A method m €
M is a pair (¢, tn) that maps an abstract task ¢ € C to a
task network tn, which specifies the (primitive or abstract)
subtasks of c and their ordering. When a task is decomposed,
it is deleted from the network, the subtasks specified in the
method are inserted and inherit the ordering relations from
the deleted task. Formally, a method (c, tn) decomposes a
task network ¢n; = (T, <1, «1) into a task network tny =
(T2, <2,a9) if t € Ty with a;(t) = c and there is a task
network ¢tn’ = (T, <, /) with tn’ 2 tnand Ty N T" = 0.
The resulting task network ¢no is defined as

tne =((Ty \ {tH) U T <" U=<p,(a;\{t—c})Ua)
<D :{(tl,tg) | (tl,t) € <1,t2 € T/} U

{(t1,t2) | (t,t2) € <1, t1 € T} U

{(tl,tg) | (tl,tg) € <1,t1 Zt Nty # t}

To denote that the task network ¢n can be decomposed
into the task network ¢n’ by the application of one or more
decompositions, we will write tn —* tn’.

The state-based part of the problem is defined over a set of
propositional environment facts L. Primitive tasks hold pre-
conditions and effects that change the current state. These
are given by the functions in the triple § = (prec, add, del),
defining their preconditions, the positive and negative ef-
fects. All these functions are defined as f : A — 2L, The
function 7 : A x 2 — {true, false} returns whether an ac-
tion is applicable in a state with 7(a,s) < prec(a) C s.
When an action is applicable, the state resulting from its
application is defined by the function v : A x 21 — 2F
with y(a,s) = [s\ del(a)] U add(a). An action sequence
(apay .. .ay) is applicable to a state so when each action a;
with 1 < ¢ < n s applicable to the state s; = y(a;—1, Si—1)-

An HTN planning domain is a tuple D = (L, C, A, M, §).
A planning problem P = (D, sg, tny) includes a domain D,

the initial state s; € 2% and an initial task network tn;. A
task network tng = (T's, <g, ag) is a solution to a planning
problem P if and only if the following conditions hold:

1. Vt € Ts : ag(t) € A, ie., all tasks are primitive.

2. There is a sequence (t1ts . ..t,) of the task identifiers in
Ts in line with <g and (ag(t1)as(t2) ... as(t,)) is ap-
plicable in s, i.e., the solution is executable.

3. tny —* tng,i.e., the solution is a refinement of the initial
task network.

Sol(P) denotes the set of all solutions to a problem P.

2.2 The Plan and Goal Recognition Problem

Based on the formal framework of HTN planning, we spec-
ify the PGR problem. Let D = (L,C, A, M,¢) be an HTN
planning domain that defines the used model of behavior.
Having a hierarchical behavior model, goals of an agent
are commonly defined as the fop-most tasks in that hierar-
chy. Since an agent may pursue more than one of these tasks,
we define goals in terms of a task network. This enables a
flexible definition of goals, including multiple tasks that may
or may not include the same task more than once. They may
be ordered to each other, but if they are not, the approach
allows for interleaving between the plans of several goals.

Definition 1 (PGR Problem) A PGR problem (D, s¢, 0,G)
extends the HTN domain model by an initial state sy € oL
the observations 0, and a set of possible goals G. Let 0 =
(01,02,...,0m) be the sequence of observed task names
(the observations). We define G to be a (finite) set of task net-
works G = {G1, Ga, . .., G} where each element is defined
as G; = ({idp,id1,...,id,}, <, a) with a(id;) € CU A
and n € Ny.

Since o needs to be placed at the beginning of the solutions,
we will also call it the prefix of observations. G contains all
possible combinations of top-most tasks. Technically, this
means that any G € G may form the initial task network.

