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Abstract
Fast Downward Stone Soup is a sequential portfolio planner
that uses various heuristics and search algorithms that have
been implemented in the Fast Downward planning system.
We present a simple general method for concocting “plan-
ner soups”, sequential portfolios of planning algorithms, and
describe the actual recipes used for Fast Downward Stone
Soup in the sequential optimization and sequential satisficing
tracks of IPC 2011.

Before We Can Eat
Since the original implementation of the Fast Downward
planner (Helmert 2006; 2009) for the 4th International Plan-
ning Competition (IPC 2004), various researchers have used
it as a starting point and testbed for a large number of ad-
ditional search algorithms, heuristics, and other capabili-
ties (e. g., Helmert, Haslum, and Hoffmann 2007; Helmert
and Geffner 2008; Richter, Helmert, and Westphal 2008;
Helmert and Domshlak 2009; Richter and Helmert 2009;
Röger and Helmert 2010; Keyder, Richter, and Helmert
2010).

Experiments with these different planning techniques
have convinced us of two facts:

1. There is no single common search algorithm and heuristic
that dominates all others for classical planning.

2. The coverage of a planning algorithm is often not dimin-
ished significantly when giving it less runtime, or put
differently: if a planner does not solve a planning task
quickly, it is likely not to solve it at all.
Fast Downward Stone Soup is a planning system that

builds on these two observations by combining several com-
ponents of Fast Downward into a sequential portfolio. In a
sequential portfolio, several algorithms are run in sequence
with short (compared to the 30 minutes allowed at the IPC)
timeouts, in the hope that at least one of the component al-
gorithms will find a solution in the time allotted to it.

There are two main versions of Fast Downward Stone
Soup entered into the IPC: one for optimal planning, and

one for satisficing planning. (Each version in turn has two
variants, which differ from each other in smaller ways than
the optimal planner differs from the satisficing one.)

The optimal portfolio planner exchanges no information
at all between the component solvers that are run in se-
quence. The overall search ends as soon as one of the solvers
finds a solution, since there would be no point in continuing
after this.

The satisficing portfolio planner is an anytime system that
can improve the quality of its generated solution over time.
Here, the only information communicated between the com-
ponent solvers is the quality of the best solution found so far,
so that later solvers in the sequence can prune states whose
“cost so far” (g value) is already as large as or larger than
the cost of the best solution that was previously generated.

What is Stone Soup?
The name “Fast Downward Stone Soup” draws from a folk
tale (for example told in Hunt and Thomas 2000, p. 7), in
which hungry soldiers who are left without food take camp
near a small village. They boil a pot of water over their
campfire, and into the water they put three stones. This
strange behaviour incites the curiosity of the villagers, to
whom the soldiers explain that their “stone soup” is known
as a true delicacy in the land where they come from, and that
it would taste even better after adding some carrots. If the
villagers could provide some carrots, they might participate
in the feast. Hearing this, one of the villagers fetches the
required ingredient, after which the soldiers explain that the
recipe could be improved even further by adding potatoes,
which another villager readily provides. Ingredient after in-
gredient is added in this fashion, until the soldiers are happy
with the soup and finish its preparation with the final step in
the recipe: removing the stones.

The stone soup tale is a story of collaboration. The fi-
nal result, which benefits from the ingredients provided by a
large number of villagers as well as the initiative of the sol-
diers, is more tasty and more satisfying than what any of the
involved parties could have produced by themselves.



We consider the story a nice metaphor for the bits-and-
pieces additions by many different parties that Fast Down-
ward has seen in the last four or so years, which is part of the
reason for calling the planner “Fast Downward Stone Soup”.
The second reason is that sequential portfolio algorithms in
general can be seen as a “soup” of different algorithms that
are stirred together to achieve a taste that hopefully exceeds
that of the individual ingredients.

The idea to name a piece of software after the stone soup
story is inspired by a similar case, the open-source com-
puter game “Dungeon Crawl Stone Soup1”, which inciden-
tally would make for an excellent challenge of AI planning
technology, similar to but much more complex than the ven-
erable Rog-O-Matic (Mauldin et al. 1984).

