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Abstract

HTN planning combines actions that cause state transi-
tion with grammar-like decomposition of compound tasks
that additionally restricts the structure of solutions. There
are mainly two strategies to solve such planning problems:
decomposition-based search in a plan space and progression-
based search in a state space. Existing progression-based sys-
tems do either not rely on heuristics (e.g. SHOP2) or calculate
their heuristics based on extended or modified models (e.g.
GoDeL). Current heuristic planners for standard HTN models
(e.g. PANDA) use decomposition-based search. Such systems
represent search nodes more compactly due to maintaining a
partial order between tasks, but they have no current state at
hand during search. This makes the design of heuristics dif-
ficult. In this paper we present a progression-based heuristic
HTN planning system: We (1) provide an improved progres-
sion algorithm, prove its correctness, and empirically show
its efficiency gain; and (2) present an approach that allows
to use arbitrary classical (non-hierarchical) heuristics in HTN
planning. Our empirical evaluation shows that the resulting
system outperforms the state-of-the-art in HTN planning.

1 Introduction
Hierarchical Task Network (HTN) planning combines prim-
itive tasks that can be executed directly and cause state
transitions like actions in classical planning with compound
tasks. These describe more abstract tasks and have to be
decomposed using (decomposition) methods – grammar-
like rules on how to divide the task into other tasks that
may be compound or primitive. Decomposition is contin-
ued until all tasks are primitive. These rules have huge influ-
ence on the set of solutions and it has been shown that the
plan existence problem in HTN planning is (strictly) semi-
decidable (Erol, Hendler, and Nau 1996) and that it is far
more expressive than classical planning (Höller et al. 2014;
2016).

There are mainly two approaches to solve HTN planning
problems: decomposition-based search in a plan space and
progression-based search in a state space. All approaches
need to combine the restrictions of state transition and de-
composition to find a solution. This makes the design of
heuristics in HTN planning difficult. To make it easier,
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some systems rely on extended models (like SHOP2, Nau
et al. 2003) or on modified models (like GoDeL, Shiv-
ashankar et al. 2013). Current heuristic search systems for
standard HTN models (e.g. PANDA, Bercher, Keen, and
Biundo 2014) are based on a decomposition-based search.
These systems benefit from their systematicity and use a
compact search node representation that maintains a partial
order of tasks, but they have poor information about the cur-
rent state during search, so they can not combine state and
hierarchy properly.

In this paper we show how a progression-based search
enables using existing state-based heuristics from classical
planning to solve general HTN problems without extending
or modifying the model. Our main contributions are:

1. We show how to improve the standard progression al-
gorithm by reducing the number of non-deterministic
choice-points.

2. We show how to integrate relaxed hierarchy information
into the state of the problem in order to use arbitrary clas-
sical heuristics to guide the progression planner. Heuris-
tic values based upon this information estimate the sum
of decompositions and applied actions needed to gener-
ate a solution and can thus be used to guide a progression
search in a state space.

We first summarize related work. Then, after introducing the
formal framework, we show how to improve the progression
algorithm and describe our approach to use classical heuris-
tics to guide its search. The overall system is evaluated af-
terwards1.

2 Related Work
The maybe best-known HTN planning system, SHOP2 (Nau
et al. 2003), is a progression-based system performing a
depth-first search. To control search, it does not rely on
heuristics to estimate the goal distance. Instead, search is
guided by other features like state-based preconditions that
define when a decomposition method can be applied and an
if-then-else structure in methods. This hand-modeled advice
makes it a very efficient domain-configurable planning ap-
proach (Nau 2007). However, this advice has to be devel-
oped from scratch and by hand for every new domain.

1Source code as well as newly introduced evaluation domains
are available online at www.uni-ulm.de/en/in/ki/panda.



Other approaches extend or modify the model to make
it more prone for integrating heuristics and/or other search
techniques from classical planning. Waisbrot, Kuter, and
Könik (2008) added a goal definition to methods and calcu-
late heuristics based on these goals. Shivashankar et al. intro-
duced a novel formalism, Hierarchical Goal Network (HGN)
planning (Shivashankar et al. 2012; Alford et al. 2016b), that
does not decompose tasks, but goals and developed algo-
rithms and heuristics for HGN problems (Shivashankar et
al. 2013; 2016; Shivashankar, Alford, and Aha 2017).

