## How Good is Almost Perfect?

Malte Helmert Gabriele Röger

Albert-Ludwigs-Universität Freiburg, Germany

**AAAI 2008** 

## Outline

- Introduction
- 2 Theoretical Results
- 3 Experimental Results
- 4 Conclusion

# Optimal sequential planning

```
Optimal sequential planning
```

- $= A^*$  (or similar)
- + admissible heuristic

(mostly)

Introduction 000000

## Folklore

### Everybody knows:

If a heuristic has constant absolute error,

A\* requires a linear number of node expansions.

## Comparison: Heuristic vs. breadth-first search

Actually, state-of-the art optimal sequential planners are not much better than breadth-first search.

#### Experiments of Helmert, Haslum & Hoffmann (2007)

BFHSP solved 37 tasks

Introduction 0000000

- $A^* + h^{max}$  solved **46** tasks
- $A^* + h^{PDB}$  solved **54** tasks
- blind search solved 42 tasks

## Are our heuristics bad?

#### Two possible explanations:

- Our heuristics aren't that good.
- There is something fishy going on.

(Or both.)

Introduction 0000000

## Folklore + fine print

#### Everybody knows:

If a heuristic has constant absolute error, A\* requires a linear number of node expansions.

#### But...

Introduction 0000000

This relies on several assumptions:

- fixed branching factor
- only a single goal state
- no transpositions

These assumptions do not hold in any common planning task!

# Almost perfect heuristics

Almost perfect heuristics differ from the perfect heuristic  $h^*$  only by an additive constant:

#### Definition

Define heuristic  $h^* - c$  (for  $c \in \mathbb{N}_1$ ) as

$$(h^* - c)(s) := \max(h^*(s) - c, 0)$$

→ unlikely to be obtainable in practice

## The topic of this work

How many nodes must  $A^*$  expand for a planning task  $\mathcal{T}$ , given an almost perfect heuristic  $h^* - c$ ?

#### Definition

Introduction 0000000

$$N^c(\mathcal{T}) := \text{number of states } s$$
 with  $g(s) + (h^* - c)(s) < h^*(\mathcal{T})$ 

→ If this number grows fast with scaling task size, we have a problem.

#### Objective

Results for  $N^c(\mathcal{T})$  for IPC domains

→ Focus on domains in APX

## Outline

- Introduction
- 2 Theoretical Results
- 3 Experimental Results
- 4 Conclusion

## Our goal

Find sequence  $(\mathcal{T}_n)$  of scaling tasks for which  $N^c(\mathcal{T}_n)$  grows exponentially, even for small values of c.

## Gripper





- $\mathcal{T}_n$ : Task with n balls
- $S_n$ : Total number of reachable states of  $\mathcal{T}_n$

$$S_n = 2 \cdot (2^n + 2n2^{n-1} + n(n-1)2^{n-2})$$

#### GRIPPER Theorem

#### Theorem

Let  $n \in \mathbb{N}_0$  with  $n \geq 3$ .

If n is even, then

• 
$$N^1(\mathcal{T}_n) = N^2(\mathcal{T}_n) = \frac{1}{2}S_n - 3$$

• 
$$N^c(\mathcal{T}_n) = S_n - 2n - 2$$
 for all  $c \geq 3$ .

If n is odd, then

• 
$$N^1(\mathcal{T}_n) = N^2(\mathcal{T}_n) = S_n - 3$$

• 
$$N^c(\mathcal{T}_n) = S_n - 2$$
 for all  $c \geq 3$ .

#### Proof sketch

- $\bullet$  n is even
  - states with an even number of balls in each room
    - basically all are part of an optimal plan
  - states with an odd number of balls in each room
    - all are part of plans of length  $h^*(\mathcal{T}_n) + 2$
- $\bullet$  n is odd
  - basically all states are part of an optimal plan