Culinary Basics
Fast Downward Stone Soup is not a very sophisticated port-
folio planner. Due to deadline pressures, our portfolio was
chosen by a very simple selection algorithm, which had to
be devised and implemented within a matter of a few hours,
without any experimental evaluation, and based on limited
and noisy training data. The algorithm does not aim to min-
imize the training data needed, does not use a separate train-
ing and validation set, and completely ignores the intricate
time/cost trade-off in satisficing planning. Therefore, we do
not recommend our approach as state of the art or even par-
ticularly good; rather, we describe it here to document what
we did, and as a baseline for future, more sophisticated port-
folio approaches.

In order to build a portfolio, we assume that the following
information is available:

• A set of planning algorithms A to serve as component
algorithms (“ingredients”) of the portfolio. Our imple-
mentation assumes that this set is not too large; we used
11 ingredients for optimal planning and 38 ingredients for
satisficing planning.

• A set of training instances I, for which portfolio perfor-
mance is optimized. We used the subset of IPC 1998–
2008 instances that were supported by all planning algo-
rithms we used as ingredients, a total of 1116 instances.2

• Complete evaluation results that include, for each algo-
rithm A ∈ A and training instance I ∈ I,

– the runtime t(A, I) of the given algorithm on the given
training instance on our evaluation machines, in sec-
onds, and

– the plan cost c(A, I) of the plan that was found. (For
training instances from IPC 1998–2006, this is simply
the plan length.)

1http://crawl.develz.org
2Fine print: we included IPC 2008 instances which require ac-

tion cost support, even though three of our ingredients for optimal
planning did not support costs. These planners automatically failed
on all IPC 2008 instances. IPC 2008 used different instance sets for
satisficing and optimal planning, and we followed this separation
in our training. For technical reasons to do with hard disk space us-
age on our experimentation platform, we omitted the cyber security
domain from IPC 2008 from the satisficing benchmark suite.

We used a timeout of 30 minutes and memory limit of
2 GB to generate this data. In cases where an instance
could not be solved within these bounds, we set t(A, I) =
c(A, I) =∞.
The plan cost is of course only relevant for the satisfic-
ing track, since in the optimization track, all component
algorithms produce optimal plans. We did not consider
anytime planners as possible ingredients. If we had, a sin-
gle runtime value and plan cost value would of course not
have been sufficient to describe algorithm performance on
a given instance.
In the following, we represent a (sequential) portfolio as

a mapping P : A → R+
0 which assigns a time limit to each

component algorithm. Time limits can be 0, indicating that
a given algorithm is not used in the portfolio. The total time
limit of portfolio P is the sum of all component time limits,∑

A∈A P (A).

Judging the Taste of a Soup
We say that portfolio P solves a given instance I if any of the
component algorithms solves it within its assigned runtime,
i. e., if there exists an algorithm A such that t(A, I) ≤ P (A).
The solution cost achieved by portfolio P on instance I is
the minimal cost over all component algorithms that solve
the task in their allotted time, c(P, I) := min { c(A, I) |
A ∈ A, t(A, I) ≤ P (A) }. (If the portfolio does not solve
I , we define the achieved solution cost as infinite.)

To evaluate the quality of a portfolio, we compute an in-
stance score in the range 0–1 for each training instance and
sum this quantity over all training instances to form a port-
folio score. Higher scores correspond to better portfolios
for the given benchmark set, either because they solve more
instances, or because they find better plans.

In detail, training instances not solved by the portfolio are
assigned a score of 0. The score of a solved instance I is
computed as the lowest solution cost of any algorithm in al-
gorithm set A on I , minA∈A c(A, I), divided by the cost
achieved by the portfolio, c(P, I). Note that this ratio al-
ways falls into the range 0–1 since the cost achieved by the
portfolio cannot be lower than the cost achieved by the best
component algorithm. (We assume that optimal costs are
never 0, so that division by 0 is avoided.)

This scoring function is almost identical to the one used
for IPC 2008 and IPC 2011 except that we use the best solu-
tion quality among our algorithms as the reference quality,
rather than an objective “best known” solution as mandated
by the actual IPC scoring functions. This difference is sim-
ply due to lack of time in preparing the portfolios; we did
not have a set of readily usable reference results.

In the case of optimal planning, only optimal planning al-
gorithms can be used as ingredients. In this case, the scoring
function simplifies to 0 for unsolved and 1 for solved tasks,
since all solutions for a given instance have the same cost.

