Efficient Auction Based Coordination
for Distributed Multi-Agent Planning in
Temporal Domains Using Resource
Abstraction

Andreas Hertle and Bernhard Nebel *

University of Freiburg, Department of Computer Science, 79110 Freiburg, Germany.

Abstract. Recent advances in mobile robotics and Al promise to revo-
lutionize industrial production. As autonomous robots are able to solve
more complex tasks, the difficulty of integrating various robot skills and
coordinating groups of robots increases dramatically. Domain indepen-
dent planning promises a possible solution. For single robot systems a
number of successful demonstrations can be found in scientific literature.
However our experiences at the RoboCup Logistics League in 2017 high-
lighted a severe lack in plan quality when coordinating multiple robots.
In this work we demonstrate how out of the box temporal planning sys-
tems can be employed to increase plan quality for temporal multi-robot
tasks. An abstract plan is generated first and sub-tasks in the plan are
auctioned off to robots, which in turn employ planning to solve these
tasks and compute bids. We evaluate our approach on two planning do-
mains and find significant improvements in solution coverage and plan
quality.

1 Introduction

Recent advances in robotics and AI promise to revolutionize industrial pro-
duction. Gone will be static assembly lines and hardwired robots. Instead au-
tonomous mobile robots will transport parts for assembly to the right worksta-
tion at the right time to assemble an individualized product for a specific cus-
tomer. At least that is the dream of various manufacturing companies around the
globe. To ensure that production runs without interruptions around the clock,
these robots will need strong planning capabilities. The challenges for such a
planning system stem from making plans with concurrent processes and multi-
ple agents, deadlines and external events.

The Planning and Execution Competition for Logistics Robots in Simulation
(PExC) [6] addresses these problems and provide a test-bed for for experimenting

* This work was supported by the PACMAN project within the HYBRIS research
group (NE 623/13-1). This work was also supported by the DFG grant EXC1086
BrainLinks-BrainTools to the University of Freiburg, Germany.

with different methods for solving these problems, abstracting away from real
robots. It is a simulation environment based on the RoboCup Logistics League
(see Fig. 1).

Our aim was to demonstrate that current planner technology is mature
enough to be used in such an environment. As it turned, however, this is far
from the the truth. We employed the temporal planners POPF [1] and TFD [2],
which seem like a good fit for these kinds of planning tasks, as time and duration
of processes are modeled explicitly. It turned out that it is not possible to use
them in reliable way. While they both can plan for one robot, two or more robots
are beyond the reach. If one requires optimality in makespan, then the planners
took too long, meaning using up much of the time reserved for planning and
execution. If one chooses to use greedy plan generation, then the plans result
often in assigning most of the work to just one robot.

In this paper we show how planning in temporal domains with multiple agents
can be improved to find plans with lower makespan and find solutions for bigger
problems. The key is to abstract resources, in this case robots, away, and plan
for the simplified instance. After that the plan is refined using a contract-net
protocol approach for the planning agents.

The rest of the paper is structured as follows: After giving some background
information in section 2, we present our approach in section 3. The experimental
evaluation can be found in section 4. Section 5 discusses related work.

2 Temporal PDDL

The planning domain definition language (PDDL) was developed as an attempt
to standardize Artificial Intelligence Planning. Since its inception in 1998 more
features were added to represent planning tasks with numerical functions, non-
deterministic outcomes and temporal actions. Due to international planning
competitions a number of well tested planning systems are available. We are

Finals 2017 (1) Simcomp 2017 (2)

Fig. 1. In the RoboCup Logistics League competition three autonomous robots must
coordiante efficiently to solve production tasks. On the left (1): finals of the RCLL
competition in 2017 between teams Carologistics and GRIPS. On the right (2): planning
track of the simulation competition.

interested in finding plans for multiple physical robots or systems. Any number
of processes could be happening simultaneous and considering various duration
during the planning process is crucial to finding good plans. For this reason we
require a planning system capable of temporal planning as defined in PDDL 2.1.