We give a domain-independent approach based on heuris-
tic search that is intended to work on domains represent-
ing physics, no advice – like classical planners (McDermott
2000). This allows the system to solve arbitrary HTN plan-
ning problems without encoding the search strategy into the
problems. There are several approaches in the literature that
address the same objective: Lotem, Nau, and Hendler intro-
duced a combination of a planning graph (to represent re-
laxed state transition) with a so-called planning tree (that
represents decomposition) (Lotem, Nau, and Hendler 1999;
Lotem and Nau 2000). The two graphs are built interleaved
and restrict each other. The plan is extracted from this
combined structure, i.e. the approach uses a specialized al-
gorithm and does not calculate a heuristic for a standard
search. Gerevini et al. (2008) interleave classical heuris-
tic search and HTN decomposition. It allows for task in-
sertion (which lowers expressivity and makes them solve
a different problem class) and does no heuristic search in
the HTN part of the search. Alford et al. introduced transla-
tions into classical planning (Alford, Kuter, and Nau 2009;
Alford et al. 2016a). For general HTN problems, iteratively
incrementing a bound is needed, like in SAT-based classical
planning. We do not aim at providing such a translation, but
at using classical heuristics in our HTN planning system.

An example for a plan space-based system is FAPE. It has
a slightly different focus than the systems given in this sec-
tion (and ours): It comes with sophisticated support for plan-
ning with time at the cost of not supporting recursion (Dvo-
rak et al. 2014). Enforcing non-recursive models lowers the
expressivity of the formalism (Höller et al. 2016). Another
major difference is the lack of a goal distance estimation.
FAPE uses a domain-independent delete-relaxed pruning
of search nodes combined with blind search (Bit-Monnot,
Smith, and Do 2016). The PANDA system also performs a
heuristic search in plan space, combining decomposition-
based search with partial order causal link (POCL) plan-
ning (Bercher, Keen, and Biundo 2014). All its recent
heuristics are based on the task decomposition graph (TDG)
– an AND/OR graph that compactly represents the reach-
ability information imposed by the decomposition methods
(Bercher et al. 2017, Def. 1). Elkawkagy et al. have shown
how hierarchical landmarks, extracted from a TDG, can be
used for search strategies (Elkawkagy et al. 2012). In more
recent work, heuristics are computed that estimate the num-
ber of decompositions and causal link insertions required
to find a goal or the cost of (resp. number of) actions that
still need to be inserted (Bercher et al. 2017). We propose a
progression-based search to integrate more state information
into our heuristics.

3 Formal Framework
We use the formalism of Höller et al. (2016), which is based
on the one by Geier and Bercher (2011), and defines HTN
planning as extension of STRIPS.

3.1 STRIPS Planning
A STRIPS planning problem is a tuple pc = (L,A, s0, g, δ),
whereas L is a set of propositional environment facts, A the
set of action names, s0 ∈ 2L is the initial state, and g ∈ 2L

the goal description; states s ⊇ g are called goal states. The
functions prec, add , and del map an action to its precondi-
tions, add-, and delete-effects, respectively. These functions
are given in a tuple δ = (prec, add , del) and are all defined
as f : A → 2L. Whether a primitive task a is applicable in
a state s is given by the relation τ : A × 2L with τ(a, s) ⇔
prec(a) ⊆ s. Given that τ(a, s) holds, the state resulting
from the application is given by the state transition function
γ : A × 2L → 2L with γ(a, s) = (s \ del(a)) ∪ add(a). A
sequence of actions 〈a0a1 . . . al〉 with ai ∈ A is applicable
in a state s0 iff τ(ai, si) holds with si = γ(ai−1, si−1) for
i > 0. The state sl+1 results from its application. A sequence
〈a0a1 . . . al〉 is a solution to a STRIPS planning problem iff
it is applicable in s0 and results in a goal state.

3.2 HTN Planning
An HTN planning problem is defined as a tuple p =
(L,C,A,M, s0, tnI , g, δ). The elements L, A, s0, g, and
δ are defined as given above. C defines the set of com-
pound task names. Task names are organized in task net-
works. A task network is a triple tn = (T ,≺, α). T is a
(possibly empty) set of identifiers that are mapped to task
names by a function α : T → A ∪ C. This enables a task
name to be contained in a task network more than once. A
set of ordering constraints ≺ : T × T defines a partial or-
der on the identifiers. If two task networks tn = (T ,≺, α)
and tn ′ = (T ′,≺′, α′) differ only in their identifiers, i.e.
there is a bijection σ : T → T ′ so that for all identifiers
t, t′ ∈ T holds that [(t, t′) ∈ ≺] ⇔ [(σ(t), σ(t′)) ∈ ≺′]
and α(t) = α′(σ(t)), they are called to be isomorphic
(tn ∼= tn ′). tnI is the initial task network. The definition us-
ing an initial task network enables the interpretation of every
node in the search space as a new planning problem (Alford
et al. 2012). However, for some proofs it is beneficial to have
a single initial task name instead of a task network. An ini-
tial task network can be compiled away by introducing a new
task name (used for the new initial task) and a method that
decomposes this task into the original task network (Geier
and Bercher 2011). I.e. the two definitions can be regarded
equivalent and we will use the variant that is most appropri-
ate for a given paragraph.