Preparing a Planner Soup
We now describe the generic algorithm for building a plan-
ner portfolio, and then detail the specific ingredients used
for IPC 2011.



build-portfolio(algorithms, results, granularity, timeout):
portfolio := {A 7→ 0 | A ∈ algorithms }
repeat btimeout/granularityc times:

candidates := successors(portfolio, granularity)
portfolio := argmaxC∈candidates score(C, results)

portfolio := reduce(portfolio, results)
return portfolio

Figure 1: Algorithm for building a portfolio.

We use a simple hill-climbing search in the space of port-
folios, shown in Figure 1. In addition to the set of ingre-
dients (algorithms) and evaluation results (results) as de-
scribed above, it takes two further arguments: the step size
with which we add time slices to the current portfolio (gran-
ularity) and an upper bound on the total time limit for the
portfolio to be generated (timeout). Both parameters are
measured in seconds. In all cases, we set the total time limit
to 1800, the time limit of the IPC.

Portfolio generation starts from an initial portfolio which
assigns a runtime of 0 to each ingredient (i. e., does noth-
ing and solves nothing). We then perform hill-climbing: in
each step, we generate a set of possible successors to the
current portfolio, which are like the current portfolio except
that each successor increases the time limit of one particular
algorithm by granularity. (Hence, the number of successors
equals the number of algorithms.) We then commit to the
best successor among these candidates and continue, for a
total of btimeout/granularityc iterations. (If we continued
further after this point, the total time limit of the generated
portfolio would exceed the given timeout.)

Of course there may be ties in determining the best suc-
cessor, for example if none of the successors improves the
current portfolio. Such ties are broken in favour of succes-
sors that increase the timeout of the component algorithm
that occurs earliest in some arbitrary total order that we fix
initially. We did not experiment with more sophisticated tie-
breaking strategies or other search neighbourhoods.

After hill-climbing, a post-processing step reduces the
time limit applied to each ingredient by considering the dif-
ferent ingredients in order (the same arbitrary order used for
breaking ties between successors in the hill-climbing phase)
and setting the time limit of each ingredient to the lowest
(whole) number that would still lead to the same portfolio
score. For example, if algorithm A is assigned a time limit of
720 seconds after hill-climbing but reducing this time limit
to 681 seconds would not affect the portfolio score, its time
limit is reduced to 681 (or less, if that still does not affect the
score).

Optimizing IPC 2011 Soups
For the sequential optimization track of IPC 2011, we used
the following ingredients in the portfolio building algorithm:

• blind: A∗ with a “blind” heuristic that assigns 0 to goal
states and the lowest action cost among all actions of the
given instance to all non-goal states. Apart from bug fixes
and other minor changes, this is the baseline planner used

in the sequential optimization track of IPC 2008. This
algorithm was contributed by Silvia Richter.

• hmax: A∗ with the hmax heuristic introduced by Bonet
and Geffner (2001). This was implemented by Malte
Helmert with contributions by Silvia Richter.

• LM-cut: A∗ with the landmark-cut heuristic (Helmert
and Domshlak 2009). This was implemented by Malte
Helmert. The LM-cut planner was also entered into IPC
2011 as a separate competitor.

• RHW landmarks, h1 landmarks and BJOLP: LM-A∗ with
the admissible landmark heuristic (Karpas and Domshlak
2009) using “RHW landmarks” (Richter, Helmert, and
Westphal 2008), h1-based landmarks (Keyder, Richter,
and Helmert 2010) and, in the case of the “big joint op-
timal landmarks planner (BJOLP)”, the combination of
both, respectively.
The landmark synthesis algorithms were implemented by
Silvia Richter and Matthias Westphal (RHW landmarks)
and Emil Keyder (h1-based landmarks), the admissible
landmark heuristic by Erez Karpas with some improve-
ments by Malte Helmert based on earlier code by Silvia
Richter and Matthias Westphal, and the LM-A∗ algorithm
by Erez Karpas.
BJOLP was also entered into IPC 2011 as a separate com-
petitor.