Before we define the solution to such a problem, we have
to discuss if we want the enforced prefix to be uninterrupted,
or if it may include additional actions in between. To allow
such additional actions may have different reasons:

e Ramirez and Geffner (2010) allowed for such interruption
to deal with several goals with interleaving plans. How-
ever, since we support multiple goals in the initial task
network, this is not necessary in the HTN setting.

e When the environment is partial observable, some actions
may be missed. For such scenarios, it would be useful to
allow actions in the prefix of our plans that have not been
observed. We consider this option as important next step
for future work. In the following, we assume that there are
no such unobserved actions.

Definition 2 (Recognized Goals and Plans) Givena PGR
problem (D, so,0,G), some goal G € G explains the obser-
vations (01,049, . . .,0m) if and only if there is a task network
(T,<,a) € Sol((D, sg, G)) and an executable lineariza-
tion (t1,ta, ..., t,) of the tasks in T withn > m and o; =
a(t;) for 1 < i < m. We call (a(t1),a(ta),...,a(ty)) the
recognized plan.



3 Plan & Goal Recognition as HTN Planning

This section presents our approach that, like related work,
is based on a problem transformation. However, due to the
HTN setting, the overall approaches differ and enforcing a
prefix is more complicated. Figure 1 illustrates the overall
approach. The transformation is a two-stage process, a first
step introduces a new task name ¢; that can be decomposed
in one of the original goal-networks GG ... G, . Every call
of the planner starts with ¢ in the initial task network. This
transformation makes all solutions belonging to all goals
(1 ...G, reachable. The system is free to choose one. Af-
terwards it needs to find a solution by using the decomposi-
tions defined in the original model (indicated by the cloud).
A second transformation guarantees that any solution starts
with the sequence of observations (0102 . .. 0y,).

01 02 --- OpPn+1 -+ Pm

Figure 1: Schema of the overall approach. A new task tr
is the only task in the initial task network and must be de-
composed into one of the original goal-networks G, — the
choice is made by the planner. Afterwards, G; is further de-
composed until a solution is found. A second transformation
ensures that every solution starts with the observed prefix.

The planning problem that results from this transforma-
tion is an ordinary HTN planning problem that can be solved
by any HTN planner. Solving the planning problem also
solves the plan and the goal recognition problem: Any solu-
tion includes as first decomposition the goal G; the planner
has selected as well as the postfix of the plan that was gen-
erated — i.e., it provides a goal that explains the observation
and it recognizes the plan.

The approach of Ramirez and Geffner chooses the goal in
a designated step after planning. The transformation given in
Sec. 3.1 enables us to integrate goal selection into the plan-
ning process and thus to solve the PGR with a single run
of the planning system (instead of planning once per pos-
sible goal). The transformation that enforces the prefix is
more difficult in HTN planning because, beside modifying
and extending the set of actions, we need to adapt the de-
composition hierarchy. Otherwise, the new actions are never
reachable for the planner. The next sections introduce the
two transformations in more detail.

3.1 Choosing a Goal

Based on a given PGR problem (D, sg,0,G) with D =
(L,C, A, M,J), we define a planning problem

P :((L,CU {t]}7A, M/,(5> 780,tn/1>
M = MU{(t;,tn) | tn € G}

where {¢t;} N (C'U A) = 0 is a new initial task and tn, =
{{id},0,{(id — t;)}}. In the original model, G formed the
set of possible initial task networks. Now exactly those net-
works can be decomposed from the newly introduced task.
Obviously, the following lemma holds:

Lemma 1 The set of solutions Sol(P) contains exactly the
solutions to all goals given in the original model PGR.

Next, the problem is transformed so that the set of solu-
tions includes solely those that start with the given prefix.

3.2 Enforcing a Prefix

We build on a transformation of the actions similar to that
known from classical planning. Then we show how to in-
tegrate the new actions into the decomposition hierarchy to
make them reachable from the initial task network.

Based on a given HTN planning problem P =
((L,C, A, M,9),s0,tnr) with § = (prec, add, del), we
define a problem P’ = ((L',C", A’,M',¢'), sp, tn'y) with
8 = (prec’,add’, del’). Let 6 = (01,02,...,0,) be the
sequence of observations.