The set of decomposition methods M defines how com-
pound tasks may be decomposed. A methodm ∈M is a pair
(c, tn) of a compound task name c ∈ C and a task network,
called the method’s subnetwork. The tasks in the subnetwork
are called the subtasks of the method. We use a definition
without method preconditions. This is not a restriction since
the definitions are equivalent: method preconditions can be
compiled away by introducing a new task name that holds



the precondition and is ordered at first position of the sub-
network. When a task t is decomposed, it is removed from
the network, the method’s subtasks are added and all order-
ing constraints that hold for t are introduced for the subtasks.

Formally, a method (c, tn) decomposes a task network
tn1 = (T1,≺1, α1) into a task network tn2 = (T2,≺2, α2)
if t ∈ T1 with α1(t) = c and there is a task network
tn ′ = (T ′,≺′, α′) with tn ′ ∼= tn and T1 ∩ T ′ = ∅. The
task network tn2 is defined as

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {(t 7→ c)}) ∪ α′)
≺D ={(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t, t2 6= t}

When a task network tn can be decomposed into a task net-
work tn ′ by applying the methodm to a task with the identi-
fier t, we write tn−−→t,m tn ′; if it is possible using an arbitrary
number of methods in sequence, we write tn →∗ tn ′.

A task network tn = (T ,≺, α) that can be reached via
decomposing tnI (i.e. tnI →∗ tn) is a solution to a planning
problem p if and only if all task names are primitive (∀t ∈
T : α(t) ∈ A), there exists a sequence 〈t1t2 . . . tn〉 of the
task identifiers in T that is in line with≺, and the application
of 〈α(t1)α(t2) . . . α(tn)〉 in s0 results in a goal state.

In HTN planning, it is easy to compile a state-based goal
into the hierarchy. Therefore it is often omitted in the defi-
nition (though some include it, e.g. Biundo et al. 2011 and
Bercher et al. 2016). Our approach smoothly combines task
decomposition with state-based goals, so our definition also
includes one. However, our approach works perfectly with-
out it (in fact, most evaluation domains do not include one).

4 Avoiding Branching in Progression Search
In this section we first introduce the de-facto standard pro-
gression algorithm and show how to improve it afterwards.

Progression-based HTN planning has two characteristics:
(1) Only the tasks that have no predecessor in the network
are processed and (2) primitive tasks that are processed are
removed and cause a state transition. An HTN planning
problem is solvable if and only if progression search finds
a solution (Alford et al. 2012, Thm. 3).

Algorithm 1 gives the canonic progression algorithm sim-
ilar to those by Nau et al. (2003, Fig. 5), Ghallab, Nau, and
Traverso (2004, p. 243), or Alford et al. (2012, p. 5). A
search node is a tuple that includes the current state and a
task network, i.e. the elements of the problem definition that
change during search. We added the actions progressed so
far as third element (i.e. the prefix of the generated solution).
Initially, the triple (s0, tnI , ∅) is inserted into the fringe.
While the fringe is not empty, some node n = (s, tn, π)
with tn = (T ,≺, α) is removed (line 3). A node is a solu-
tion if and only if T = ∅ and s ⊇ g. During search, only
those tasks that have no predecessors in the network are pro-
cessed (we denote these tasks to be unconstrained). They are
assigned to the set U in line 5. For each primitive task in U ,
there is no (when it is not applicable) or exactly one possi-
ble modification: a state transition in combination with the

1 fringe ← {(s0, tnI , ∅)}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if isgoal(n) then return n
5 U ← n.unconstrainedNodes
6 for t ∈ U do
7 if isPrimitive(t) then
8 n ′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t .methods do
12 n ′ ← n.decompose(t ,m)
13 fringe.add(n′)

Algorithm 1: Standard progression-based HTN planning

deletion of the primitive task. The resulting new search node
n′ is defined as (s′, (T ′,≺′, α′), π′) with s′ = γ(α(t), s),
T ′ = T \ {t}, ≺′ = ≺ \ {(t, t′) | (t, t′) ∈ ≺}, α′ =
α \ {(t 7→ α(t))}, and π′ = π ◦ α(t) (the concatenation of
π and α(t)). The node is added to the fringe in line 9.

For each compound task t ∈ U , a set of new search
nodes is generated, one for every applicable method (loop in
line 11). Formally, for each method m = (α(t), tn) ∈M , a
successor (s, tn ′, π) with tn −−→t,m tn ′ is generated.

The algorithm loops over all unconstrained tasks and adds
for each applicable modification a new node to the fringe.
For primitive tasks this is necessary: It makes a difference in
which order they are applied because this is a commitment
to their order in the solution. But consider compound tasks:
Here, the order in which two tasks are decomposed implies
no commitment to the solution and no branching is required.

