Outline

1. Introduction
2. Theoretical Results
3. Experimental Results
4. Conclusion
Optimal sequential planning

$= A^*$ (or similar)

+ admissible heuristic

(mostly)
Folklore

Everybody knows:

If a heuristic has constant absolute error, A^* requires a linear number of node expansions.
Actually, state-of-the-art optimal sequential planners are not much better than breadth-first search.

Experiments of Helmert, Haslum & Hoffmann (2007)

- BFHSP solved 37 tasks
- $A^* + h^{\text{max}}$ solved 46 tasks
- $A^* + h^{\text{PDB}}$ solved 54 tasks
- blind search solved 42 tasks
Are our heuristics bad?

Two possible explanations:

- Our heuristics aren’t that good.
- There is something fishy going on.

(Or both.)
Everybody knows:

If a heuristic has constant absolute error, A* requires a linear number of node expansions.

But...

This relies on several assumptions:

- fixed branching factor
- only a single goal state
- no transpositions

These assumptions do not hold in any common planning task!
Almost perfect heuristics differ from the perfect heuristic h^* only by an additive constant:

Definition

Define heuristic $h^* - c$ (for $c \in \mathbb{N}_1$) as

$$(h^* - c)(s) := \max(h^*(s) - c, 0)$$

→ unlikely to be obtainable in practice
How many nodes must A^* expand for a planning task \mathcal{T}, given an almost perfect heuristic $h^* - c$?

Definition

$$N^c(\mathcal{T}) := \text{number of states } s \text{ with } g(s) + (h^* - c)(s) < h^*(\mathcal{T})$$

\Rightarrow If this number grows fast with scaling task size, we have a problem.

Objective

Results for $N^c(\mathcal{T})$ for IPC domains

→ Focus on domains in APX
Outline

1. Introduction
2. Theoretical Results
3. Experimental Results
4. Conclusion
Our goal

Find sequence \((\mathcal{T}_n)\) of scaling tasks for which \(N^c(\mathcal{T}_n)\) grows exponentially, even for small values of \(c\).
\(\mathcal{T}_n \): Task with \(n \) balls

\(S_n \): Total number of reachable states of \(\mathcal{T}_n \)

\[S_n = 2 \cdot (2^n + 2n2^{n-1} + n(n-1)2^{n-2}) \]
Let $n \in \mathbb{N}_0$ with $n \geq 3$.

If n is even, then

- $N^1(T_n) = N^2(T_n) = \frac{1}{2}S_n - 3$
- $N^c(T_n) = S_n - 2n - 2$ for all $c \geq 3$.

If n is odd, then

- $N^1(T_n) = N^2(T_n) = S_n - 3$
- $N^c(T_n) = S_n - 2$ for all $c \geq 3$.
Gripper

Proof

Proof sketch

- \(n \) is even
 - states with an even number of balls in each room
 - basically all are part of an optimal plan
 - states with an odd number of balls in each room
 - all are part of plans of length \(h^*(\mathcal{T}_n) + 2 \)

- \(n \) is odd
 - basically all states are part of an optimal plan
MICONIC-SIMPLE-ADL

- \mathcal{T}_n: Task with n passengers (and $n + 1$ floors)
- S_n: Total number of reachable states of \mathcal{T}_n

$$S_n = 3^n(n + 1)$$
For all $c \geq 4$:

$$N^c(T_n) = S_n - (2^n - 1)(n + 1).$$
Blocksworld

\mathcal{I}_n: Task with n blocks ($n \geq 2$)
Blocksworld

Theorem

\[N^1(T_n) = 4 \cdot \sum_{k=0}^{n-3} B_k + 3B_{n-2} + 1 \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(N^1(T_n))</th>
<th>(n)</th>
<th>(N^1(T_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>9</td>
<td>3748</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>10</td>
<td>17045</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>11</td>
<td>84626</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>12</td>
<td>453698</td>
</tr>
<tr>
<td>6</td>
<td>82</td>
<td>13</td>
<td>2605383</td>
</tr>
<tr>
<td>7</td>
<td>253</td>
<td>14</td>
<td>15924744</td>
</tr>
<tr>
<td>8</td>
<td>914</td>
<td>15</td>
<td>103071652</td>
</tr>
</tbody>
</table>
Outline

1. Introduction
2. Theoretical Results
3. Experimental Results
4. Conclusion
Question

Theoretical results

There exist task families for which the number of states expanded by $h^* - c$ grows exponentially, even for small c.

Interesting question

Can we observe this behaviour in practice?

→ Experiments with IPC tasks
Values $N^c(T)$ are defined in terms of h^*. Usually h^* cannot be determined efficiently.

Naive way of computing $N^c(T)$

- Completely explore the state space of T.
- Search backwards from the goals to determine the $h^*(s)$ values.