To enforce the given plan prefix, we need to introduce
new propositional symbols and duplicates of the actions with
altered preconditions and effects. Let [; with 0 < ¢ < m and
l; ¢ L be proposition symbols that are used to place some
0; at its position in a generated plan,ie. L' = LU{l; | 0 <
i < m}. For each task name o; in the prefix, we introduce
a new task name o} and define the preconditions and effects
as

prec’ (05) — prec(o;) U{l;_1},
add’(0;) — add(o;) U {l;} and
del’ (0}) — del(0;) U {l;_1}.

Every action in the original problem needs to be executed
after the prefix, i.e., Va € Aholds that prec’(a) — prec(a)U
{l;m}. The new set of actions is defined as A’ = A U {0} |
1 <4 < m}. To make the first action of the prefix applicable
in the initial state, the symbol [ is added, i.e., s{, = soU{lo}.

We want every solution to include the entire prefix. There-
fore we enforce [,,, to be true at the end of each plan. Due
to the lack of a goal description in the HTN formalism, we
introduce a new primitive task name tg with prec’(tg) —
{ln}, add'(tg) — 0 and del'(tg) — 0. We place this
task via the initial task network after all other tasks tn} =
({idl, Z'dg}, {(Zdl, ZdQ)}, {Zdl — 17, ng — tG}) Now, the
HTN system is forced to search for plans that end with this
action that holds our new goal as precondition.

So far we adapted the non-hierarchical part of the prob-
lem, but the newly introduced actions would never be reach-
able through decomposition, and due to the new precondi-
tion, the original actions would never be executable.



Regarding the newly introduced actions o] as equal to the
actions they are duplicates of, it should be possible to place
them at any position in the plan where o; could have been.
Therefore we introduce new abstract tasks that replace the
primitive tasks in the original problem. New methods de-
compose these tasks either into (1) the original primitive
task, or, (2) one of the new primitive tasks in the prefix.

C'=CuU{d, |aec A}, c, ¢ CUA,
M= {(c,(T,=<,a")) | (c¢,(T,=<,a)) € M}, where

n, ifneC

/
c,, else.

Vid € T with a(id) = n,d/(id) = {

M®* = {(c,, ({id},0,{id — a})) | Va € A},

Now we have to introduce a new method for every action
in the sequence of observations 6 = (01,02, ..., 0p,). This
method decomposes the respective new compound task c;,,
into the observed action o;:

M? = {(c;,, ({id}, 0, {id = 0;})) | 0; € 0}

By defining the new set of methods M’ = M°UM*UM?°,
the new planning problem P’ is fully specified.

Given that (1) the original primitive tasks and their corre-
sponding duplicates are regarded equal and (2) the last arti-
ficial goal task t¢ is deleted from the solution, the following
property holds:

Lemma 2 Given an HTN planning problem P and a prefix
0. Let P’ be the transformed HTN problem that enforces the
prefix. Sol(P') contains exactly the solutions of P starting
with o.

3.3 Overall Transformation

Given a PGR problem (D, s, 0, G), we compile D, s, and G
into a planning problem P by using the first transformation
and enforce o by the second transformation, resulting into
P’. Taking Lemma 1 and Lemma 2 together, we get:

Corollary 1 Let PGR be a plan and goal recognition prob-
lem and P’ an HTN planning problem resulting from apply-
ing the transformations. Then, Sol(P’) contains exactly the
solutions to the original problem PGR.

Instead of constructing a specialized plan and goal recog-
nition system to solve the task, we can create the correspond-
ing HTN problem and pass it on to any HTN planning system.
The next section gives empirical results on that approach.