Consequently, we can improve Alg. 1 by picking only a
single compound task (no non-deterministic choice) out of
U and decomposing it. Therefore we splitU intoUC andUA
that hold the compound and primitive unconstrained tasks,
respectively. Apart from that, line 1 to 5 of the algorithm are
unchanged. The remaining lines are given in Alg. 2. Though

5 . . .
6 for t ∈ UA do
7 n ′ ← n.apply(t)
8 fringe.add(n′)

9 t← selectCompTask(UC)
10 for m ∈ t .methods do
11 n ′ ← n.decompose(t ,m)
12 fringe.add(n′)

Algorithm 2: Our optimization to reduce branching

the ordering does not influence the solution, it may influence
the algorithm’s efficiency. A suitable strategy for picking the
next task is interesting future work. Here, we do it randomly.

It is known that Alg. 1 is sound and complete (Alford et al.
2012). So the soundness of Alg. 2 follows directly. However,
there is no formal proof published, so we give self-contained
proofs for both soundness and completeness of Alg. 2.



For both proofs, we need to show that a task network can
be reached by decomposing the initial task. This is done
by providing a valid decomposition tree (DT) that leads to
it. DTs have been introduced by Geier and Bercher (2011,
Def. 7-9). A DT is a tuple g = (Tg, Eg,≺g , αg, βg), where
Tg and Eg are the nodes and directed edges of a tree,≺g is a
strict partial order on the nodes, αg is a function that labels
each node with a task name (αg : Tg → C ∪ A), and βg la-
bels inner nodes with a method. A DT is valid with respect
to a planning problem if and only if its root is labeled with
the initial task of the planning problem and for any inner
node t with βg(t) = (c, tn), it holds that: (1) αg(t) = c; (2)
the task network induced in g by the children of t are iso-
morphic to tn; (3) ordering constraints between the children
of t in g are inherited as defined for decomposition; (4) ≺g
includes only ordering constraints demanded by (2) or (3).
The yield of a DT is a task network containing the leafs of
the tree and the parts of αg and ≺g belonging to these tasks.
Now, the following holds (Geier and Bercher 2011, Prop. 1):
Given a planning problem, for every task network tn holds
that there is a valid decomposition tree g with yield(g) = tn
if and only if tnI →∗ tn . I.e. a DT is a witness for a valid
decomposition leading to a task network.
Theorem 1. Algorithm 2 is sound.

Proof. We first show that every path in the progression
search space (and thus these that are searched by Alg. 2)
corresponds to a valid decomposition of the initial task, i.e.,
to the construction of a valid DT. To show this, the tree can
be maintained during search as follows:

Let g = ({t}, ∅, ∅, {(t 7→ ni)}, ∅) be the tree in the
initial search node where ni is the initial task. A new tree
is generated for every decomposition (Alg. 2 line 11): Let
g = (Tg, Eg,≺g, αg, βg) be the tree in the current search
node (s, (T ,≺, α), π). When decomposing a task t ∈ T ,
α(t) = c with a method m = (c, (Tm,≺m, αm))2 we de-
fine the tree of the new search node as g = (Tg ∪ Tm,
Eg ∪ {(t, t′) | t′ ∈ Tm}, ≺′g, αg ∪ αm, βg ∪ {(t 7→ m)}).
The ordering relation ≺′g includes the orderings of the cur-
rent tree, plus new relations that are defined according to the
definition of decomposition.

The created trees have ni as their root node, the mappings
αg and βg are consistent, the children of a node n match
its method βg(n), the ordering relation matches the decom-
position criteria, i.e., the maintained trees are valid. When
a search node is returned as a solution, its task network is
empty, and the yield of its corresponding tree includes ex-
actly the primitive tasks in the generated solution π. The se-
quence π is a witness for an executable linearization, and the
system has checked that it leads to a goal state.

Theorem 2. Algorithm 2 is complete.

Proof. Let tnS be an arbitrary (but fixed) solution to the
given planning problem. Given that it is a solution, there is
a valid decomposition tree g = (Tg, Eg,≺g, αg, βg) with
yield(g) = tnS . Given a suitable fringe (e.g. a queue),
Alg. 2 will find this solution. As we have seen in the last

2m is an isomorph copy of the applied method with new IDs

proof, every path in the search space corresponds to a DT.
The algorithm will explore a path corresponding to a tree
that is isomorphic to g.

Alg. 2 has two types of modifications, decomposition and
progression. It is free to mix them, but in each iteration of its
outer loop (line 2), it branches over decomposing one com-
pound task (with every applicable method) and the appli-
cation of all primitive tasks. From a high level perspective,
we will follow in this proof the path that first decomposes
compound tasks until no unconstrained one is left. When no
unconstrained compound tasks are left, we progress a prefix
of the solution away, and start again.

Let nI be the initial task. The search starts with a single
node that contains nI and the root of g must also be labeled
with it. While there is an unconstrained compound task t,
Alg. 2 selects one of them (line 9). It applies all methods
that are applicable to that specific task (line 10), i.e., it will
apply the method βg(t) used in the given solution. The de-
composition introduces the subtasks of βg(t). Since it is the
same method as in g, these tasks equal the children of t in g.