→ Observation: Generating all states is not necessary.
Search space

- **goal node**
- **node belongs to** $N^c(T)$
- **node does not belong to** $N^c(T)$

$h^*(T)$

$h^*(T) + c - 1$

↝ Poster session: today, 6:00-9:30 PM
Results

Blocksworld

<table>
<thead>
<tr>
<th>task</th>
<th>$h^*(T)$</th>
<th>$N^1(T)$</th>
<th>$N^2(T)$</th>
<th>$N^3(T)$</th>
<th>$N^4(T)$</th>
<th>$N^5(T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>16</td>
<td>16</td>
<td>29</td>
</tr>
<tr>
<td>05-2</td>
<td>16</td>
<td>28</td>
<td>28</td>
<td>72</td>
<td>72</td>
<td>162</td>
</tr>
<tr>
<td>06-2</td>
<td>20</td>
<td>27</td>
<td>27</td>
<td>144</td>
<td>144</td>
<td>476</td>
</tr>
<tr>
<td>07-1</td>
<td>22</td>
<td>106</td>
<td>106</td>
<td>606</td>
<td>606</td>
<td>2244</td>
</tr>
<tr>
<td>08-1</td>
<td>20</td>
<td>66</td>
<td>66</td>
<td>503</td>
<td>503</td>
<td>2440</td>
</tr>
<tr>
<td>09-0</td>
<td>30</td>
<td>411</td>
<td>411</td>
<td>3961</td>
<td>3961</td>
<td>21135</td>
</tr>
</tbody>
</table>
Results

Gripper

<table>
<thead>
<tr>
<th>task</th>
<th>$h^*(T)$</th>
<th>$N^1(T)$</th>
<th>$N^2(T)$</th>
<th>$N^3(T)$</th>
<th>$N^4(T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>11</td>
<td>125</td>
<td>125</td>
<td>246</td>
<td>246</td>
</tr>
<tr>
<td>02</td>
<td>17</td>
<td>925</td>
<td>925</td>
<td>1842</td>
<td>1842</td>
</tr>
<tr>
<td>03</td>
<td>23</td>
<td>5885</td>
<td>5885</td>
<td>11758</td>
<td>11758</td>
</tr>
<tr>
<td>04</td>
<td>29</td>
<td>34301</td>
<td>34301</td>
<td>68586</td>
<td>68586</td>
</tr>
<tr>
<td>05</td>
<td>35</td>
<td>188413</td>
<td>188413</td>
<td>376806</td>
<td>376806</td>
</tr>
<tr>
<td>06</td>
<td>41</td>
<td>991229</td>
<td>991229</td>
<td>1982434</td>
<td>1982434</td>
</tr>
<tr>
<td>07</td>
<td>47</td>
<td>5046269</td>
<td>5046269</td>
<td>10092510</td>
<td>10092510</td>
</tr>
</tbody>
</table>
Results

Logistics (IPC 2)

<table>
<thead>
<tr>
<th>task</th>
<th>(h^*(T))</th>
<th>(N^1(T))</th>
<th>(N^2(T))</th>
<th>(N^3(T))</th>
<th>(N^4(T))</th>
<th>(N^5(T))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-0</td>
<td>20</td>
<td>159</td>
<td>408</td>
<td>1126</td>
<td>1780</td>
<td>2936</td>
</tr>
<tr>
<td>5-0</td>
<td>27</td>
<td>459</td>
<td>2391</td>
<td>5693</td>
<td>14370</td>
<td>21124</td>
</tr>
<tr>
<td>6-0</td>
<td>25</td>
<td>411</td>
<td>2160</td>
<td>5712</td>
<td>14485</td>
<td>23967</td>
</tr>
<tr>
<td>7-1</td>
<td>44</td>
<td>17617</td>
<td>111756</td>
<td>427944</td>
<td>1173096</td>
<td></td>
</tr>
<tr>
<td>8-1</td>
<td>44</td>
<td>4843</td>
<td>27396</td>
<td>157645</td>
<td>558869</td>
<td></td>
</tr>
<tr>
<td>9-0</td>
<td>36</td>
<td>2778</td>
<td>15878</td>
<td>61507</td>
<td>183826</td>
<td>460737</td>
</tr>
<tr>
<td>10-0</td>
<td>45</td>
<td>10847</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-0</td>
<td>48</td>
<td>10495</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>task</td>
<td>$h^*(T)$</td>
<td>$N^1(T)$</td>
<td>$N^2(T)$</td>
<td>$N^3(T)$</td>
<td>$N^4(T)$</td>
<td>$N^5(T)$</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>1-0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2-1</td>
<td>6</td>
<td>6</td>
<td>22</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>3-1</td>
<td>10</td>
<td>58</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>4-2</td>
<td>14</td>
<td>148</td>
<td>280</td>
<td>470</td>
<td>560</td>
<td>560</td>
</tr>
<tr>
<td>5-1</td>
<td>15</td>
<td>209</td>
<td>759</td>
<td>1136</td>
<td>1326</td>
<td>1399</td>
</tr>
<tr>
<td>6-4</td>
<td>18</td>
<td>397</td>
<td>948</td>
<td>1936</td>
<td>2844</td>
<td>3436</td>
</tr>
<tr>
<td>7-4</td>
<td>23</td>
<td>3236</td>
<td>7654</td>
<td>11961</td>
<td>15780</td>
<td>16968</td>
</tr>
<tr>
<td>8-3</td>
<td>24</td>
<td>1292</td>
<td>5870</td>
<td>15188</td>
<td>25914</td>
<td>34315</td>
</tr>
<tr>
<td>9-3</td>
<td>28</td>
<td>20891</td>
<td>39348</td>
<td>39348</td>
<td>39348</td>
<td>39348</td>
</tr>
<tr>
<td>10-3</td>
<td>28</td>
<td>6476</td>
<td>16180</td>
<td>65477</td>
<td>129400</td>
<td>224495</td>
</tr>
<tr>
<td>11-3</td>
<td>32</td>
<td>58268</td>
<td>130658</td>
<td>258977</td>
<td>399850</td>
<td>497030</td>
</tr>
<tr>
<td>12-4</td>
<td>34</td>
<td>83694</td>
<td>181416</td>
<td>541517</td>
<td>970632</td>
<td>1640974</td>
</tr>
<tr>
<td>13-2</td>
<td>40</td>
<td>461691</td>
<td>947674</td>
<td>2203931</td>
<td>3443154</td>
<td>4546823</td>
</tr>
</tbody>
</table>
Results

