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Abstract. The pancake problem is a famous search problem where
the objective is to sort a sequence of objects (pancakes) through a
minimal number of prefix reversals (flips). The best approaches for
the problem are based on heuristic search with abstraction (pattern
database) heuristics. We present a new class of abstractions for the
pancake problem called relative-order abstractions. Relative-order
abstractions have three advantages over the object-location abstrac-
tions considered in previous work. First, they are size-independent,
i. e., do not need to be tailored to a particular instance size of the
pancake problem. Second, they are more compact in that they can
represent a larger number of pancakes within abstractions of bounded
size. Finally, they can exploit symmetries in the problem specification
to allow multiple heuristic lookups, significantly improving search
performance over a single lookup. Our experiments show that com-
pared to object-location abstractions, our new techniques lead to an
improvement of one order of magnitude in runtime and up to three
orders of magnitude in the number of generated states.

1 INTRODUCTION

Many search problems in the AI literature can be thought of as per-
mutation problems, where the objective is to transform a given ar-
rangement of a set of objects into a desired goal arrangement through
a sequence of actions that permute the current arrangement according
to certain rules. We will later give a formal account of permutation
problems. Informally, and applying a rather loose definition, the class
of permutation problems includes many classical AI search bench-
marks such as the 15- and 24-puzzle [15, 18, 17], Rubik’s Cube [16]
and the TopSpin puzzle [12]. It also includes important application
problems such as the genome rearrangement problem [6, 19] and the
greenhouse logistics problem [9].

The pancake problem [5], which is the main subject of this pa-
per, is another example of a permutation problem. In the n-pancake
problem, a stack of n pancakes of different size must be arranged in
order of increasing size through a sequence of flips, where each flip
reverses the order of some pancakes at the top of the stack (e. g., a
4-flip would reverse the order of pancakes in locations 1–4, count-
ing from the top). Figure 1 shows a possible initial arrangement
and the goal arrangement for the 6-pancake problem. An optimal
(minimal-length) solution for this example is given by the sequence
F5, F6, F3, F4, F5, where Fk denotes a k-flip.

In addition to the interest it has attracted as a benchmark prob-
lem in the AI search community [14, 12, 13, 11, 21, 23, 1, 22, 20]
the problem is also of practical relevance due to its strong similarity
to the genome rearrangement problem [6, 19]. In the genome rear-
rangement problem, the objective is to assess the evolutionary prox-
imity of two genomes by finding a minimal sequence of evolution-
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Figure 1. 6-pancake problem

arily plausible gene transformations that transform the one genome
into the other. One common way of modelling “evolutionary plau-
sibility” is by only allowing inversions [6], which are precisely the
kinds of transformations allowed in the burnt pancake [7] variant of
the pancake problem. Indeed, the only major difference between the
state spaces of the burnt pancake problem and the genome rearrange-
ment problem is that in the latter the “pancakes” are not arranged
into a stack but into a circular configuration, so that inversions can
be applied everywhere rather than just at the top of the stack.

Like many commonly studied permutation problems, the pan-
cake problem is easy to solve suboptimally. It admits a trivial 2-
approximation, and increasingly better approximation algorithms
have been developed over the last 35 years [7, 10, 2]. However, the
original problem formulation [5] asks for optimal solutions, which
are much harder to find. The standard approach for optimally solv-
ing permutation problems, which we also follow in this work, is to
use a heuristic search algorithm like A∗ or IDA∗ together with an
admissible heuristic.

2 PERMUTATION PROBLEMS
We now provide formal definitions for the central notions underly-
ing permutation problems. While we will ultimately apply these def-
initions to the pancake problem, it is useful to keep the definitions
general to make them more widely applicable.

Definition 1 (permutation problem)
A permutation problem of size n is defined by a 5-tuple Π =
〈L,O,A, sI, sG〉 consisting of

• a set of locations L with |L| = n,
• a set of objects O with |O| = n,
• a set of actions A where each action is a permutation of L, that is

a bijective mapping a : L→ L,
• the initial state sI : L→ O, a bijective mapping from locations to

objects, and
• the goal state sG : L → O, another bijective mapping from loca-

tions to objects.