In PDDL a planning task is defined by a domain and a problem file. The
domain defines what types, predicates and actions are possible and how they
interact. The actions in a domain describe how the state can transition during
planning. Each actions has typed arguments that specify which objects are rel-
evant for this action. For temporal planning actions have a start event and an
end event separated by the duration of the action. The conditions of an action
determine when an action is applicable and the effects how the state changes
when the action is applied. Conditions can refer either to the start, the end or
the open interval between them. Effects take place either at the start or the end
of an action.

The problem specifies the current situation and the goal condition. The cur-
rent situation is specified as a set of objects and initial values for relations
between them. For temporal planning future events can be specified as timed
initial literals. These events encode a value change for a predicate or function
to happen at a specific time in the future. Our approach makes extensive use
of timed initial literals as way to integrate actions from previous plans into the
planning process.

Solutions to temporal planning tasks are temporal plans consisting of a list
of actions, where each action starts at a certain timestamp and has a specific
duration.

3 Task Auction Planning

Our goals are twofold: we want to reduce complexity during the planning pro-
cess, thus increasing the chance to find a valid plan, and we want to minimize
makespans of plans by achieving a better plan parallelization when planning for
multiple agents. Our approach decomposes a planning task for multiple agents
into multiple simpler planning tasks for each agent. First we solve an abstract
planning problem by removing agents form the planning problem and hiding
some complex interactions in the planning domain. Once an abstract plan is
found, a central agent acts as auctioneer in order to distribute tasks between the
other agents, where a task is derived from an action in the abstract plan. Each
agent can compute plans for offered tasks and submit bids based on the time it
takes this agent to achieve the task goal. The auctioneer chooses from the valid
plans for each task and continues to offer the next set of tasks until all tasks
have valid plans from one agent.

Another way to look at this is to consider the resources used by the agents.
The abstract plan coordinates shared resources between the agents. Each agent
in turn uses its own resources to achieve a single step of the abstract plan, while
unaware of the other agents and their resources. Our approach is applicable in
planning domains that do not require concurrency to be solved. Usually prob-

lems in such domains could be solved by a single agent without help. However
efficiency can be greatly increased when multiple agents participate.

3.1 PDDL Domain Creation

In this section we show how to convert an existing temporal PDDL domain to
a task- and an agent domain. To ensure compatibility between the domains,
we make no changes to types, predicates or functions, but focus solely on the
actions. We expect the temporal domain to be modeled in the following way: A
certain type represents the agents, the agent-type. Some actions in the domain
are modeled to represent activities performed by the agents, we call them the
agent-actions. They can be recognized by having an agent-type as parameter.
Other actions represent processes in the environment and are not specific to
an agent, we call them the environment-actions. Those do not have agent-type
objects as parameter.

First we discuss how to construct the task-domain. The intend is to identify
typical sequences of actions that are performed by the same single agent. That
chain of actions could to be replaced with a single macro action. This reduces
the branching factor during planning. A macro can be created by gathering the
effects of each action and either add it to the start or the end effect of the macro
action. Some effects might cancel each other; it is up to the domain designer
to determine which effects are essential for the macro action. The same careful
consideration is necessary to select which action conditions to add to macro
action. In the final step the agent is removed from the macro, meaning the
parameter of agent-type and all predicates or functions in the conditions and
effects of the macro that refer to the agent. Once a macro action for each task
is created it is also necessary to add the environment-actions from the temporal
domain to ensure that the domain is complete.

Next we discuss the purpose of the agent-domain. The agents are supposed
to solve each offered task. However they must not interfere with other unrelated
tasks. For this reason it is helpful to remove all environment-actions from the
agent domain. Thus, the agent domain is intentionally incomplete: It is not
possible to solve the whole problem with the agent domain. However it contains
all actions necessary to allow an agent to solve each offered task.