At some point there will be no unconstrained compound
task left, i.e. no further decomposition is possible. Since tnS
is a solution, there is an applicable sequence ā of its primi-
tive tasks that is in line with the ordering constraints intro-
duced by the methods in βg and leads to a goal state. Alg. 2
applied the same methods, i.e., it ended up with the same
tasks, and since no further decomposition is possible, the
first task(s) of the solution must be included. This means
that Alg. 2 can progress a prefix of (at least one) action(s)
that equals the prefix of ā. Since the progression is done
via branching, all possible combinations are applied. After a
progression, one of the following three cases occurs: (1) an
compound task is unconstrained that had been ordered after
the progressed task, then we can follow this path as given
above; (2) the network is empty, then we have reconstructed
the given solution; or (3) another progression is needed. Fi-
nally, Alg. 2 will have processed all tasks by applying the
same methods as in g to compound tasks and by progressing
primitive tasks in the same order as they appear in ā.

5 Guiding HTN Search with Classical
Heuristics

In classical planning, a common way to create search heuris-
tics is to relax the PSPACE-complete problem to a prob-
lem solvable in P, and to use the solution of that problem
as heuristic estimation. We use a similar approach: We re-
lax the undecidable HTN problem to a (PSPACE-complete)
STRIPS problem. This problem is passed to a classical
heuristic that will further relax it to solve it in P. The heuris-
tic estimation is used in the HTN search. Our translation
includes the non-hierarchical part of the HTN and a re-
laxed part of the restrictions induced by the hierarchy. It can
be combined with arbitrary classical heuristics to calculate
heuristic values for the original HTN planning problem.

Using progression search, state is tracked during search
and can be the basis for estimating a goal distance. This
makes it easier to use such a transformation-based approach.
However, the following issues have to addressed:
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(a) Domain definition. Preconditions and effects are omitted due to readability.
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. . .
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(b) Translation of via , direct and plug.

Figure 1: A simple entertainment domain. Boxes represent actions, non-boxed nodes represent compound tasks. Arrows indicate
how tasks are decomposed by a method.

• The hierarchy may have a huge impact on reachable solu-
tions and

• usually there is no state-based goal as basis for the classi-
cal heuristic.

We first introduce the ideas behind our transformation
based on examples. However, a self-contained formal def-
inition is given in the beginning of Section 5.3.

5.1 Bottom-Up-Reachability
Our transformation tracks which tasks may be reached via
the hierarchy. Intuitively, it simulates a (relaxed) task com-
position, i.e. the reverse application of methods, starting
with the primitive tasks. For each task n ∈ C ∪ A we intro-
duce a new state feature bn indicating that this specific task
has been reached (it is bottom-up-reachable). Every primi-
tive task makes the corresponding reachability fact true. For
each method m = (c, tn), a new action am is introduced
that has the facts corresponding to the tasks in tn as precon-
ditions and bc as single effect. The goal is to reach the facts
corresponding to the tasks in the current network.

Figure 1a shows a simple domain describing how to con-
nect entertainment devices, e.g. a DVD player and a TV. The
connect task (con) may be accomplished by the methods
direct or via . Devices and cables are treated equal. The hi-
erarchy ensures that the signal is transmitted from source to
sink, not the state part of the problem. Figure 1b shows the
transformation. Consider the example of connecting a DVD
player with a TV, i.e. the initial task is con(dvd , tv). It can
be accomplished by connecting one end of a cable with the
DVD player and the other end with the TV (using once the
method via and twice direct ; resulting in two actions). Us-
ing our transformation, the goal is to reach bcon(dvd,tv), the
fact belonging to con(dvd , tv). A solution to the transfor-
mation (i.e. a classical plan) could be:

1. plug(dvd , cable, portdvd , plug1cable)

2. plug(cable, tv , plug2cable , porttv )

3. adirect(dvd,cable)
4. adirect(cable,tv)
5. avia(dvd,tv) (with cable as argument for B)

The application of the plug actions (line 1 and 2) fulfills the
preconditions of the actions in line 3 and 4 that represent
methods from the HTN. The execution of these two actions
fulfills the preconditions of avia(dvd, tv) (line 5) that fulfills
bcon(dvd,tv), the goal of the transformed problem.

In this example, the classical plan provides the optimal
goal distance for a progression-based HTN search, and thus
a classical heuristic might also come up with it. In general,
our transformation makes several relaxations:

• The system may insert tasks apart from the hierarchy –
even those that are never reachable via decomposition.
Such actions may be used (1) to fulfill preconditions of ac-
tions needed due to the hierarchy or (2) to fulfill the (state-
based) goal of the original problem. This can be seen as
an instance of HTN planning with task insertion (Geier
and Bercher 2011; Alford, Bercher, and Aha 2015).