Problem Π is called symmetric iff A is closed under inversion, i. e.,
for all permutations a ∈ A, the inverse function a−1 is also con-
tained in A.



Our definition is rather narrow in requiring that all objects are dis-
tinguishable and that there is a unique goal state. Both restrictions
can be lifted without affecting much of our discussion. The main rea-
son to postulate these requirements, along with symmetry, is that they
are important for the use of so-called dual heuristic lookups [22].

As the definition shows, we define states of permutation prob-
lems as mappings from locations to objects, indicating which object
is contained at which location. For example, if we number the six
locations in Fig. 1 from top to bottom as l1, . . . , l6 and the six pan-
cakes in increasing size as o1, . . . , o6, then the figure depicts the state
{l1 7→ o3, l2 7→ o2, l3 7→ o5, l4 7→ o1, l5 7→ o6, l6 7→ o4}.

We represent actions in such a way that a(lto) = lfrom means that
the object at location lfrom in the state where a is applied moves to
location lto in the resulting state. Defining actions in this way, rather
than the opposite way, is convenient because it means that the effect
of applying an action a on a state s can be expressed as a simple
function composition: appa(s) := s ◦ a.

To define formal semantics for permutation problems and to give
a precise definition of abstractions in the next section, we need to
define the state space of a permutation problem.

Definition 2 (state space of a permutation problem)
Let Π = 〈L,O,A, sI, sG〉 be a permutation problem. The state space
of Π is the labeled directed graph S(Π) = 〈S,A, T 〉 where

• the vertices are the set of states S = {s | s : L→ O, s bijective},
• the edge labels are the actions A of Π, and
• the (directed) labeled edges are the transitions T = {〈s, a, s◦a〉 |
s ∈ S, a ∈ A}.

The algorithmic problem we want to solve is that of determining,
given a permutation problem Π, whether the state space of Π con-
tains a path from the initial state to the goal state, and if this is the
case, to report the sequence of labels along a shortest such path. For
the pancake problem in particular, which we define next, a solution
always exists, so tree search algorithms like IDA∗ can be used with-
out taking special care to ensure termination on unsolvable inputs.

Definition 3 (pancake problem)
A pancake problem of size n is a permutation problem 〈L,O,A, sI,
sG〉 where

• the locations are L = {l1, . . . , ln},
• the objects are the pancakes O = {o1, . . . , on},
• the actions are the flips {F2, . . . , Fn}, where Fi : L → L is

defined as

Fi(lj) =

(
li+1−j if j ≤ i
lj otherwise

• sI is an arbitrary state s : L→ O, and
• sG is the sorted state given by sG(li) = oi for all 1 ≤ i ≤ n.

3 ABSTRACTIONS
A common method for defining admissible heuristics for search
problems is to map the original state space into a smaller, homo-
morphic abstract state space and to estimate the distance from state
s to the goal state sG by the length of a shortest path from the ab-
stract state corresponding to s to the abstract state corresponding to
sG. If the abstract state space is sufficiently small, these estimates can
be precomputed for all abstract states prior to search and saved in a
lookup table. For the class of abstractions most commonly used in the
search literature, these lookup tables are known as pattern databases

(PDBs), and the corresponding heuristics are called pattern database
heuristics [3]. Pattern database heuristics have two very convenient
properties. First, the table lookup is very cheap, which allows evalu-
ating the heuristic very quickly for a large number of states. Second,
as long as the goal state remains fixed, a pattern database can be com-
puted once and then reused for many instances of the same search
problem. We now give a general definition of abstractions that sub-
sumes the class of abstractions that underlie pattern databases. While
our definitions are given in terms of permutation problems, we re-
mark that they can equally well be applied to arbitrary search spaces.

Definition 4 (abstraction)
Let Π be a permutation problem with goal state sG and state space
S(Π) = 〈S,A, T 〉. An abstraction of Π is a mapping α : S → S′,
where S′ is an arbitrary set called the set of abstract states.

The abstract state space induced by α is defined as α(S(Π)) =
〈S′, A, T ′〉, where T ′ = {〈α(s1), a, α(s2)〉 | 〈s1, a, s2〉 ∈ T}.