## MICONIC-SIMPLE-ADL



initial state



goal state

- $\mathcal{T}_n$ : Task with n passengers (and n+1 floors)
- $S_n$ : Total number of reachable states of  $\mathcal{T}_n$

$$S_n = 3^n(n+1)$$

## MICONIC-SIMPLE-ADL

Theorem

#### Theorem

For all c > 4:

$$N^{c}(\mathcal{T}_{n}) = S_{n} - (2^{n} - 1)(n + 1).$$

## Blocksworld



 $\mathcal{T}_n$ : Task with n blocks  $(n \ge 2)$ 

## BLOCKSWORLD

Theorem

#### Theorem

$$N^{1}(\mathcal{T}_{n}) = 4 \cdot \sum_{k=0}^{n-3} B_{k} + 3B_{n-2} + 1$$

| n | $N^1(\mathcal{T}_n)$ | n  | $N^1(\mathcal{T}_n)$ |
|---|----------------------|----|----------------------|
| 2 | 4                    | 9  | 3748                 |
| 3 | 8                    | 10 | 17045                |
| 4 | 15                   | 11 | 84626                |
| 5 | 32                   | 12 | 453698               |
| 6 | 82                   | 13 | 2605383              |
| 7 | 253                  | 14 | 15924744             |
| 8 | 914                  | 15 | 103071652            |

## Outline

- Introduction
- Theoretical Results
- 3 Experimental Results
- 4 Conclusion

## Question

#### Theoretical results

There exist task families for which the number of states expanded by  $h^* - c$  grows exponentially, even for small c.

#### Interesting question

Can we observe this behaviour in practice?

→ Experiments with IPC tasks

### Problem

#### Problem

- Values  $N^c(\mathcal{T})$  are defined in terms of  $h^*$ .
- Usually  $h^*$  cannot be determined efficiently.

## Naive way of computing $N^c(\mathcal{T})$

- Completely explore the state space of  $\mathcal{T}$ .
- Search backwards from the goals to determine the  $h^*(s)$  values.
- → Observation: Generating all states is not necessary.

# Search space



→ Poster session: today, 6:00-9:30 PM

| task | $h^*(\mathcal{T})$ | $N^1(\mathcal{T})$ | $N^2(\mathcal{T})$ | $N^3(\mathcal{T})$ | $N^4(\mathcal{T})$ | $N^5(\mathcal{T})$ |
|------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 04-1 | 10                 | 10                 | 10                 | 16                 | 16                 | 29                 |
| 05-2 | 16                 | 28                 | 28                 | 72                 | 72                 | 162                |
| 06-2 | 20                 | 27                 | 27                 | 144                | 144                | 476                |
| 07-1 | 22                 | 106                | 106                | 606                | 606                | 2244               |
| 08-1 | 20                 | 66                 | 66                 | 503                | 503                | 2440               |
| 09-0 | 30                 | 411                | 411                | 3961               | 3961               | 21135              |

| task | $h^*(\mathcal{T})$ | $N^1(\mathcal{T})$ | $N^2(\mathcal{T})$ | $N^3(\mathcal{T})$ | $N^4(\mathcal{T})$ |
|------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 01   | 11                 | 125                | 125                | 246                | 246                |
| 02   | 17                 | 925                | 925                | 1842               | 1842               |
| 03   | 23                 | 5885               | 5885               | 11758              | 11758              |
| 04   | 29                 | 34301              | 34301              | 68586              | 68586              |
| 05   | 35                 | 188413             | 188413             | 376806             | 376806             |
| 06   | 41                 | 991229             | 991229             | 1982434            | 1982434            |
| 07   | 47                 | 5046269            | 5046269            | 10092510           | 10092510           |

| task | $h^*(\mathcal{T})$ | $N^1(\mathcal{T})$ | $N^2(\mathcal{T})$ | $N^3(\mathcal{T})$ | $N^4(\mathcal{T})$ | $N^5(\mathcal{T})$ |
|------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 4-0  | 20                 | 159                | 408                | 1126               | 1780               | 2936               |
| 5-0  | 27                 | 459                | 2391               | 5693               | 14370              | 21124              |
| 6-0  | 25                 | 411                | 2160               | 5712               | 14485              | 23967              |
| 7-1  | 44                 | 17617              | 111756             | 427944             | 1173096            |                    |
| 8-1  | 44                 | 4843               | 27396              | 157645             | 558869             |                    |
| 9-0  | 36                 | 2778               | 15878              | 61507              | 183826             | 460737             |
| 10-0 | 45                 | 10847              |                    |                    |                    |                    |
| 11-0 | 48                 | 10495              |                    |                    |                    |                    |