• M&S-LFPA: A∗ with a merge-and-shrink heuristic
(Helmert, Haslum, and Hoffmann 2007), using the orig-
inal abstraction strategies suggested by Helmert et al.
(“linear f -preserving abstractions”). We use three differ-
ent abstraction size limits: 10000, 50000, and 100000.
This was implemented by Malte Helmert.

• M&S-bisim 1 and M&S-bisim 2: A∗ with two different
merge-and-shrink heuristics, using the original merging
strategies of Helmert et al. and two novel shrinking strate-
gies based on the notion of bisimulation. The new shrink-
ing strategies were implemented by Raz Nissim.
A sequential portfolio of these two planners was entered
into IPC 2011 as a separate competitor called “Merge-
and-Shrink”.

After some unprincipled initial experimentation, we set
the granularity parameter for the portfolio building algo-
rithm to 120 seconds. The resulting portfolio is shown in
Table 1, which also shows the score (number of solved tasks)
of the portfolio and of its ingredients on the training set.3

We see that the portfolio makes use of four of the eleven
possible ingredients: LM-cut, BJOLP, and the two new
merge-and-shrink variants.

With 654 solved instances, the portfolio significantly out-
performs BJOLP, the best individual configuration, which
solves 605 instances. Moreover, the portfolio does not fall
far short of the holy grail of portfolio algorithms (sequential

3The performance of the M&S-LFPA algorithms appears to be
very bad because we did not manage to implement action-cost sup-
port for these algorithms in time, so that they failed on all IPC
2008 tasks. Hence, the numbers reported are not indicative of the
true potential of these heuristics.



Algorithm Score Time Marginal

BJOLP 605 455 46
RHW landmarks 597 0 —
LM-cut 593 569 26
h1 landmarks 588 0 —
M&S-bisim 1 447 175 8
hmax 427 0 —
M&S-bisim 2 426 432 20
blind 393 0 —
M&S-LFPA 10000 316 0 —
M&S-LFPA 50000 299 0 —
M&S-LFPA 100000 286 0 —

Portfolio 654 1631
“Holy Grail” 673

Table 1: Variant 1 of Fast Downward Stone Soup (sequential
optimization). For each algorithm A, the table shows the
score (number of solved instances) achieved by A on the
training set when given the full 1800 seconds, next to the
time that A is assigned by the portfolio. The last column
shows the marginal contribution of A, i. e., the number of
instances that are no longer solved when removing A from
the portfolio.

or otherwise), which is to solve the union of all instances
solved by any of the possible ingredients. In our training
set, there are 673 instances solved by any of the component
algorithms, only 19 more than solved by the portfolio.

The portfolio in Table 1 is not globally optimal in the
sense that no other fixed sequential portfolio could achieve
a higher score. Indeed, after the planner submission dead-
line, and with substantial manual effort, we managed to find
a slightly better portfolio that solves one more training in-
stance while respecting the 1800 second limit. However,
while our portfolio is not optimal on this training set, it is
certainly close. We conclude that for this data set, a more
sophisticated algorithm for searching the space of portfolios
would not increase the number of solved instances substan-
tially. However, a more sophisticated algorithm might guard
against overfitting, and hence achieve better performance on
unseen instances.

We entered the portfolio shown in Figure 1 into the se-
quential optimization track of IPC 2011 as variant 1 of Fast
Downward Stone Soup. To partially guard against the dan-
gers of overfitting to our training set, we also entered a sec-
ond portfolio as variant 2, which included equal portions of
blind search, LM-cut, BJOLP, and the two M&S-bisim vari-
ants.

Satisficing IPC 2011 Soups
Computing a good portfolio for satisficing planning is more
difficult than in the case of optimal planning for various rea-
sons. One major difficulty in the case of Fast Downward is
that there is a vastly larger range of candidate algorithms to
consider.

Initial experiments showed that in some cases greedy
best-first search was preferable to weighted A∗; in other

cases the opposite was true, with no weight uniformly better
than others. Sometimes, deferred evaluation is the algorithm
of choice, sometimes eager evaluation is better (Richter
and Helmert 2009). And last not least, combining differ-
ent heuristics is very often, but far from always, beneficial
(Röger and Helmert 2010).