The abstraction heuristic induced by α is the function hα : S →
N0 ∪ {∞} which maps each state s ∈ S to the length of a shortest
path from α(s) to α(sG) in the abstract state space.

It is not hard to prove that the heuristic hα is admissible and con-
sistent for any abstraction α [8]. Of course, the choice of abstraction
influences the informativeness of the heuristic. In practice, there is
usually a tradeoff between the time and memory resources required
to construct an abstraction and evaluate hα on the one hand and the
accuracy of the heuristic on the other hand.

It is often convenient to define abstractions in terms of an equiva-
lence relation∼ over states, where two states are mapped to the same
abstract state iff they are equivalent under ∼.

Definition 5 (abstraction induced by equivalence relation)
Let S be the set of states of a permutation problem, and let∼ ⊆ S×S
be an equivalence relation over S. The equivalence class for a given
state is defined as [s]∼ := {r ∈ S | s ∼ r}. When the equivalence
relation is clear from the context, we can write [s] instead of [s]∼.

The abstraction induced by ∼ is the function h∼ : s 7→ [s]∼.

Object-Location Abstractions
The predominant approach for defining heuristics for permutation
problems is to use so-called domain abstractions [20]. The most
commonly used domain abstractions are projections based on a set
of distinguished objects, which we will now introduce. We remark
that more general domain abstractions exist [4], but we are not aware
of any work that uses them in the context of permutation problems.

Definition 6 (object-location abstraction)
Let Π be a permutation problem with objects O, and let O′ ⊆ O.

The object-location abstraction for O′ is defined by the following
equivalence relation ∼OL

O′ :

s ∼OL
O′ r ⇐⇒ for all o ∈ O′: s−1(o) = r−1(o)

We call these abstractions object-location abstractions because
they faithfully preserve the location of (certain) objects, unlike the
abstractions we will consider later. In the case of the pancake prob-
lem, one intuitive interpretation of the object-location abstraction for
a set of pancakes O′ is that in the abstract state space, all pancakes
that do not belong to the setO′ are indistinguishable from each other.
Otherwise, the abstract state space is the same as the real state space.

Figure 2 illustrates an object-location abstraction applied to the
initial and goal states of Fig. 1. The distinguished objects are O′ =



initial state goal state

Figure 2. Abstract states of the 6-pancake problem in Figure 1 with
object-location abstraction for O′ = {o2, o3, o6}

Figure 3. Two states that are equivalent under the relative-order
abstraction for O′ = {o1, o2, o4, o5, o6} but not under any nontrivial

object-location abstraction

{o2, o3, o6}. In this example, the abstraction provides a heuristic
value of 3 for the initial state, corresponding to the action sequence
F5, F6, F4 which solves the abstract task.

Relative-Order Abstractions
All previous work on optimal solutions for the pancake prob-
lem that we are aware of is based on object-location abstractions
[14, 12, 13, 11, 21, 23, 1, 22, 20]. In the following, we introduce
relative-order abstractions and suggest that they are a more useful
class of abstractions for this problem.

Definition 7 (relative-order abstraction)
Let Π be a permutation problem with objects O, and let O′ ⊆ O. We
assume that there is a total order ≺ on the locations of Π.

The relative-order abstraction for O′ is defined by the following
equivalence relation ∼ORD

O′ :

s ∼ORD
O′ r ⇐⇒ for all o, o′ ∈ O′:

((s−1(o) ≺ s−1(o′)) iff (r−1(o) ≺ r−1(o′))).

In words, we treat two states as equivalent for purposes of the ab-
straction if the relative order of the objects in O′ is the same in both
states. In the case of the pancake puzzle, the total order ≺ on the
locations is the natural order where li ≺ lj iff i < j.

Figure 3 illustrates the definition with an example of two states
which are equivalent under the relative-order abstraction for O′ =
{o1, o2, o4, o5, o6}. The two states are equivalent because the rela-
tive order of all pancakes in the set O′ is identical in both states.
Observe that these two states are not equivalent under any object-
location abstraction except for the trivial ∼OL

∅ .
Relative-order abstractions for the pancake problem have a very

useful property: the abstract space induced by ∼ORD
O′ is isomorphic

to the real state space of the |O′|-pancake problem. The following
theorem makes this more precise.