3.2 Combining and Rescheduling Plans

In our approach we combine and reschedule plans. In a valid temporal plan each
action is applicable at its start time. When looking through effects of previous
actions in the plan we can determine which events made the action applicable.
The action then can be moved to the time of the latest of the events it depends
on. If an action does not depend on any earlier event it can be moved to the
beginning of the plan. When appending actions from another plan, we insert the
action at the end of the plan (after the last event) and verify applicability. Then
the action can then be rescheduled to the earliest time as described above.

Algorithm 1 Agent: state update and bidding

1: state < stateinit, Events <— @, planagent < &, Proposals < @
2: while T do

3: Assignments, Eventspew, Tasks < receive() > Receive from auctioneer
4: a + find_assigned_to_agent(Assignments)

5: state, planggent < apply(Plans|a.task]) > Retrieve and apply plan
6: Fvents + FEvents U Eventsnew

T for all t € Tasks do

8: plan < make_plan(state, Events,t) > Call PDDL planner
9: if plan solves t then
10: Planslt] < plan > Store plan
11: make_bid_and_send(plan) > Send plan to auctioneer
12: end if

13: end for
14: end while

3.3 Solving and Bidding for Sub-tasks

In this section we discuss the planning process from an agent’s point of view.
When an agent receives a task offer it needs to find a plan for the task. Once
a plan is found the agent determines the point in time when it could start
working on the task and when the task will be finished and submits the plan
and those two timestamps as a bid for the task. Then the agent may continue
computing solutions for alternative tasks and await the reply from the auctioneer.
Algorithm 1 shows a simplified overview of the bidding process. In the actual
implementation the communication takes place asynchronously and interrupts
the planning process if the situation has changed.

Initially, the agent’s current state could be supplied via PDDL file. During the
planning process the current state can change from two sources. Once an agent
won a bid for a task the current state is updated with the agent’s actions by
applying the plan that was proposed for the task as showed on line 5. Applying
a plan also increases the timestamp of the current state by the makespan of the
plan. The other source of changes comes from external events during the planning
process, i.e. when other agents interact with the environment as showed on line
6. These external events do not advance the time of the current state. Instead,
external events are represented in as timed initial literals, that will happen at a
certain time in the future of the current state.

A task is communicated to the agent in the form of a PDDL action definition
from the task-domain. The goal for a task can be derived form the effects of
the action; this happens in the make_plan function on line 8. This is possible
because both the tasks- and the agent-domain allow for the same predicates and
functions. Thus the effects of the task-action applied to the current state of the
agent define the goal for the task. However most planning systems are unable
plans for negated goal predicates, so negated effects have to be omitted from
the goal conjunction. If necessary complimentary predicates can be added to the
PDDL domains such that goals for each possible task are sufficiently specified.

Now that the goal and the current state is known, a temporal planner can
search for a solution. If no plan is found the agent is unable to solve this task. If
a plan is available the agent can make a bid for the task. The bid consist of the
plan and two timestamps. The former indicates when the agent will be able to
start working on the task and the latter when the agent will presumably finish
the task. The timestamps are useful for the auctioneer to determine which agent
to assign a task to.

At some point the auctioneer publishes the next announcement consisting
of which agent was assigned which task, what events are going to happen as a
consequence and a new set of tasks to solve as showed on line 3. If a task was
awarded to the agent, the agent applies the corresponding plan to the current
state. The auctioneer also includes a list of future events in the announcement.
These events represent the changes to the environment, possibly from actions of
other agents. Each event consist of a timestamp and a set of effects. In case their
timestamp is earlier than the time of the current state, the events need to be
applied in the correct order. Later events are added as timed initial literals to
the current state. Once the current state is updated the agent is ready to search
for solutions to newly available tasks.