Since generating experimental data on all training in-
stances takes a significant amount of time, we had to limit
our set of ingredients to a subset of all promising candidates.
Specifically, we only considered planning algorithms with
the following ingredients:

• search algorithm: Of the various search algorithms im-
plemented in Fast Downward, we only experimented with
greedy best-first search and with weighted A∗ with a
weight of 3. (This weight was chosen very arbitrarily with
no experimental justification at all.)

• eager vs. lazy: We considered both “eager” (textbook)
and “lazy” (deferred evaluation) variants of both search
algorithms. This is backed by the study of Richter and
Helmert (2009), in which these two variants appear to be
roughly equally strong, with somewhat different strengths
and weaknesses.

• preferred operators: We only considered search algo-
rithms that made use of preferred operators. For eager
search, we only used the “dual-queue” method of exploit-
ing preferred operators, for lazy search only the “boosted
dual-queue” method, using the default (and rather arbi-
trary) boost value of 1000. These choices are backed by
the results of Richter and Helmert (2009).

• heuristics: Somewhat arbitrarily, we restricted attention
to four heuristics: additive heuristic hadd (Bonet and
Geffner 2001), FF/additive heuristic hFF (Hoffmann and
Nebel 2001; Keyder and Geffner 2008), causal graph
heuristic hCG (Helmert 2004), and context-enhanced ad-
ditive heuristic hcea (Helmert and Geffner 2008).
These are the four heuristics that in past experiments have
produced best performance when used in isolation. We
did not include the landmark heuristic used in LAMA
(Richter and Westphal 2010), even though it has been
shown to produce very good performance when com-
bined with some of the other heuristics (see, e. g., Richter,
Helmert, and Westphal 2008).
Since Fast Downward supports combinations of multiple
heuristics and these are very often beneficial to perfor-
mance (Röger and Helmert 2010), we considered plan-
ner configurations for each of the 15 non-empty subsets
of the four heuristics. Backed by the results of Röger
and Helmert (2010), we only considered the “alternation”
method of combining multiple heuristics.

• action costs: We only considered configurations of the
planner that treat all actions as if they were unit-cost in
the computation of heuristic values and (for weighted A∗)
g values. This was more due to a mistake in setting up
the experiments to generate the training data than due to
a conscious decision, but as Richter and Westphal (2010)
have shown, this is not necessarily a bad way of handling



Search Evaluation Heuristics Performance Time Marg. Contribution

Greedy best-first Eager hFF 926.13 / 1021 88 1.82 / 0
Weighted A∗ (w = 3) Lazy hFF 921.71 / 1023 340 10.02 / 5
Greedy best-first Eager hFF, hCG 919.24 / 1023 76 1.15 / 0
Greedy best-first Eager hadd, hFF, hCG 909.75 / 1021 0 —
Greedy best-first Eager hFF, hCG, hcea 907.52 / 1010 73 1.25 / 0
Greedy best-first Eager hFF, hcea 906.92 / 1008 0 —
Greedy best-first Eager hadd, hFF, hCG, hcea 903.57 / 1012 0 —
Greedy best-first Eager hadd, hFF 900.52 / 1015 90 1.51 / 1
Greedy best-first Eager hadd, hCG, hcea 892.08 / 1012 0 —
Greedy best-first Eager hadd, hFF, hcea 890.96 / 1002 0 —
Greedy best-first Eager hCG, hcea 889.93 / 1009 0 —
Greedy best-first Eager hadd, hCG 888.64 / 1014 0 —
Greedy best-first Lazy hFF 880.12 / 1042 171 7.24 / 9
Greedy best-first Eager hcea 878.58 / 990 84 3.45 / 2
Greedy best-first Eager hadd, hcea 877.41 / 999 0 —
Greedy best-first Lazy hFF, hCG, hcea 874.64 / 1035 0 —
Weighted A∗ (w = 3) Eager hFF 874.18 / 920 87 2.75 / 0
Greedy best-first Eager hadd 872.74 / 1006 0 —
Greedy best-first Lazy hFF, hcea 872.48 / 1037 0 —
Greedy best-first Lazy hFF, hCG 871.77 / 1045 49 1.93 / 2
Greedy best-first Lazy hadd, hFF, hCG, hcea 861.06 / 1032 0 —
Greedy best-first Lazy hadd, hFF, hcea 860.64 / 1031 0 —
Greedy best-first Lazy hadd, hFF, hCG 860.04 / 1042 0 —
Greedy best-first Lazy hadd, hFF 859.72 / 1046 0 —
Weighted A∗ (w = 3) Lazy hcea 849.66 / 1001 0 —
Weighted A∗ (w = 3) Eager hcea 844.67 / 938 0 —
Greedy best-first Lazy hCG, hcea 841.78 / 1026 27 1.25 / 0
Greedy best-first Lazy hadd, hcea 839.60 / 1020 0 —
Greedy best-first Lazy hadd, hCG, hcea 835.33 / 1019 0 —
Greedy best-first Lazy hadd, hCG 831.28 / 1030 0 —
Weighted A∗ (w = 3) Lazy hadd 830.39 / 1006 50 0.90 / 0
Weighted A∗ (w = 3) Eager hadd 828.76 / 936 166 3.35 / 3
Greedy best-first Lazy hcea 827.57 / 1014 56 2.04 / 2
Weighted A∗ (w = 3) Eager hCG 822.46 / 906 89 2.30 / 1
Greedy best-first Lazy hadd 808.80 / 1019 0 —
Greedy best-first Eager hCG 802.47 / 920 0 —
Weighted A∗ (w = 3) Lazy hCG 782.14 / 908 73 2.57 / 1
Greedy best-first Lazy hCG 755.43 / 924 0 —