Theorem 1 (Isomorphism for relative-order abstractions)
Let n, k ∈ N1 with n ≥ k. Let Sn be the set of states for an
n-pancake problem, let Sk = 〈Sk, Ak, Tk〉 be the state space of
a k-pancake problem, and let S ′ = 〈S′, A′, T ′〉 be the abstract
state space induced on an n-pancake problem by a relative-order ab-
straction with distinguished objects O′, where O′ = {oi1 , . . . , oik},
i1 < i2 < · · · < ik.

s ∈ S6 ϕ([s]) ∈ S5 goal state of S5

Figure 4. Abstract states of the 6-pancake problem in Figure 1 with
relative-order abstraction for O′ = {o1, o2, o4, o5, o6}, illustrating
Theorem 1. Left panel: original state s ∈ S6 with “undistinguished”

pancake o3 highlighted; middle panel: state in S5 corresponding to the
abstract state for s; right panel: goal state in S5.

Then the unlabeled directed graphs for Sk and S ′, omitting self-
loops, are isomorphic via isomorphism ϕ : S′ → Sk defined as:

Given [s′] ∈ S′, choose any representative s ∈ [s′], restrict s
to those locations which map to objects in O′, then renumber
the locations to l1, . . . , lk and the objects to o1, . . . , ok in a
way that preserves their relative order.

Proof sketch: To show that ϕ is well-defined (i. e., ϕ([s′]) does not
depend on the choice of representative s ∈ [s′]), we exploit that by
the definition of relative-order abstractions, all states equivalent to s
have the objects in O′ in the same order.

To show that ϕ is an isomorphism, we must show that abstract
transitions in S ′ correspond to flips in Sk. This is true because ab-
stract transitions in S ′ are derived from flips in Sn, and they are still
flips (although for a possibly smaller number of objects) when re-
stricting to O′.

Figure 4 illustrates the theorem on the running example from
Fig. 1, using O′ = {o1, o2, o4, o5, o6}. The heuristic value in this
case is 5: an optimal solution to transform the 5-pancake state de-
picted in the middle into the 5-pancake goal state depicted at the
right is given by the action sequence F2, F4, F5, F2, F4. This heuris-
tic estimate is significantly better than with the object-location ab-
straction discussed earlier, yet the two heuristics require PDBs of the
same size, as both abstract state spaces consist of 120 states. We will
discuss the issue of PDB compactness in some more detail in the
following subsection.

Comparison of the Two Classes of Abstractions
Before we turn to an experimental comparison of object-location ab-
stractions and relative-order abstraction, we discuss some of their
theoretical properties. In particular, we will make the following three
observations:

1. Relative-order abstractions are size-independent. Object-location
abstractions are size-dependent.

2. Relative-order abstractions permit symmetric lookups. Object-
location abstractions do not.

3. Relative-order abstractions are more compact than object-location
abstractions in the sense that for large problems, the PDB size
required to achieve any given desired level of heuristic accuracy
is smaller for them. (This is equivalent to saying that for large
enough problems, they offer larger heuristic values than object-
location abstractions for a given PDB size bound.)

Size-Independence and Symmetric Lookups. One drawback of
object-location abstractions is that they are not reusable for permuta-
tion problems of different size. For example, a PDB constructed for



Figure 5. Size-independence and symmetric lookups for relative-order
abstractions: three different abstractions map to the same state in S5.

the abstraction of the 6-pancake problem shown in Fig. 2 cannot be
applied to the 7-pancake problem. Even if we fix the problem size
but consider different distinguished object sets O′1 and O′2, a PDB
for ∼OL

O′
1

cannot be used for ∼OL
O′

2
. Indeed, several papers [23, 22, 20]

state that symmetric lookups are impossible in the pancake problem
because “there are no symmetries in the Pancake problem that enable
different abstractions to make use of the same PDB” [20].