3.4 Decomposing and Auctioning of Sub-tasks

The auctioneer works with two plans: an abstract plan and a combined plan.
The abstract plan determines which tasks can be offered to the agents. Once the
agents submit bids for some tasks, the auctioneer can chose which bids provide
the best value. These plans submitted by the agents are then integrated into the
combined plan. This ensures that plans submitted by the agents are free of con-
flicts. The agents are notified of their assigned tasks. Then the process continues
with a search for a new abstract plan. In the end the resulting combined plan
is a solution to the original planning problem. Algorithm 2 shows a simplified
overview of the process. In the actual implementation the communication takes
place asynchronously.

The initial problem could be supplied via PDDL file and with the task-
domain a temporal planner can search for the abstract plan as showed in line 3.
Once a plan is found, the auctioneer determines which actions in the plan can
be offered as tasks to the other agents. As discussed in section 3.1, some actions
in the plan are intended as tasks for agents to solve while other model aspects of
the environment. The temporal plan needs to be analyzed (line 7) to determine
which action depends on previous actions in the plan as discussed in 3.2. The
following rules determine which actions can be offered:

1. A task-action without dependencies can be offered to the agents.

2. An environment-action without dependencies on other actions is executable.

3. An environment-action where all dependencies are executable is also exe-
cutable.

4. A task-action where all dependencies are executable can be offered.

Algorithm 2 Auctioneer: abstract plan and offering sub-tasks

1: state < stateinit, Events < &, Proposed < &, plancomp I

2: while T do

3: plangss < make_abstract_plan(state, Events) > Call PDDL planner
4 if |planays) =0 then
5: return plancoms
6: end if
7.
8

Actionseny, Tasks + determine_executable_prefix(planass)
state, plancomy < apply(Actionseny)

9: Events + extract_events(plancoms)

10: offer_tasks_and_wait(Assignments, Events, Tasks) > Send to agents
11: Proposals < receive() > Receive from agents
12: Assignments < assign(Proposals)

13: for all a € Assignments do

14: state, plancoms < apply(a.plan)

15: end for

16: end while

All executable environment-actions form the abstract plan are appended to the
combined plan as showed on line 8.

In order to solve tasks, the agents need to know what events are scheduled
to happen. However they do not need to know the details of the other agents
actions, only the changes they impose on the environment. These events are
derived from the effects in the combined plan by removing all agent-specific
predicates and functions (line 9).

Once a set of tasks has been offered the auctioneer waits for bids from the
agents as showed on line 10. A bid from an agent consist of the plan for the task
and the timestamps when the agent will be able to begin and achieve the tasks.
An agent can bid on any number of tasks simultaneously. However the agent
can only execute one task at a time, thus bidding on multiple tasks provides
alternatives for the auctioneer to choose from.

Our approach does not specify or expect a certain number of agents. This
offers great flexibility, as agents can join the planning process at any time or
leave it provided they completed all tasks they committed to. However when
waiting for solutions from agents it is difficult for the auctioneer to determine
how long to wait for alternatives. Besides naive greedy strategies we implemented
two alternatives:

— Just-in-time assignment: The decision is delayed until one the bidding agents
needs to start working for this task as indicated by the starting timestamp
of the bid.

— Delayed batch assignment: If there are a lot of simultaneous tasks available,
it might take too long to wait for solutions for every task before assigning the
winning agents. Once at least one solution is received the auctioneer delays
the decision by a fixed duration and then performs a batch assignment.

In the literature the Hungarian method is recommended for optimal assignment
of tasks to agents. However, since we do not have a matching problem between
robots and tasks, robots can take on more than one task, the method does not
work here.

We expect the Just-in-time assignment to perform best on physical systems.
With this strategy the agents have the maximum amount of time to investigate
possible alternative solutions without waiting or delaying the execution of the
plan. Also, the agents would be more flexible since they do not commit to certain
tasks ahead of time. For benchmark purposes this is impractical however, since
the planning process would be prolonged roughly by the makespan of the plan
and the planning timeout for our benchmarks is by far lower than the makespans.
Thus for the benchmarks in this paper we make assignments based on the Delayed
batch strategy.