4 Empirical Evaluation

We implemented a lifted version of the transformation and
used a variant of the PANDA planning system (Bercher,
Keen, and Biundo 2014) to solve the resulting problems.
It is not easy to find evaluation domains for PGR. Beside
the actual model for the recognition, one needs to have
pairs of goals and plans that belong to each other. More-
over, interesting domains should incorporate a set of qual-
itatively different goals. We have chosen the Monroe do-
main', a disaster management domain built by Blaylock and

"https://www.cs.rochester.edu/research/speech/monroe-plan/

Allen (2005) to generate a corpus of 5000 plan/goal com-
binations. They generated the plans by using a modified
SHOP2 planning system that was adapted to randomly gen-
erate different possible plans for a given goal. It includes
10 different (lifted) goal-networks (each containing a single
goal-task), 46 (lifted) methods and 30 (lifted) actions as well
as a huge set of constants that result in nearly 2000 distinct
groundings of the goals in the generated corpus. For details,
we refer to their paper given above. From a computational
complexity view, the domain is neither totally ordered, nor
(grounded/lifted) acyclic, nor tail-recursive, i.e., properties
that would make it decidable (Erol, Hendler, and Nau 1996;
Alford, Bercher, and Aha 2015), are not fulfilled. We use an
HTN domain that is widely based on their SHOP2 domain.

We use the first 100 experiment runs of the corpus. For
each run, we generated one planning problem with enforced
prefix of length O, 1, 2, and so on, until the whole original
plan has been enforced as prefix. The plans of the used in-
stances have a length of 4 to 29 actions with a mean value
of 10.7. We ended up with a total of 1174 distinct planning
problems and ran each with 10 random seeds, i.e., the given
results are based on 11740 runs of the planning system (on
Xeon E5-2660 v3 CPUs with 2.60 GHz base frequency, 32
GB memory limit and 5 minutes time limit).

The system solved 94.4 % of the planning problems
within this limit. For the solved instances, the planning sys-
tem needed a mean runtime of 57 seconds with a standard
derivation of 17.8. Due to the vast set of constants in the do-
main, most of the time was spent on grounding the problem.

4.1 Goal Recognition

Figure 2a shows the performance of goal recognition over
all solved instances and all goals. On the x-axis it shows the
length of the observed prefix, on the y-axis the percentage of
instances with correctly classified goal. Due to the different
plan lengths, the length of the prefix is given as percentage
of the overall plan. Each point represents the ratio between
instances with correctly recognized goal and instances with
wrongly recognized goal in an interval of 12.5% of the prefix
length. Consider, e.g., the right-most triangle in the plot at
position (93.75, 86.4). It means that, from instances with an
enforced prefix of a length between 87.5% and 100% of the
ground-truth plan, 86.4% are solved correctly.

The top-most curve shows the recognition rate on the
goal-task without parameters (i.e. 10 possible classifica-
tions). Here the goal is recognized correctly after a short
prefix. The curve at the bottom shows the recognition rate
with parameters, i.e., the result is correct when the task and
all parameters have been recognized correctly. This results
in thousands of possible classifications (nearly 2000 of them
included in the corpus). We will come back to the third curve
later.

Studying the first plots, we were wondering why the sys-
tem could not detect the correct parameters for the goal in so
much cases. So we had a look at the performance on distinct
goals. Naturally, there are goals that result in sequences of
actions that are more unique than others, revealing the goal.
Other goals may result in plans that do not really distinct one
goal from another. So one might assume that some goals are



80 100
| |

60
|

40

correctly classified in %
20
|

0
l

| | | | | |
0 20 40 60 80 100

O no parameter recognition
A full experiment set
* without provide-temp-heat

40 60 80 100
| | |

correctly classified in %
20

0 20 40 60 80 100

® quell-riot <& clear-road—-tree + clear-road-hazard
% provide-temp-heat v plow-road X clear-road-wreck
O set-up-shelter © fix-power-line

A fix-water-main ® provide-med.-attention

Figure 2: The percentage of correctly classified goals. (a) over all goals. (b) split by (ground-truth) goal.

recognized after a short prefix, others might need a longer
prefix to be recognized.