While this is indeed true for the object-location abstractions con-
sidered in these papers, it is not true for abstractions of the pancake
problem in general. In particular, the isomorphism property of The-
orem 1 implies that we can use the same PDB for all relative-order
abstractions where |O′| has the same size, independent of the precise
choice of O′, and independent of the size of the original pancake
problem that is abstracted. This is illustrated in Fig. 5 for three dif-
ferent relative-order abstractions: at the top left, the relative-order
abstraction with O′ = {o1, o2, o4, o5, o6} for the 6-pancake prob-
lem, at the bottom left, the relative-order abstraction with O′ =
{o1, o2, o3, o5, o6} for the 6-pancake problem, and at the top right,
the relative-order abstraction with O′ = {o2, o3, o4, o5, o7} for the
8-pancake problem.

An important consequence of this isomorphism between abstract
state spaces is that we can perform so-called “symmetric lookups”
for different sets of distinguished objects during search, a technique
that has been shown to be very beneficial in a number of search do-
mains [23]. Our experimental results in Section 4 will confirm that
significant gains can be reaped in the pancake problem by making
use of symmetric lookups.

Compactness. For our running example, we used an object-
location abstraction with 3 distinguished objects and contrasted it
with a relative-order abstraction with 5 distinguished objects. This
choice was not arbitrary: both abstractions give rise to abstract state
spaces of the same size, namely 120 abstract states, so their PDBs
have identical storage requirements. More generally, the size of the
abstract state space induced by an object-location abstraction with k
distinguished objects on a size n problem is

NOL(n, k) = n · (n− 1) · . . . · (n− k + 1),

while the size of a relative-order abstraction with k distinguished
objects on a problem of any size is

NORD(k) = k!.

We now bound the average heuristic values obtained by these ab-
stractions, which we denote by h̄OL(n, k) and h̄ORD(k), and relate
them to the required PDB size. For both abstractions, the average

heuristic value for a state picked uniformly from the real state space
is simply the average abstract goal distance of all abstract states, as
each abstract state is the image of an equal number of real states.

For object-location abstractions, it is easy to see that h̄OL(n, k) ≤
4k, since this an upper bound on the heuristic value of any state:
an abstract pancake problem with k distinguished objects can al-
ways be suboptimally solved with at most 4k actions. In the special
case where the distinguished pancakes are the k largest pancakes,
as suggested by Zahavi et al. [22], we can prove the tighter bound
h̄OL(n, k) ≤ 2k, and in this case it is also not hard to show that
for any fixed value of k, h̄OL(n, k) converges to 2k as n approaches
infinity. (We believe that a tighter bound than 4k also holds in the
general case, but have not yet been able to show this.)

For relative-order abstractions, the isomorphism result implies that
h̄ORD(k) is the average goal distance of all states of the k-pancake
problem. To bound this number, the argument that Gates and Pa-
padimitriou [7] use to prove that the maximal goal distance for the
k-pancake problem is at least k can be generalized to prove that
h̄ORD(k) ≥ k − 2. (To also provide an upper bound, Chitturi et al.
have recently shown that h̄ORD(k) ≤ 18

11
k +O(1) [2].)

We can combine these results for abstract state space size and
average heuristic value to determine the PDB size required, in the
n-pancake problem, to achieve a given average heuristic value h.
We denote these quantities with PDBOL(n, h) and PDBORD(n, h),
respectively, and obtain:

PDBOL(n, h) ≥ n · (n− 1) · . . . · (n− dh/4e+ 1)

PDBORD(n, h) ≤ (h+ 2)!

These inequalities suggest that relative-order pattern databases
offer significantly better heuristic values for the n-pancake prob-
lem when memory is limited and n grows. For example, for any
fixed desired value of h, we have PDBOL(n, h) = Ω(nh/4) while
PDBORD(n, h) is a constant. However, this constant is large, and
hence this in-the-limit comparison does not necessarily imply a prac-
tical difference for problem sizes that can be solved in reasonable
time by current search algorithms. Indeed, for the problem sizes and
abstractions typically considered in the literature (n ≈ 17, PDB size
between 108 and 1010), neither abstraction technique provides sig-
nificantly better heuristic values than the other.