Once an assignment is chosen, the auctioneer integrates the plans submitted
by the agents into a combined plan as showed on line 14. Then the auctioneer
computes a new abstract plan and continues to offer tasks to agents until an
empty abstract plan is found, which signifies that the goal has been achieved.

4 Experimental Evaluation

We evaluated our approach on numerous planning tasks from two domains. Three
planner configurations were used for the evaluation:

1. POPF is a forwards-chaining temporal planner [1]. Its name is based on the
fact that it incorporates ideas from partial-order planning. During search,
when applying an action to a state, it seeks to introduce only the ordering
constraints needed to resolve threats, rather than insisting the new action
occurs after all of those already in the plan. Its implementation is built on
that for the planner COLIN, and it retains the ability to handle domains
with linear continuous numeric effects.

2. Temporal Fast Downward is a temporal planning system that successfully
participated in the temporal satisficing track of the 6th International Plan-
ning Competition 2008. The algorithms used in TFD are described in the
ICAPS 2009 paper [2]. TFD is based on the Fast Downward planning sys-
tem [3] and uses an adaptation of the context-enhanced additive heuristic to
guide the search in the temporal state space induced by the given planning
problem.

3. Temporal Fast Downward Sequential Reschedule. In this configuration the
TFD-SR will search for purely sequential plans without taking advantage
of concurrent actions. Once a plan is found it will be rescheduled to take
advantage of concurrency. This usually increases planning efficiency allowing
to solve bigger planning tasks.

We run each temporal planner configuration as a base line. For our auction
based approach we also run all three planner configurations for the auctioneer.
For the agents we found that POPF greatly outperformed TFD. The cause for

this is likely a costly analysis before the search for a plan starts, where the
analysis time is significantly greater than the following search time. For the
agents that have to search for many short plans this is highly disadvantageous.
Thus for all experiments the agents were planning with POPF. Finally, each
plan is validated with VAL [4] to verify correctness.

The benchmarks were run on one machine with a Intel Core i7-3930K CPU
at 3.2 GHz and 24 GB of memory. The baseline planning configurations run on a
single thread, while the auction planning configurations use one thread per agent
and one thread for the auctioneer. Each planning instance has a time limit of 15
minutes. In the results we compare expected execution time, that is makespan
of the plan plus time until the first action is known. For the baseline that means
total planning time and for our approach that means time until the first round
of assignments is announced.

4.1 RoboCup Logistics League Domain

This domain was created for the participation in the planning track of RoboCup
Logistics League competition. In the competition, three robots are tasked to
assemble a number of products in an automated factory. A product consist of
a base, zero to three rings and a cap. Each piece of the product has a certain
color and the order of rings does matter. There are six specialized stations each
capable of performing a certain step in the assembly. Some assembly steps require
additional material that has to be brought to the station before the step can be
performed. The robots can transport the workpieces between stations. The exact
makeup of the ordered products are not known in advance, instead they are
comunicated during the production. The decision which products to assemble
before the deadline and coordinating the three robots most efficiently is key for
performing well in the competition.

* * POPF 0 * % POPF
60
— A Ao TFD A Ao TFD
— * * 40 ¢ TFD-SR 5o ¢ ¢ TFD-SR
£ i A L £
£ * at £
E o s 2 Eal '
© ©
a gk $ a ® 00
0 n 30
4] * 4] Y
3 & = 5 g
£ f p £ 20 1) 4
10
3 o 2 3

agents # agents

Baseline (1) Auction (2)

Fig. 2. Benchmark results in the RCLL domain. The problem set is evaluated with
one, two and three agents. The lower the makespan, the better the plan result. On the
left the baseline is shown. On the right the auction based task assignment is shown.