Figure 2b shows the recognition results split by the 10
different types of goal. Some of the goals are recognized
quite well after observing a short prefix, others only when
the half or even three quarters of the overall plan have been
observed. Quite notable is the poor recognition performance
on the goal provide-temp-heat. We identified the following
method in the domain used for generation that does cause it:

(:method m-provide-temp-heat-1
:parameters (?person - person
?ploc - point)
:task (provide-temp-heat ?person)
:precondition (and
(atloc ?person ?ploc))
:ordered-subtasks (and
(generate-temp-electricity ?ploc)
(turn-on-heat ?ploc)))

It decomposes the task (provide-temp-heat ?person) into two
subtasks and includes a method precondition that binds the
parameter ?ploc to the location of the person to treat. The
subtasks ensure that this location is provided with electric-
ity and is heated, but the person itself does not appear in the
plan. Given that more than one person may be at this loca-
tion, it is impossible for a PGR system to infer the right one.
Surely, such structures should be avoided when designing a
model for plan and goal recognition (so it might be totally
fine for planning).

Let us have another look at Fig. 2a. The curve in the mid-
dle gives the performance over all goals except for provide-
temp-heat. Now the overall performance of recognizing the
goal with all parameters nearly reaches the performance of
recognizing only the type of the goal without parameters.

4.2 Plan Recognition

Plan recognition provides further information about the
observed agent’s behavior and might support the activity
recognition (that recognizes the observed actions) by giving
a prior on which actions might be observed next.

The ground-truth plan and the recognized plan have nec-
essarily the enforced prefix of observations in common. Fig-
ure 3a gives the percentage of the actions in the postfixes
that are identical (over all runs, regardless on whether the
goal was recognized correctly or not).

In general, the plan generated by the planning system
might be longer than the ground-truth plan. Therefore,
the given percentage is calculated in the following way:
Given the number of common actions after the prefix is
¢, the ground-truth plan has length g, the recognized plan
length r and the prefix length p, the given percentage is
100/maz(g — p,r — p) * c.

Please be aware that inferring a total ordered sequence
of task that can be observed next might be difficult due to
the partial ordering in task networks. However, we want to
predict the directly forthcoming actions to support the ac-
tivity recognition. Figure 3b shows the percentage of runs
where the next (up to) three actions have been inferred cor-
rectly, given a certain prefix. The curves stand for outlook
lengths of one (o), two (A), and three (+). For example, the
circle located at position (6.25, 21.26) means that from all
runs (goal correct or not) where 0 up to 12.5 percent of the
plan’s prefix has been enforced, the action after the prefix
has been classified correctly in 21.26% of the runs. We want
to note one technical detail of this last diagram. The plan-
ner is in principle free to generate plans that are longer than
the ground-truth plan (since it has no information that the
full prefix was enforced). Therefore we do not want to pun-
ish the fact that the recognized plan has the same size as the
ground-truth plan and count the identified end of the plan
also as correct classification.



o
o_
=
x 8
Y
1)
S
o _|
o ©
=
©
a o _|
o <
=
g
o _|
o(\l
o_

0 20 40 60 80 100
length of observed prefix in % of the plan

o
o —
=
o _|
0
X
8
= o _|
5 ©
o
it
8 2 -
= <
(]
o B
8 — /,‘/.,- O one actions
- A two actions
$ + three actions
o —

0 20 40 60 80 100
length of observed prefix in % of the plan

Figure 3: (a) Percentage of correctly recognized actions after the enforced prefix over all runs. (b) Percentage of runs where

the first one, two, or three action after prefix are correct.

Resuming the plan recognition results, it can be seen that,
though the evaluated domain enables a large set of possibil-
ities on how to achieve a goal and the way the corpus was
generated ensures that many of them are included, the sys-
tem finds plans with a large percentage of actions that are
included both in the generated as well as in the ground-truth
plan, so that the overall performance should help the activity
recognition and should also allow to gain knowledge about
the agent’s future course of action.