As an example, Fig. 6 shows the average heuristic values of an
object-location heuristic with k = 5 as a function of the problem size
n. The distinguished pancakes are the largest five pancakes, follow-
ing Zahavi et al. [22]. Compared to this (dashed and dotted curves)
are the average heuristic values of relative-order abstractions of the
same size. Since it is not always possible to generate a relative-order
PDB of exactly the same size, we report both the average values for
the next larger PDB (upper curve) and the next smaller PDB (lower
curve). For low values of n, the two abstractions are comparable,
while relative-order abstractions begin to dominate for values of n
around 30. In the limit, the difference between the two classes of
abstraction becomes unbounded as the average heuristic value for
the object-location abstractions approaches 10 while the average for
relative-order abstractions grows without bound.

4 EXPERIMENTAL RESULTS
To experimentally evaluate relative-order abstractions, we compare
them to object-location abstractions using the approach that per-
formed best in the experiments reported by Zahavi et al. [22]: Dual
IDA∗ (DIDA∗) search with BPMX, using the largest pancakes as the
set of distinguished objects.
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Table 1. 17-pancake results, averaged over 1000 random instances

# Search Heuristic Nodes Time (s)

1 DIDA∗ 2×object-location abstraction
(7 largest pancakes)

539,179,741 286.79

2 DIDA∗ 2×lowermost 12 pancakes 131,794,939 150.21
3 DIDA∗ 2×1 random pancake set 17,183,911 54.26
4 DIDA∗ 2×5 random pancake sets 2,373,225 36.56
5 DIDA∗ 2×10 random pancake sets 1,400,455 42.45
6 DIDA∗ 2×20 random pancake sets 827,976 49.54
7 DIDA∗ 2×50 random pancake sets 411,830 60.39

8 IDA∗ lowermost 12 pancakes 584,871,396 293.25
9 IDA∗ fixed + dual lookup 94,090,827 108.87

10 IDA∗ 1 random pancake set 52,927,944 82.20
11 IDA∗ 5 random pancake sets 5,044,945 38.35
12 IDA∗ 10 random pancake sets 2,449,822 36.82
13 IDA∗ 20 random pancake sets 1,375,713 40.91
14 IDA∗ 50 random pancake sets 673,340 49.30

15 DIDA∗ 2×4 random lookups +
2×object-location abstraction

2,362,899 31.62

For object-location abstractions, we reused the PDB generator of
Zahavi et al., but reimplemented the search algorithm to make it com-
parable to our implementation for relative-order abstractions. Our
implementation is about a factor of 2 faster than the one by Zahavi
et al. on our evaluation machine, which is equipped with a 2.3 GHz
AMD Opteron CPU. In all experiments we used the largest PDB that
fit into 512 MB of space with one byte of memory per entry.

Unless stated otherwise, we report results for 1000 randomly gen-
erated instances of the 17-pancake problem. The average solution
length for these instances is 15.770. For object-location abstraction,
the largest PDB that fits into the 512 MB bound uses 7 distinguished
pancakes and gives an average heuristic value of 10.20. For relative-
order abstraction, the largest PDB that fits into the memory bound
uses 12 pancakes and gives an average heuristic value of 10.71.

Overall Results. Table 1 shows the average runtime and num-
ber of generated nodes across the 1000-instance benchmark set for
a number of different search algorithms and heuristics.

Rows 1–7 and 15 give results for Dual IDA∗, rows 8–14 for IDA∗,
all using BPMX. We also experimented with algorithms not using
BPMX, which universally performed worse. Entries of the form 2×k
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Figure 7. Solved instances plotted against generated notes. For example, a
point at (20%, 105) indicates that 20% of the instances required at most

105 generated nodes. All results based on DIDA∗.

in the rows for DIDA∗ indicate that the heuristic value is computed
by maximizing over k regular lookups and k dual state lookups.

Row 1 shows the result for the best-performing configuration of
Zahavi et al. described above, using object-location abstraction. This
row serves as our reference result. Rows 2–14 all describe config-
urations using relative-order abstraction, while row 15 describes a
configuration using both kinds of abstraction.