• Ordering relations that are enforced by the HTN (i.e. in
methods’ subnetworks) are entirely ignored.

• Every task must be reached only once, regardless of how
often it is enforced via the hierarchy. This leads to an un-
derestimation of the number of needed decompositions. It
can be seen as task sharing (see e.g. Alford et al. 2016b).

5.2 Top-Down-Reachability
Imagine a second planning problem in our example domain:
The goal is to connect several devices (DVD player, satel-
lite receiver, etc.) with a TV with a single input port – the
solution is to use an adapter with multiple input ports, con-
nect that adapter to the TV, and connect the devices to the
adapter. However, if the system is free to insert actions apart
from the hierarchy, it may as well insert the unplug action to
make the single port of the TV free again.

In general, there are two distinct cases of inserted actions:

1. The inserted action may be entirely unreachable from the
current task network (like the unplug action) or

2. the system came up with a combination of actions that is
unreachable due to the hierarchy.

The first case can be avoided easily by restricting the set of
actions to those that are reachable via decomposition. Given
the task network tn in the current search node, a task n is
reachable if there is a task network tn ′ = (T ′,≺′, α′) with
tn →∗ tn ′ and α(t) = n for some t ∈ T ′. We introduce
a new fact da (top-down-reachable) for every action a that
is true if a is reachable. It is added as precondition of a and
set before calculating the heuristic. By encoding it into the
model, it is visible for heuristics without modification. The
second case can not be detected using this technique.

Top-down-reachability (TDR) considers one task at a time
and the respective task must only be reachable via the hierar-
chy, it must not be contained in a solution, there might even



not be a decomposition where it is executable. This makes
it feasible to compute it. It can even be preprocessed and
stored in a look-up table to save search time. We describe in
Section 5.4 how to implement it efficiently.

5.3 Formal Definition and Properties
We denote our encoding Relaxed Composition Encoding
(RC). Formally, it maps an HTN problem to a classical prob-
lem. We give the definition for an arbitrary HTN planning
problem. Since every search node can be seen as a new plan-
ning problem (see Sec. 3.2), it can be applied not only to the
initial problem, but also to every node during search. Given
an HTN planning problem p = (L, C, A, M, s0, tnI , g,
(prec, add , del)) with tnI = (T ,≺, α), we define the clas-
sical planning problem RC(p) = p′ as:

p′ =
(
L′, A′, s′0, g

′, (prec′, add ′, del ′)
)

L′ = L ∪ Ld ∪ Lb
Lb = {bn | n ∈ A ∪ C}, with L ∩ Ld = ∅
Ld = {dn | n ∈ A}, with (L ∪ Ld) ∩ Lb = ∅

A′ = A ∪AM ,
AM = {am | m ∈M}, with A ∩AM = ∅

s′0 = s0 ∪ {dn | ∃tn ′ : tnI →∗ tn ′ = (T ′,≺′, α′),
t ∈ T ′, α′(t) = n}

g′ = g ∪ {bn | t ∈ T , α(t) = n}
For all a ∈ A′, the adapted δ-functions are defined as:

prec′(a) =

{
prec(a) ∪ {da}, iff a ∈ A
{bn | t ∈ T , a ∈ AM , a = am,

α(t) = n}, m = (c, (T ,≺, α))

add ′(a) =

{
add(a) ∪ {ba}, iff a ∈ A

{bc}, a ∈ AM , a = am,
m = (c, tn)

del ′(a) =

{
del(a), iff a ∈ A

∅, else

Let p be an HTN planning problem and h a classical
heuristic. We denote our new HTN heuristic RCh and define
it as RCh(p) = h(RC(p)).

The encoding adds a linear number of new state features
and one precondition and one effect to each original action.
Each action that mimes a method has the same number of
preconditions as the original method had subtasks. Thus, the
size of the overall encoding is linear in the size of the input
HTN domain.

The primary aim of our transformation is to provide guid-
ance for progression-based HTN planning. Therefore it is
important to estimate the steps in the search space needed
to reach a goal, i.e. the sum of decompositions and actions
(progressions) needed to reach a goal node in that graph,
i.e. the number of modifications. For some HTN problem p,
let h∗m(p) be the perfect modification estimation, RC(p) the
transformed problem and h∗ the perfect heuristic to a classi-
cal planning problem. Then, the following holds:
Theorem 3 (h∗(RC(p)) ≤ h∗m(p)). The perfect heuristic
value of the transformed problem is smaller or equal to the
actual number of modifications needed to reach a goal.

Proof. Let g∗ = (Tg, Eg,≺g, αg, βg) be a DT that belongs
to a solution with minimal costs. It contains one node for ev-
ery compound task that has been decomposed while refining
the initial task tnI into primitive tasks and it contains the
primitive tasks in the final solution, i.e. it contains exactly
h∗m(p) nodes. Based on this tree, we construct a plan π∗ in
the transformation that contains h∗m(p) actions.