5 Discussion

An interesting question in PGR is which assumptions are
made about the observed agent and the environment. Like
the work of Ramirez and Geftner (2009; 2010), we rely
on full information about the initial state and deterministic
actions. We also assume fully observable actions, but it is
straightforward to extend our approach to deal with missed
observations.

Concerning the agent, it needs to be specified which
course of action is regarded a rational way of reaching a
goal. In other words: which behavior is regarded goal di-
rected. Ramirez and Geffner (2009) assume the agent to ex-
ecute an optimal plan, otherwise the goal that is approached
in a non-optimal way is rejected from the set of possible
goals. Ramirez and Geffner (2010) do a less restrictive as-
sumption. They do not require optimal behavior. Instead, the
approach is based on the cost difference between the plans
with/without enforced prefix. So the agent needs to approach
the goal, but not necessarily in an optimal way. In HTN mod-
els, the courses of action are more restricted, since it is not
possible to insert actions apart from decomposition. In fact,
the hierarchy is often regarded to specify combinations of
actions that are helpful strategies to reach a goal. So the
assumptions about goal-directed behavior are given in the
domain. Nevertheless could our approach benefit from ad-
ditional metrics, especially to rank goals against each other.
Such heuristics may be defined on the length of the resulting
primitive plan, but also on the applied methods.

Currently, our approach excludes unreachable goals and
picks one of the remaining, this is more closely related
to Ramirez and Geffner (2009) than to (2010). Here, the
observations are “...replaced by extra goals that must be
achieved at no extra cost.” (Ramirez and Geffner 2009,
p.1780) and optimal plans are needed. They call it a “filter”
resulting in the set of goals in line with the observations.
In principle, such filtering is also possible with our prefix-
transformation by the cost of planning for each goal — we
wanted to avoid this effort. However, when our full transfor-
mation is applied, the used HTN planning system sorts out
many unreachable parts of the search-space during the pro-
cess of grounding. Though based on relaxed reachability (so
there might remain goals that are unreachable), this may be
an interesting information.

Since the HTN formalism has (like STRIPS) been devel-
oped to represent agent behavior, we think that it is a good
choice to model behavior in plan and goal recognition. The
combination of hierarchy and partial ordering between tasks
makes the formalism very expressive: it has been shown
that the models can represent (non-context-free) context-
sensitive languages (Holler et al. 2014), whereas STRIPS can
only express regular languages (Holler et al. 2016). We think
that especially the partial ordering is useful in PGR: it en-
ables an observed agent to pursue more than one goal and
to interleave the plans. It might also be used when multiple
agents are observed to recognize multi-agent plans.

There are two interesting variations of the formalism that
might be considered for future work: one allows shared tasks
between the plans of several goals (see Alford et al. 2016).
However, such behavior might also be modeled via no-op
operators; and it has not been shown yet how this changes
the expressivity. A second variant allows the planning sys-
tem to insert tasks apart from the hierarchy (Geier and
Bercher 2011). This enables noise in the observation (e.g.
when the observed agent executes actions that are between
the goal-directed actions or the activity recognition has been
wrong). However, using this variant, the planning system is



no longer forced to integrate observations into the plan be-
longing to the recognized goal, so some metric is needed
to enable the insertions that are needed, but punish plans
with too much insertions. Otherwise it is not possible to
choose, e.g., between some (maybe in general unlikely) so-
lution that starts with exactly the observed actions and a
(in general more likely) plan that does not. Task insertion
can also be compiled into ordinary HTN domains — it has
been shown that the resulting models are far less expres-
sive than pure hierarchical models (Geier and Bercher 2011;
Holler et al. 2014).

Throughout the paper, we assumed that a set of possible
goals are given in form of a set of task networks. This re-
sulted in the limitation that the number of this goals has to be
finite (otherwise we end up with an infinite set of methods).
If necessary, the given construction to choose the goal of the
agent can be replaced by one that enables a recursive inser-
tion of goal-tasks (e.g. by starting with a single task as goal
and having a method that replaces this single task by two
new tasks). That way, one can introduce an arbitrary number
of goals pursued by the agent (though we do not think that
having a finite set of goals is a limitation in practice).