Miconic-Strips

<table>
<thead>
<tr>
<th>task</th>
<th>$h^*(T)$</th>
<th>$N^1(T)$</th>
<th>$N^2(T)$</th>
<th>$N^3(T)$</th>
<th>$N^4(T)$</th>
<th>$N^5(T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2-1</td>
<td>7</td>
<td>18</td>
<td>29</td>
<td>34</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>3-1</td>
<td>11</td>
<td>70</td>
<td>138</td>
<td>195</td>
<td>241</td>
<td>251</td>
</tr>
<tr>
<td>4-4</td>
<td>15</td>
<td>166</td>
<td>507</td>
<td>814</td>
<td>1182</td>
<td>1348</td>
</tr>
<tr>
<td>5-4</td>
<td>18</td>
<td>341</td>
<td>1305</td>
<td>2708</td>
<td>4472</td>
<td>5933</td>
</tr>
<tr>
<td>6-4</td>
<td>21</td>
<td>509</td>
<td>2690</td>
<td>7086</td>
<td>13657</td>
<td>21177</td>
</tr>
<tr>
<td>7-4</td>
<td>25</td>
<td>3668</td>
<td>13918</td>
<td>32836</td>
<td>61852</td>
<td>95548</td>
</tr>
<tr>
<td>8-3</td>
<td>28</td>
<td>4532</td>
<td>35529</td>
<td>97529</td>
<td>205009</td>
<td>349491</td>
</tr>
<tr>
<td>9-3</td>
<td>32</td>
<td>25265</td>
<td>114840</td>
<td>321202</td>
<td>700640</td>
<td>1239599</td>
</tr>
<tr>
<td>10-3</td>
<td>34</td>
<td>8150</td>
<td>97043</td>
<td>423641</td>
<td>1151402</td>
<td>2505892</td>
</tr>
</tbody>
</table>
1. Introduction
2. Theoretical Results
3. Experimental Results
4. Conclusion
Dismal prospects

Depressing theoretical and experimental results

- Other (similar) search techniques cannot perform better than A^*.
- With other (real) heuristics it gets worse.
What is the cause of this behaviour?

Main problem

- many independently solvable subproblems which can be arbitrarily permuted
- many possible orders

Why is this not common knowledge?
→ does not happen in 15-Puzzle, Rubik’s Cube, etc.
Some possible conclusions:

Conclusion?

We need heuristics that are better than almost perfect.
How feasible is this?

Conclusion?

We need more search enhancements.
Look to domain-dependent search for guidance?
What can the search community offer us?

Domain-specific search enhancements for Sokoban (Junghanns and Schaeffer, 2001):

- transposition table ➞ irrelevant to analysis
- move ordering ➞ irrelevant to analysis
- deadlock tables ➞ irrelevant to analysis
- tunnel macros ➞ generalizable?
- goal macros ➞ incomplete
- goal cuts ➞ incomplete
- pattern search ➞ heuristic improvement
- relevance cuts ➞ incomplete
- overestimation ➞ suboptimal
- rapid random restart ➞ irrelevant to analysis

⇝ Poster session: today, 6:00-9:30 PM
General search enhancements

Some techniques that might work in general:

- partial-order reduction
- symmetry elimination
- problem simplification
What do the results mean for us?

Some alternative conclusions:

Conclusion?

Heuristic search doesn’t cut it.
What about more global reasoning methods, such as SAT planning, or symbolic exploration techniques like breadth-first search with BDDs?

Conclusion?

Optimal planning, beyond a certain point, is too hard.
We can hope to scale a bit better than blind search, but not very far. Maybe study near-optimal planning in a more principled way instead?
Thank you for your attention!