All tasks in g∗ are reachable from tnI , i.e. preconditions
belonging to TDR are fulfilled for all actions corresponding
to primitive tasks in the tree. Since g∗ represents a solution to
the problem, there is an executable ordering of the primitive
tasks that is, by construction, also executable in the transfor-
mation. Original preconditions and effects are unchanged,
i.e. it transforms s0 into a state that fulfills the state-based
goal. Let π∗ start with this sequence. The transformed ac-
tions mark the corresponding tasks as executed. Now we
go up the tree and pick some node n whose children have
all been executed. By construction, aβg(n) is executable and
marks αg(n) as executed. aβg(n) is appended to π∗. That
way, each node in g∗ results in exactly one action in π∗.
Actions in AM have no delete effects, i.e. the state-based
goal will hold after π∗ and the actions belonging to methods
decomposing tasks in tnI fulfill the HTN-based goal of the
transformation.

In the following corollaries, let pc be an arbitrary classical
planning problem and p an arbitrary HTN problem.

Corollary 1 (RC preserves safety). For any safe classical
heuristic h, i.e., if (h(pc) = ∞) ⇒ (h∗(pc) = ∞), holds
that (h(RC(p)) =∞)⇒ (h∗m(p) =∞).

Corollary 2 (RC preserves goal-awareness). For any goal-
aware classical heuristic h, i.e., if h(pc) = 0 when the goal
is fulfilled, holds that h(RC(p)) = 0 when the goal in p is
fulfilled.

So far we pointed out properties interesting to control
search. However, by introducing costs in RC and setting the
costs of all actions in AM to 0 (the original actions may
have arbitrary positive costs), we can calculate a heuristic
that does not estimate the number of modifications neces-
sary to find a goal, but that estimates the action costs in the
solution. Then, the following corollary holds:

Corollary 3 (RC preserves admissibility). For any admis-
sible classical heuristic h, i.e., if h(pc) ≤ h∗(pc), holds
that h(RC(p)) ≤ h∗ac(p), where h∗ac(p) is the optimal HTN
heuristic summing action costs.

5.4 Implementation
We implemented the given approach based on the HTN pre-
processing (e.g. grounding, hierarchical reachability anal-
ysis) of the PANDA planning system (Bercher, Keen, and
Biundo 2014) and called it PANDApro. So far, all variants
of PANDA are based on a plan space search, so we imple-
mented the progression search and heuristics on top of it.
In principle, our encoding can be combined with any classi-
cal heuristic. However, it has to be considered that not only
the state changes during search, but also the goal. Heuristics
should therefore be able to adapt it without high costs.
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Figure 2: Scatter plot depicting the number of nodes ex-
panded to find a plan (SHOP2Alg.1 and SHOP2Alg.2).

To get an efficient system, it has to be considered that
wide parts of the transformation can be calculated in a pre-
processing step before search. During search, we need to
adapt the state (including TDR of tasks) and the goal (that
reflects the current task network). TDR can be calculated
in a preprocessing step: First we build a graph where the
tasks (A ∪ C) form the set of nodes and each task is con-
nected with all subtasks of methods that decompose it (this
roughly equals a TDG). Then, the strongly connected com-
ponents (SCCs) of the graph are calculated. By definition,
every node in a SCC is reachable from all other nodes of the
same SCC, i.e. the reachability of all tasks in a SCC is equal.
When the nodes of each SCC are contracted to a single node,
we get a directed acyclic graph. On that graph, the transitive
reachability can be calculated in a single pass and is stored
for each task separately. When creating the state for heuris-
tic calculation, reachability is accumulated over all tasks in
the current network.

6 Evaluation
Experiments ran on Xeon E5-2660 v3 CPUs with 2.60 GHz
base frequency, 4 GB RAM and 10 minutes time. We in-
cluded the following planning systems into the evaluation:

• SHOP2Alg.1 and SHOP2Alg.2 – We configured our planner
to do a depth-first search with the original algorithm
(SHOP2Alg.1) and the modified one (SHOP2Alg.2). This sim-
ulates the SHOP2 strategy (Nau et al. 2003).

• RCadd, RCFF, and RCLM-Cut – Our new algorithm with the
Add (Bonet and Geffner 2001), FF (Hoffmann and Nebel
2001), and LM-Cut (Helmert and Domshlak 2009) heuris-
tics applied to our encoding.

• TDGM, TDGM-R, TDGC, and TDGC-R – The plan space
search of the PANDA system with its most recent heuris-
tics (Bercher et al. 2017).

• UMCP – A simulated UMCP algorithm that comes with
the PANDA system.

• 2ADL – An approach by Alford et al. (2016a). The HTN
problem is translated into a series of classical problems,

the given time is the accumulated time until a plan was
found. We used the configuration with the best perfor-
mance in Alford et al. (2016a), the ADL-translation with
the Jasper planner (Xie, Müller, and Holte 2014).

