How Good is Almost Perfect?

Malte Helmert Gabriele Roger
Albert-Ludwigs-Universitat Freiburg, Germany

AAAI 2008

Outline

@ Introduction
© Theoretical Results
© Experimental Results

@ Conclusion

Optimal sequential planning

Optimal sequential planning
= A" (or similar)
+ admissible heuristic

(mostly)

Introduction
0@00000

Folklore

Everybody knows:

If a heuristic has constant absolute error,
A* requires a linear number of node expansions.

Introduction
fe]e] Yololele}

Comparison: Heuristic vs. breadth-first search

Actually, state-of-the art optimal sequential planners
are not much better than breadth-first search.

Experiments of Helmert, Haslum & Hoffmann (2007)

@ BFHSP solved 37 tasks
o A* + h™MaX solved 46 tasks
o A* + hPPB solved 54 tasks

@ blind search solved 42 tasks

Introduction
[e]e]eY Tolele}

Are our heuristics bad?

Two possible explanations:

@ Our heuristics aren't that good.

@ There is something fishy going on.
(Or both.)

Introduction
0000®00

Folklore + fine print

Everybody knows:

If a heuristic has constant absolute error,
A* requires a linear number of node expansions.

This relies on several assumptions:

@ fixed branching factor
@ only a single goal state

@ no transpositions

These assumptions do not hold in any common planning task!

Introduction
00000e0

Almost perfect heuristics

Almost perfect heuristics differ from the perfect heuristic A* only
by an additive constant:

Definition

Define heuristic h* — ¢ (for ¢ € Ny) as

(h* —¢)(s) := max(h*(s) — ¢, 0)

— unlikely to be obtainable in practice

Introduction
000000

The topic of this work

How many nodes must A* expand for a planning task 7, given an
almost perfect heuristic h* — ¢?

Definition

N€(T) := number of states s
with g(s) + (h* —¢)(s) < h*(T)

~ If this number grows fast with scaling task size,
we have a problem.

Objective

Results for N¢(7') for IPC domains
— Focus on domains in APX

Theoretical Results
©00000000

Outline

@ Introduction

© Theoretical Results

© Experimental Results

@ Conclusion

Theoretical Results
0®0000000

Our goal

Find sequence (7,,) of scaling tasks for which N¢(7,,) grows
exponentially, even for small values of c.

Theoretical Results
00®000000

GRIPPER

initial state goal state

@ 7,: Task with n balls

@ S,,: Total number of reachable states of 7,

Sp=2-(2"+2n2"t + n(n —1)2772)

Theoretical Results
000®00000

GRIPPER

Theorem

Theorem

Let n € Ny withn > 3.
If n is even, then

o N\(T,) = N¥(T,) = 45, -3

e N¢(7,) = Sn, —2n—2 for all ¢ > 3.
If n is odd, then

o NY(T,) = N¥(T,) = S — 3

e N¢(7,) =S, —2 forall c > 3.

Theoretical Results
0000®0000

GRIPPER
Proof

Proof sketch

@ n is even
e states with an even number of balls in each room
@ basically all are part of an optimal plan
o states with an odd number of balls in each room
o all are part of plans of length h*(7,) + 2
@ n is odd

o basically all states are part of an optimal plan

Theoretical Results
00000®000

MICONIC-SIMPLE-ADL

T
\

| i

initial state goal state

@ 7,: Task with n passengers (and n + 1 floors)

@ S, Total number of reachable states of 7,

Sp=3"(n+1)

Theoretical Results
000000800

MICONIC-SIMPLE-ADL

Theorem

For all ¢ > 4:

N¢(

N

)=S,— (2" - 1)(n+1).

Theoretical Results
000000080

BLOCKSWORLD

initial state goal state

7, Task with n blocks (n > 2)

Theoretical Results
000000008

BLOCKSWORLD

Theorem

n—3
)=4-) By+3Byo+1
k=0

N(

A

N(T,) | n | NY(Tn)

49 3748
8| 10 17045
15 || 11 84626
12| 453698
82| 13| 2605383
253 || 14 | 15924744
914 || 15 | 103071652

o ~NO O WNS
w
N

Experimental Results
[Ielelololelelele)

Outline

@ Introduction

g Theoretical Results

© Experimental Results

@ Conclusion

Experimental Results
0®0000000

Question

Theoretical results

There exist task families for which the number of states expanded
by h* — ¢ grows exponentially, even for small c.

Interesting question

Can we observe this behaviour in practice?

— Experiments with IPC tasks

Experimental Results
[e]e] Yololelelele)

Problem

@ Values N¢(7) are defined in terms of h*.

@ Usually h* cannot be determined efficiently.

Naive way of computing N¢(7)

@ Completely explore the state space of 7.

@ Search backwards from the goals to determine
the h*(s) values.

— Observation: Generating all states is not necessary.