Portfolio 1057.57 / 1071 1519
“Holy Grail” 1078.00 / 1078

Table 2: Variant 1 of Fast Downward Stone Soup (sequential satisficing). The performance column shows the score/coverage
of the configuration over all training instances. The portfolio uses 15 of the 38 possible configurations, running them between
27 and 340 seconds. The last column shows the decrease of score and number of solved instances when removing only this
configuration from the portfolio.



Search Evaluation Heuristics Performance Time Marg. Contribution

Greedy best-first Eager hFF 960.77 / 1021 330 26.12 / 4
Greedy best-first Lazy hFF 914.58 / 1042 411 22.32 / 14
Greedy best-first Eager hcea 909.07 / 990 213 9.93 / 5
Greedy best-first Eager hadd 904.49 / 1006 204 4.56 / 3
Greedy best-first Lazy hcea 856.91 / 1014 57 6.17 / 4
Greedy best-first Lazy hadd 840.94 / 1019 63 1.64 / 0
Greedy best-first Eager hCG 829.34 / 920 208 3.48 / 0
Greedy best-first Lazy hCG 781.27 / 924 109 3.17 / 1

Portfolio 1064.23 / 1069 1595
“Holy Grail” 1073.00 / 1073

Table 3: Variant 2 of Fast Downward Stone Soup (sequential satisficing). Columns as in Table 2.

action costs in the IPC 2008 benchmark suite, and all pre-
vious IPC benchmarks are unit-cost anyway.

The implementations of these various planner compo-
nents are due to Malte Helmert (original implementation of
lazy greedy best-first search; implementation of all heuris-
tics except FF/additive), Silvia Richter (implementation of
all other search algorithms and of FF/additive heuristic),
with further contributions by Gabriele Röger (search al-
gorithms, preferred operator handling mechanisms, heuris-
tic combination handling mechanisms) and by Erez Karpas
(search algorithms).

We should emphasize that many potentially good search
algorithms were not included in our portfolio, such as the
combination of FF/additive heuristic and landmark heuristic
used by LAMA (Richter and Westphal 2010). Also, the eval-
uation data we used for our analysis was partially noisy since
some runs were performed before and others after major bug
fixes, and machines with different hardware configurations
were used for different experiments, introducing additional
noise. Finally, there is good reason to believe that our simple
hill-climbing algorithm for building portfolios is not good
enough to find the strongest possible portfolios according to
our scoring criterion.

For variant 1 of Fast Downward Stone Soup in the se-
quential satisficing track, we considered all possible ingre-
dient combinations for greedy best-first search but due to
limited time only included results for weighted A∗ using
single-heuristic algorithms.