# Results

| task | $h^*(\mathcal{T})$ | $N^1(\mathcal{T})$ | $N^2(\mathcal{T})$ | $N^3(\mathcal{T})$ | $N^4(\mathcal{T})$ | $N^5(\mathcal{T})$ |
|------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 1-0  | 4                  | 4                  | 4                  | 4                  | 4                  | 4                  |
| 2-1  | 6                  | 6                  | 22                 | 26                 | 26                 | 26                 |
| 3-1  | 10                 | 58                 | 102                | 102                | 102                | 102                |
| 4-2  | 14                 | 148                | 280                | 470                | 560                | 560                |
| 5-1  | 15                 | 209                | 759                | 1136               | 1326               | 1399               |
| 6-4  | 18                 | 397                | 948                | 1936               | 2844               | 3436               |
| 7-4  | 23                 | 3236               | 7654               | 11961              | 15780              | 16968              |
| 8-3  | 24                 | 1292               | 5870               | 15188              | 25914              | 34315              |
| 9-3  | 28                 | 20891              | 39348              | 39348              | 39348              | 39348              |
| 10-3 | 28                 | 6476               | 16180              | 65477              | 129400             | 224495             |
| 11-3 | 32                 | 58268              | 130658             | 258977             | 399850             | 497030             |
| 12-4 | 34                 | 83694              | 181416             | 541517             | 970632             | 1640974            |
| 13-2 | 40                 | 461691             | 947674             | 2203931            | 3443154            | 4546823            |

# Results

| task | $h^*(\mathcal{T})$ | $N^1(\mathcal{T})$ | $N^2(\mathcal{T})$ | $N^3(\mathcal{T})$ | $N^4(\mathcal{T})$ | $N^5(\mathcal{T})$ |
|------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 1-0  | 4                  | 4                  | 4                  | 4                  | 4                  | 4                  |
| 2-1  | 7                  | 18                 | 29                 | 34                 | 37                 | 37                 |
| 3-1  | 11                 | 70                 | 138                | 195                | 241                | 251                |
| 4-4  | 15                 | 166                | 507                | 814                | 1182               | 1348               |
| 5-4  | 18                 | 341                | 1305               | 2708               | 4472               | 5933               |
| 6-4  | 21                 | 509                | 2690               | 7086               | 13657              | 21177              |
| 7-4  | 25                 | 3668               | 13918              | 32836              | 61852              | 95548              |
| 8-3  | 28                 | 4532               | 35529              | 97529              | 205009             | 349491             |
| 9-3  | 32                 | 25265              | 114840             | 321202             | 700640             | 1239599            |
| 10-3 | 34                 | 8150               | 97043              | 423641             | 1151402            | 2505892            |

Introduction

2 Theoretical Results

- Second Second
- 4 Conclusion

# Dismal prospects

Depressing theoretical and experimental results

- Other (similar) search techniques cannot perform better than  $A^*$ .
- With other (real) heuristics it gets worse.

## What is the cause of this behaviour?

#### Main problem

- many independently solvable subproblems which can be arbitrarily permuted
- many possible orders

Why is this not common knowledge?

→ does not happen in 15-Puzzle, Rubik's Cube, etc.

## What do the results mean for us?

Some possible conclusions:

#### Conclusion?

We need heuristics that are better than almost perfect.

How feasible is this?

#### Conclusion?

We need more search enhancements.

Look to domain-dependent search for guidance?

## What can the search community offer us?

Domain-specific search enhancements for Sokoban (Junghanns and Schaeffer, 2001):

- transposition table
- move ordering
- deadlock tables
- tunnel macros
- goal macros
- goal cuts
- pattern search
- relevance cuts
- overestimation
- rapid random restart

- → generalizable?
- → incomplete
  - → incomplete
  - → heuristic improvement
  - → incomplete
- → Poster session: today, 6:00-9:30 PM

## General search enhancements

#### Some techniques that might work in general:

- partial-order reduction
- symmetry elimination
- problem simplification

### What do the results mean for us?

Some alternative conclusions:

#### Conclusion?

Heuristic search doesn't cut it.

What about more global reasoning methods, such as SAT planning, or symbolic exploration techniques like breadth-first search with BDDs?

#### Conclusion?

Optimal planning, beyond a certain point, is too hard.

We can hope to scale a bit better than blind search, but not very far. Maybe study near-optimal planning in a more principled way instead?

The end

Thank you for your attention!