Experimental Results
[e]ele] Tolelelele)

Search space

@ goal node
@ node belongs to N°(7)
O node does not belong to N¢(7)

R (T) 4 e—1

~ Poster session: today, 6:00-9:30 PM

Experimental Results
0000®0000

Results
BLOCKSWORLD

[task [A°(D) [N'(T) N*(T) N*(Z) N*(Z) N°(T)]

04-1 10 10 10 16 16 29
05-2 16 28 28 72 72 162
06-2 20 27 27 144 144 476
07-1 22 106 106 606 606 2244
08-1 20 66 66 503 503 2440
09-0 30 411 411 3961 3961 21135

Results
GRIPPER

Experimental Results
00000®000

(task [2*°(T) | NI(T) N*(T) N°(7) NY(T)
or [11 125 125 246 246
02 | 17 925 925 1842 1842
03 | 23 | 5885 5885 11758 11758
04 | 29 | 34301 34301 68586 68586
05 | 35 | 188413 188413 376806 376806
06 | 41 | 991229 991229 1982434 1982434
07 | 47 | 5046269 5046269 10092510 10092510

Results

Experimental Results
000000e00

Logaistics (IPC 2)

[k [F(D [N(D) N0 N N7 _N{T]]
4-0 20 159 408 1126 1780 2936
5-0 27 459 2391 5693 14370 21124
6-0 25 411 2160 5712 14485 23967
7-1 44 17617 111756 427944 1173096

8-1 44 4843 27396 157645 558869

9-0 36 2778 15878 61507 183826 460737
10-0 45 10847

11-0 48 10495

Experimental Results
000000080

Results
MICONIC-SIMPLE-ADL

[task | °(7) | N'(7) N*(T) N°(T) N (7) N°(T) |
1-0 4 4 4 4 4 4
21 6 6 22 26 26 26
3-1 10 58 102 102 102 102
42 | 14 148 280 470 560 560

5-1 15 209 759 1136 1326 1399
6-4 18 397 948 1936 2844 3436
7-4 23 3236 7654 11961 15780 16968
8-3 24 1292 5870 15188 25914 34315
9-3 28 20891 39348 39348 39348 39348
10-3 28 6476 16180 65477 129400 224495
11-3 32 58268 130658 258977 399850 497030
12-4 34 83694 181416 541517 970632 1640974
13-2 40 461691 947674 2203931 3443154 4546823

Experimental Results
000000008

Results
MICONIC-STRIPS

task | h°(7) | N'(7) N*(7) N°(T) N (1) N°(7)]

10 4 4 4 4 4 4
2-1 7 18 29 34 37 37
3-1 11 70 138 195 241 251

4-4 15 166 507 814 1182 1348
5-4 18 341 1305 2708 4472 5933
6-4 21 509 2690 7086 13657 21177
7-4 25 3668 13918 32836 61852 95548
8-3 28 4532 35529 97529 205009 349491
9-3 32 25265 114840 321202 700640 1239599
10-3 34 8150 97043 423641 1151402 2505892

Conclusion
©0000000

@ Introduction
© Theoretical Results
© Experimental Results

@ Conclusion

Conclusion
0®000000

Dismal prospects

Depressing theoretical and experimental results

@ Other (similar) search techniques cannot
perform better than A*.

o With other (real) heuristics it gets worse.

Conclusion
00®00000

What is the cause of this behaviour?

Main problem

@ many independently solvable subproblems
which can be arbitrarily permuted

@ many possible orders

Why is this not common knowledge?
— does not happen in 15-Puzzle, Rubik’s Cube, etc.

Conclusion
000®0000

What do the results mean for us?

Some possible conclusions:

We need heuristics that are better than almost perfect.
How feasible is this?

We need more search enhancements.
Look to domain-dependent search for guidance?

Conclusion
0000®000

What can the search community offer us?

Domain-specific search enhancements for Sokoban (Junghanns and

Schaeffer, 2001):

transposition table
move ordering
deadlock tables
tunnel macros
goal macros

goal cuts

pattern search
relevance cuts

overestimation

rapid random restart

A A

~

irrelevant to analysis
irrelevant to analysis
irrelevant to analysis
generalizable?
incomplete
incomplete

heuristic improvement
incomplete
suboptimal

irrelevant to analysis

~ Poster session: today, 6:00-9:30 PM

Conclusion
00000e00

General search enhancements

Some techniques that might work in general:
@ partial-order reduction
@ symmetry elimination
@ problem simplification

Conclusion
000000e0

What do the results mean for us?

Some alternative conclusions:

Heuristic search doesn’t cut it.

What about more global reasoning methods, such as

SAT planning, or symbolic exploration techniques like breadth-first
search with BDDs?

Optimal planning, beyond a certain point, is too hard.
We can hope to scale a bit better than blind search, but not very
far. Maybe study near-optimal planning in a more principled way
instead?

The end

Thank you for your attention!

	Introduction
	Theoretical Results
	Experimental Results
	Conclusion