With all the caveats mentioned above, the portfolio found
by the hill-climbing procedure, shown in Table 2, does in-
deed achieve a substantially better score than any of the in-
gredient algorithms. (After significant experimentation, we
set the granularity parameter of the algorithm to 90 seconds.)
The total score for the best ingredient, eager greedy search
with the FF/additive heuristic, is 926.13, while the portfolio
scores 1057.57, which is a very substantial gap. The dif-
ference between the portfolio and the “holy grail” score of
1078 (achieved by a portfolio which runs each candidate al-
gorithm for 1800 seconds, which of course hugely exceeds
the IPC time limit) is much smaller, but nevertheless sub-
stantial, so we suspect that better sequential portfolios than
the one we generated exist.

For variant 2 we used only greedy best-first search with a
single heuristic. The hill-climbing procedure (this time us-
ing a granularity of 110 seconds) found the portfolio shown
in Table 3. Note that the performance scores are not com-
parable to the ones of variant 1 because they are computed
for a different algorithm set A. The best single algorithm
is again eager greedy search with the FF/additive heuristic
with a score of 960.77. The total score of the portfolio is
1064.23 which likewise is a huge improvement over the best
single algorithm. The gap to the “holy grail” score of 1073
is narrower than for variant 1.

Serving the Soup
We have finished our description of how we computed the
portfolio that entered the IPC. We now describe how exactly
a run of the portfolio planner proceeds. The simplified view
of a portfolio run is that the different ingredients are run in
turn, each with their specified time limit, on the input plan-
ning task. However, there are some subtleties that make the
picture more complicated:
• The Fast Downward planner that underlies all our ingredi-

ents consists of three components: translation, knowledge
compilation, and search (Helmert 2006). The translation
and knowledge compilation steps are identical for all in-
gredients, so we only run them once, rather than once for
each ingredient. (To reflect that this computation is com-
mon to all algorithms, the training data we use for select-
ing portfolios is also based on search time only, not total
planning time.)
While translation and knowledge compilation are usu-
ally fast, there are cases where they can take substantial
amounts of time, which means that by the time the actual
portfolio run begins, we are no longer left with the com-
plete 1800 second IPC time limit.

• The overall time budget can also change in unexpected
ways during execution of the portfolio when an ingredient
finishes prematurely. In addition to planner bugs, there
are three reasons why an algorithm might finish before
reaching its time limit: running out of memory, termi-
nating cleanly without solving the instance4, or finding a
4Most of our ingredients are complete algorithms which will



plan. In cases where the full allotted time is not used up
by a portfolio ingredient, we would like to do something
useful with the time that is saved.

• If a solution is found, we need to consider how to pro-
ceed. For optimal planning, the only sensible behaviour
is of course to stop and return the optimal solution, but for
satisficing search it is advisable to use the remaining time
to search for cheaper solutions.

The first and second points imply that we need to adapt
to changing time limits in some way. The second and third
points imply that the order in which algorithms are run can
be important. For example, we might want to first run al-
gorithms that tend to fail or succeed quickly. For the first
optimization portfolio, we addressed this ordering issue by
beginning with those algorithms that use up memory espe-
cially quickly. For the first satisficing portfolio, we sorted
algorithms by decreasing order of coverage, hence begin-
ning with algorithms likely to succeed quickly. For the other
portfolios, we used more arbitrary orderings.

To address changing time budgets, we treat per-algorithm
time limits defined by the portfolio as relative, rather than
absolute numbers. For example, consider a situation where
after translation, knowledge compilation and running some
algorithms in the portfolio, there are still 930 seconds of
computation time left. Further, assume that the remaining
algorithms in the portfolio have a total assigned runtime
of 900 seconds, of which 300 seconds belong to the next
algorithm to run. Then we assign 310 seconds, which is
300/900 = 1/3 of the remaining time, to the next algo-
rithm. Note that this implies that once the last algorithm in
the portfolio is reached, it automatically receives all remain-
ing computation time.5

The final point we need to discuss is how to take care of
the anytime aspect of satisficing planning. We do this in a
rather ad-hoc fashion, by modifying the portfolio behaviour
after the first solution is found. First of all, the best solution
found so far is always used for pruning based on g values:
only paths in the state space that are cheaper than the best
solution found so far are pursued.6

In both satisficing portfolios, all search algorithms ini-
tially ignore action costs (as in our training), since this can
be expected to lead to the best coverage (Richter and West-
phal 2010). However, unless all actions of task to solve are
unit-cost, once a solution has been found we re-run the suc-
cessful ingredient in a way that takes action costs into ac-
count, since this can be expected to produce solutions of
higher quality (again, see Richter and Westphal 2010). This

not terminate without finding a solution on solvable inputs, but a
few exceptions exist. Namely, those algorithms that are based on
hCG and/or hcea are not complete because these heuristics can as-
sign infinite heuristic estimates to solvable states, hence unsafely
pruning the search space.