There are two remarks regarding the SHOP2 configurations:
These strategies are uninformed and designed to be used
with hand-tailored problems. If done properly, the resulting
system will have a much better performance. The domain-
configurable system is used on domains intended to be
solved with domain-independent systems. It can be regarded
a base-line. Second, to evaluate the impact of the modi-
fied algorithm, it is necessary to use a re-implementation.
When evaluating against the original SHOP2, it would not
be clear what causes performance differences (implemen-
tation or modified algorithm). However, we tested our re-
implementation against it and found that SHOP2Alg.1 outper-
forms the original implementation by 11 instances.

We included the domains used by Bercher et al. (2017):
UM-Translog (22 instances), SmartPhone (7), Satellite (25),
Woodworking (11) (described by Bercher, Keen, and Bi-
undo (2014)). Because the best planners in this evaluation
solve most instances, we added further, more challenging
domains: The Rover domain (10) that we combined with
instances from IPC-3, a Transport domain (30 instances);
Entertainment (12), modeling the installation of a home en-
tertainment system; and PCP (17), modeling Post’s corre-
spondence problem. With PCP, we included an undecidable
problem that can not be modeled using STRIPS, but easily in
HTN planning. However, we know that there exist solutions
for the instances included in the evaluation.

We combined systems calculating a heuristic for standard
search algorithms with Greedy (denoted G), A* and Greedy
A* (GA*) search. Figure 3 shows the coverage of all sys-
tems. All systems performed best with Greedy A* search.

To investigate the impact of our modification, we com-
pared the standard and improved progression algorithm us-
ing the simplest strategy, i.e. SHOP2. Coverage increased
by 4 instances. The number of search nodes needed to solve
a problem is depicted in Fig. 2 (be aware the log-scale of
the figures). A dot stands for an instance solved by the sys-
tems and shows which system needed more search nodes.
The modification decreases the number of explored nodes.

RCadd, RCFF, and RCLM-Cut have the highest coverage. RCFF

and RCLM-Cut have a quite similar profile of solved instances.
Figure 4 (left) shows the planning time against the number
of solved instances. Due to readability, we only included
the best configuration for each heuristic. Our three config-
urations perform best, followed by 2ADL and TDGM. Using
our improved progression algorithm, SHOP2Alg.2 is level with
TDGM. Due to the fast preprocessing of the Fast Downward
system underlying 2ADL, it outperforms our system in the
first second, but is overtaken afterwards. Apart from this first
second, our configurations are always on top of the field,
i.e. they have not only the highest coverage, but are also the
fastest in this evaluation.

Figure 4 (right) shows the number of search nodes against
the number of solved instances for state space-based plan-
ners. This is interesting to investigate how informed the sys-
tems are. The modified algorithm (SHOP2Alg.2) outperforms
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Figure 3: First column contains the number of problem instances per domain, the following the solved instances for a system.
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Figure 4: Left: planning time in seconds against number of solved instances (all systems with their best configuration). Right:
search nodes against solved instances (all progression-based systems with their best configuration). Be aware the log-scale.

the standard one (SHOP2Alg.1), needing less search nodes to
find plans. RCadd, RCFF, and RCLM-Cut are far more informed
than SHOP2Alg.1 and SHOP2Alg.2. Compared to each other, they
perform quite similar without a clear winner.

An interesting question is whether our encoding enables
the heuristics to estimate a goal distance, or if it merely fil-
ters search nodes by detecting the goal as unreachable (dead
ends). To investigate this, we included a heuristic (denoted
RCfilter) that returns whether the goal is still reachable in a
relaxed planning graph, i.e. it returns ∞ iff RCadd = ∞; or
0, else. It can be seen that the other configurations are far
more informed, i.e. that our encoding enables the classical
heuristics to extract goal distance information from it.

7 Conclusion
In this work we introduce a generic method to apply clas-
sical heuristics in HTN planning. We propose the use of
progression-based search, which opens the door for state-
based heuristics, because progression algorithms have a con-
crete state at hand (unlike plan space-based approaches
where the order of the actions is not fixed). First, we in-
troduced an improved progression algorithm that increases
the performance by reducing the part of the search space
searched multiple times. Second, we showed how (relaxed)
information about the hierarchy can be incorporated into the

non-hierarchical part of the problem. This enables the use
of arbitrary state-based classical heuristics to estimate goal
distance. Our approach works on standard (i.e. unchanged)
HTN models. It further solves a major problem when us-
ing classical heuristics in HTN planning: the absence of a
state-based goal. Our evaluation shows that the modified al-
gorithm performs better than the original one, that standard
state-based (non-hierarchical) heuristics can guide progres-
sion search for HTN problems, and that our system outper-
forms state-of-the-art HTN planning systems.
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