Table 1. Number of solved instance out of 125 for the RCLL domain with 1-3 agents

Baseline| Auction

#agents| 1 2 3| 1 2 3
POPF |8590 78| 52 40 50
TFD 11 20 12| 58 44 47
TFD-SR |17 23 19(123 120 114

In this domain we have modeled most aspects of the competition. However for
this benchmark the products to assemble are known at the start and there are no
deadlines for finishing them. The agents can perform the following actions: move
from one station to another, pickup a product from a station, prepare a station
to receive a product and insert a product into a station. For the tasks-domain
we replaced the agent actions with a number of task-transport-product actions;
one for each station type. Usually the agents find plans in the form move, pickup,
move, prepare, insert when solving a transport task.

We generated 125 problem instances with five products of varying complex-
ity, the simplest requireing 4 and the most complex 10 production steps. Each
problem is solved by one, two and three agents. The results can be seen in table
1 and figure 2.

The baseline results show that both TFD variants can only solve few problems
with low complexity. POPF can solve half of the problems, however the makespan
for plans for two and three agents are as high as for one agent. Thus POPF is
not able take advantage of multiple agents. The auction task assignment results
show that TFD-SR is able solve most problems. TFD solves significantly more
problems compared to the baseline. POPF solves only one third of the problems,
less than in the baseline configuration. In many cases POPF is unable to find an
initial plan in the task-domain within the timelimit. For all three planners the
makespan for plans with two and three agents is significant lower than with one
agent, showing better utilization of multiple agents.

4.2 Transport

For the second experiment we employ the well known transpot domain, where
a set of packages need to be delivered to individual destinations by a number
of trucks. Trucks can move along a network of roads of different lengths. Each
truck can load a certain number of packages at the same time ranging from 2 to
4. Each package is initially found at some location and needs to be transported
to its destination location.

The agents can perform the following actions: move from one location to a
neighbouring location in the road graph, pick-up a package at a certain location
if below maximum capacity and drop a transported package at a certain location.
For the task-domain we replaced the agent actions with a task-pickup-package
and a task-deliver-package action. This results in simple task plans, where each
package is first picked up at its location and then dropped at its destination.

Table 2. Number of solved instances out of 13 for the transport domain for 1-5 agents

Usually the agents find plans in the form move, mowve, ...

Baseline

Auction

7 agents

12345

1 2 345

POPF
TFD
TFD-SR

123210
43454
44544

13121097
1211 989
3 2 323

, move, pickup for the

pickup tasks. Similar plans are found for the drop-tasks, however only the agent
that picked up the package before can solve this task. Usually the planner can
easily determine whether a deliver-task can be solved. Furthermore, if an agent
tries to solve a pickup task while carrying the maximum number of packages, no
valid plan will be found. It is intended that the agent solves a deliver task for
one of the packages it carries. However it is difficult for the planner to determine
that a pickup task is impossible, usually the planner searches until timeout. Thus
for this domain we use the low planning timeout of 1 second for the agents to
reduce time wasted on unsolvable tasks.

We generated a road network for two cities with ten locations each. Travel
time within a city is low and travel time between cities is considerably higher.
We sampled random locations for between 3 and 40 packages in increments of 3
for a total of 13 problem instances. Each problem is solved by between 1 and 5
agents. The results are shown in table 2 and figure 3.

The baseline results show that both TFD variants can only solve problems
with few packages. POPF is able to solve all problems with one agent, but is
unable to find plans with multiple agents. The auction task assignment results
show that TFD-CR can solve only few problems; in most cases no initial task

* * * POPF * * POPF
oty A 4 TFD ™ A Ao TFD
—. 60 ¢ ¢ TFD-SR — 60 A“‘ ¢ ¢ TFD-SR

£ * - £ *k
Eso Eso 4
*
§40 : §40 A 3
v 0 *
4] * 4] 4% ™~
~ 30| 4 30
© . g . i A
€ 2 & ‘“ R ' 20| 4 05* AA;t‘ . ok ‘:
2 s 0 o Y S * Sl o A
10 10
£ " go 4 o 3 & e g
o 2 3 a 5 o 2 3 a 5
agents # agents

Baseline (1) Auction (2)

Fig. 3. Benchmark results in the transport domain. The problem set is evaluated with
one to five agents. The lower the makespan, the better the plan result. On the left the
base line is shown. On the right the auction based task assignment is shown.

plan can be found. Since TFD-CR searches for sequential plans, we assume that
the search heuristic is confused by the high amount of simultaneous applicable
pickup tasks of equal cost. On the other hand POPF and TFD are able to solve
most problems with any number of agents.