5If the last algorithm in the sequence terminates prematurely,
we have leftover time with nothing left to do. Our portfolio runner
contains special-purpose code for this situation. We omit details as
this seems to be an uncommon corner case.

6We do not prune based on h values since the heuristics we use
are not admissible.

is done in the same way as in the LAMA planner, by treat-
ing all actions of cost c with cost c + 1 in the heuristics, to
avoid the issues with zero-cost actions noted by Richter and
Westphal (2010). All remaining ingredients of the portfolio
are modified in the same way for the current portfolio run.

In the second sequential portfolio, for which we specifi-
cally limited consideration to greedy best-first search (which
tends to have good coverage, but poor solution quality), we
make an additional, more drastic modification once a so-
lution has been found. Namely, we discard all further in-
gredients mentioned in the portfolio, based on the intuition
that the current ingredient managed to solve the instance
and therefore appears to be a good algorithm for the given
instance. Hence, we use the remaining time to perform
an anytime search based on the same heuristic and search
type (lazy vs. greedy) as the successful algorithm, using the
RWA∗ algorithm (Richter, Thayer, and Ruml 2010) with the
weight schedule 〈5, 3, 2, 1〉.

Towards Better Recipes
We close our planner description by briefly mentioning a
number of shortcomings of the approach we pursued for Fast
Downward Stone Soup, as well as some steps towards im-
provements.

First, we used a very naive local search procedure. The
need to tune the granularity parameter in the portfolio build-
ing algorithm highlights a significant problem with our lo-
cal search neighbourhood. With a low granularity, it can
easily happen that no single step in the search neighbour-
hood improves the current portfolio, causing the local search
to act blindly. On the other hand, with a high granularity,
we must always increase the algorithm time limits by large
amounts even though a much smaller increase might be suf-
ficient to achieve the same effect. A more adaptive neigh-
bourhood would be preferable, for example along the lines
of greedy algorithms for the knapsack problem that prefer
packing items that maximize the value/weight ratio.

Second, our approach needed complete experimental data
for each ingredient of the portfolio. This is a huge limita-
tion because it means that we cannot experiment with nearly
as many different algorithm variations as we would like to
(as hinted in the description of the satisficing case, where we
omitted many promising possibilities). A more sophisticated
approach that generates additional experimental data (only)
when needed and aims at making decisions with limited ex-
perimental data, as in the FocusedILS parameter tuning al-
gorithm (Hutter et al. 2009) could mitigate this problem.

Third, we had to choose all possible ingredients for the
portfolio a priori. We believe that there is significant poten-
tial in growing a portfolio piecemeal, adding one ingredient
at a time, and then specifically searching for a new ingre-
dient that complements what is already there, similar to the
Hydra algorithm that has been very successfully applied to
SAT solving (Xu, Hoos, and Leyton-Brown 2010).

Fourth, unlike systems like Hydra or ISAC (Kadioglu et
al. 2010) that learn a classifier to determine on-line which
algorithm from a given portfolio to apply to a given instance,
we only use sequential portfolios, i. e., apply each selected
ingredient to each input instance when running the portfolio



planner. We believe that this is actually not such a serious
problem in planning due to the “solve quickly or not at all”
property of many current planning algorithms. Indeed, it
may be prudent not to commit to a single algorithm selected
by an imperfect classifier.

Finally, the largest challenge we see is in building a port-
folio that addresses the anytime nature of satisficing plan-
ning in a principled fashion, ideally exploiting information
from previous successful searches to bias the selection of the
next algorithm to run in order to find an improved solution.
As far as we know, this is a wide open research area, and we
believe that it holds many interesting theoretical questions as
well as potential for significant practical performance gains.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E., eds., Proceedings of the Eigh-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2008), 140–147. AAAI Press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings
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