Rows 2 and 3 are directly comparable to the reference result in
row 1 in that they also perform a single heuristic lookup per state,
plus the dual lookup. In row 2, we report results where the set of dis-
tinguished pancakes in each state consists of the 12 pancakes in the
lowermost positions. (In preliminary experiments, this gave better re-
sults than, e. g., picking the pancakes from the topmost positions or
from positions spread evenly throughout the problem.) In row 3, the
set of distinguished pancakes is chosen uniformly randomly for each
search state. Both versions clearly outperform the object-location ab-
straction, with the randomized heuristic (#3) improving node gener-
ations by a factor of 31.4 and runtime by a factor of 5.3.

These results can be improved significantly by using symmetric
lookups, as shown in rows 4–7. We see that more lookups dramati-
cally reduce the number of generated nodes, down to an average of
411,830 in row 7 when using 50 regular and 50 dual lookups. This
is an improvement by a factor of 1309 compared to the reference re-
sult with object-location abstractions. However, after a certain point
the overhead for additional lookups dominates the improvements in
terms of search nodes, so the best results in terms of runtime are ob-
tained with a smaller number (2×5) of symmetric lookups (row 4).

It is interesting to note that we obtain comparable results when
using regular (non-dual) IDA∗ (rows 8–14) with BPMX as long as we
perform a sufficient number of symmetric lookups. Our best overall
runtime results are obtained with DIDA∗ and 2×5 lookups and with
IDA∗ with 10 lookups. The average runtimes for these configurations
(36.56 seconds vs. 36.82 seconds) is close enough to allow us to draw
the conclusion that duality offers no compelling advantage in our best
configurations using relative-order abstractions.

As a final data point, row 15 shows that we can further improve our
results by maximizing over both kinds of abstraction. The average
runtime of 31.62 seconds reported for this configuration improves
over the reference result by a factor of 9.1.

Results for Individual Instances. An important observation that
is obscured by the summarizing results in Table 1 is that the expan-
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notation as in Fig. 7. All results based on DIDA∗.

Table 2. Results for 18- and 19-pancake over 10 instances

n Heuristic Nodes Time (s)

18 2×object-location abstraction 3,104,195,668 1,638.19
18 2×5 random lookups 13,439,483 209.81
18 2×10 random lookups 7,638,885 236.10

19 2×5 random lookups 1,236,838,871 20,409.90
19 2×10 random lookups 689,598,292 22,576.39

sion and runtime results vary tremendously across different instances
of the 17-pancake problem. For instance, while average solution time
for the reference configuration was less than 5 minutes, there were
six configurations that required more than one hour to solve, and one
configuration that required more than 3 hours. Figures 7 and 8 pro-
vide detailed results that show how many of the 1000 instances were
solved within any given bound on the number of expansions or run-
time. The general trend of the figures is similar to Table 1, but we
clearly see that there are some exceptionally hard instances.

Larger Problems. We conclude this section with a brief discus-
sion of larger instances of the pancake problem, using 18 and 19 pan-
cakes. As these instances require much more time to solve than the
17-pancake problem, we only evaluated on 10 instances of each size
and only compare the reference approach by Zahavi et al. and two
of our best approaches, using DIDA∗ with 2×5 and 2×10 lookups
per state. The results are shown in Table 2. For the 18-pancake prob-
lem, we again see a considerable improvement of relative-order ab-
straction over object-location abstraction. For 19 pancakes, we do
not report results for object-location abstraction because one of the
instances was not solved within our timeout of 50 hours.

5 CONCLUSION

Relative-order abstractions are a new class of abstractions for the
pancake problem that offer several advantages over the previously
considered object-location abstractions: they are size-independent,
they are more compact, and they permit symmetric lookups. Our ex-
perimental evaluation shows that by exploiting this last property we
can improve on the performance of the best object-location abstrac-
tions of Zahavi et al. [22] by three orders of magnitude in terms of
node generations and one order of magnitude in terms of speed.

In future work, we intend to apply the idea of relative-order ab-
stractions to other search domains. Of particular interest in this re-
gard is the genome rearrangement problem [6, 19], whose state space
closely resembles the one of the burnt pancake problem, so that it ap-
pears likely that similar techniques will be efficient in this domain.
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