5 Related work

The work closest to ours is the work by Niemiiller and colleagues, who describe
an architecture based on ASP [8]. They do not use a temporal planner but
compile the planning problem into ASP and then only plan a few steps ahead.
As they can show, this is an effective and efficient way to address the RCLL
planning and execution problem.

Our approach instead is based on abstraction techniques, an approach that
goes back a long way [7]. The particular kind of abstraction that we used can
be called resource abstraction. This has also been employed before to speed up
planning and to increase the number of tasks that could be executed in parallel
in the RealPlan system [10]. However, in this case, no temporal planning was
involved.

Coordination of agents using announcements and bidding is a technique often
used in multi-agent systems [9]. In our context with planning agents, it is very
similar to the architecture used in the elevator control designed by Koehler and
Ottiger [5].

6 Conclusions

We showed how planning in temporal multi-agent domain can be enhanced by
abstracting resource away. A central auctioneer offers tasks related to these re-
sources to agents to be solved individually. The agents propose their solutions
and the auctioneer chooses which solutions fit together best and assembles them
into a combined plan. Our experiments show that compared to baseline tem-
poral planning our approach can solve bigger problems and the resulting plans
have significant lower makespan. The next step in the development will be to
deploy our approach on physical robots or in simulations, where plan execu-
tion and monitoring could pose additional challenges. In addition, we also aim
at automating the process of abstracting the resources away and construct the
planning instances for them that are solved individually.

References

1. Coles, A.J., Coles, A.I., Fox, M., Long, D.: Forward-chaining partial-order plan-
ning. In: Proceedings of the Twentieth International Conference on Automated
Planning and Scheduling (ICAPS-10) (May 2010)

2. Eyerich, P., Mattmiiller, R., Roger, G.: Using the context-enhanced additive heuris-
tic for temporal and numeric planning. In: Proceedings of the 19th International
Conference on Automated Planning and Scheduling, ICAPS 2009, Thessaloniki,
Greece, September 19-23, 2009 (2009)

10.

Helmert, M.: The fast downward planning system. J. Artif. Intell. Res. 26, 191-246
(2006)

Howey, R., Long, D., Fox, M.: Validating plans with exogenous events. In: Pro-
ceedings of the 23rd Workshop of the UK Planning and Scheduling Special Interest
Group (2004)

Koehler, J., Ottiger, D.: An ai-based approach to destination control in elevators.
AT Magazine 23(3), 59-78 (2002)

Niemueller, T., Karpas, E., Vaquero, T., Timmons, E.: Planning competition for
logistics robots in simulation. In: WS on Planning and Robotics (PlanRob) at Int.
Conf. on Automated Planning and Scheduling (ICAPS) (2016)

Sacerdoti, E.D.: Planning in a hierarchy of abstraction spaces. Artif. Intell. 5(2),
115-135 (1974)

Schpers, B., Niemueller, T., Lakemeyer, G., Gebser, M., Schaub, T.: Asp-based
time-bounded planning for logistics robots. In: Proceedings of the T'wentyeightth
International Conference on Automated Planning and Scheduling (ICAPS-18)
(2018)

Smith, R.G.: The contract net protocol: High-level communication and control in
a distributed problem solver. IEEE Trans. Computers 29(12), 1104-1113 (1980)
Srivastava, B., Kambhampati, S., Do, M.B.: Planning the project management
way: Efficient planning by effective integration of causal and resource reasoning in
realplan. Artif. Intell. 131(1-2), 73134 (2001)