6 Conclusion

We showed how the approach PGR as Planning can used
in the context of HTN planning. PGR as Planning enables
the field of PGR to benefit from present and future re-
search in planning. By using HTN instead of STRIPS mod-
els, our approach enables the use of far more expressive
types of models to define the recognized behavior (more
precisely, context-sensitive instead of regular languages),
thereby combining the widely-used grammar-like models
with state-transition as given in STRIPS. We improved the
approach in a way that only one run of the planning system
is necessary, regardless of how many possible goals there
are. The choice on which goal the observed agent pursues
is made by the planning system — this enables the use of its
pruning and search techniques when choosing the goal. The
empirical evaluation showed that the approach works well
on an evaluation domain containing a huge set of possible
goals; that current HTN planning systems are able to solve
the transformed problem quickly and that the approach re-
sults in good recognition rates.

Acknowledgments
This work was done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

References

Alford, R.; Bercher, P.; and Aha, D. W. 2015. Tight bounds
for HTN planning. In Proc. of the 25th International Con-
ference on Automated Planning and Scheduling (ICAPS), 7—
15. AAAI Press.

Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and
Aha, D. W. 2016. Hierarchical planning: Relating task and
goal decomposition with task sharing. In Proc. of the 25th

International Joint Conference on Artificial Intelligence (1J-
CAI), 3022-3029. IICAI/AAALI Press.

Behnke, G.; Holler, D.; and Biundo, S. 2015. On the com-
plexity of HTN plan verification and its implications for plan
recognition. In Proc. of the 25h International Conference
on Automated Planning and Scheduling (ICAPS), 25-33.
AAAI Press.

Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid plan-
ning heuristics based on task decomposition graphs. In Proc.
of the 7th Annual Symposium on Combinatorial Search
(SOCS), 35-43. AAAI Press.

Blaylock, N., and Allen, J. F. 2005. Generating artificial cor-
pora for plan recognition. In Proc. of the 10th International
Conference on User Modeling (UM), 179—-188. Springer.

Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity results for HTN planning. Annals of Mathematics and
Artificial Intelligence 18(1):69-93.

Geib, C. W,, and Goldman, R. P. 2011. Recognizing plans
with loops represented in a lexicalized grammar. In Proc. of
the 25th AAAI Conference on Artificial Intelligence (AAAI),
958-963. AAAI Press.

Geib, C. W. 2004. Assessing the complexity of plan recog-
nition. In Proc. of the 19th National Conference on Arti-
ficial Intelligence, 16th Conference on Innovative Applica-
tions of Artificial Intelligence (AAAI/IAAI), 507-512. AAAI
Press/The MIT Press.

Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proc. of the 22nd Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
1955-1961. AAAI Press.

Holler, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language classification of hierarchical planning problems.
In Proc. of the 21st European Conference on Artificial Intel-
ligence (ECAI), 447-452. 10S Press.

Holler, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the expressivity of planning formalisms through
the comparison to formal languages. In Proc. of the

26th International Conference on Automated Planning and
Scheduling (ICAPS), 158-165. AAAI Press.

Ramirez, M., and Geffner, H. 2009. Plan recognition as
planning. In Proc. of the 21st International Joint Conference
on Artificial Intelligence (IJCAI), 1778-1783. IICAI/AAAI
Press.

Ramirez, M., and Geffner, H. 2010. Probabilistic plan
recognition using off-the-shelf classical planners. In Proc. of
the 24th AAAI Conference on Artificial Intelligence (AAAI),
1121-1126. AAAI Press.

Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan recog-
nition as planning revisited. In Proc. of the 25th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
3258-3264. IICAI/AAAI Press.

Sukthankar, G.; Goldman, R. P.; Geib, C.; Pynadath, D. V.;
and Bui, H. H. 2014. Plan, Activity, and Intent Recogni-
tion. Elsevier. chapter An Introduction to Plan, Activity,
and Intent Recognition.



