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Abstract.
complexity of non-optimal and optimal planning is known.virver,
little is known about the area in between the two extremesdirig
someplan and findingptimalplans. In this contribution, we provide
a complete classification of the propositional domains ftbenfirst
four International Planning Competitions with respectte approx-
imation classePO, PTAS, APX, poly-APX, andNPO.

1 INTRODUCTION

Considering the important role that benchmark domains @ash
LoacisTicsand SXTELLITE play in evaluating the performance of
classical planning algorithms, comparatively little isolum about
their computational properties. With the notable exceptid the
BLOCKSWORLD domain [4,12,13], the published results on the
computational complexity of planning benchmarks are ratbarse-
grained. In most cases, they are limited to the analysisofi®cision
problems (relative to a certain planning domain):

e Plan existencels a given planning task solvable?
e Bounded plan existencés a given planning task solvable using
no more than a certain number of actions?

For many planning domains, it turns out that the former pobl
is solvable in polynomial time, while the latteri#P-complete [5, 6].
In practice, this means that findisgmeplan for such a planning task
is easy, while finding anptimalplan is difficult. In such a situation,
it is natural to ask just how close to optimality we can gethwiit
sacrificing polynomial run-time.

This question has been raised and (partially) answered &ym
classical optimization problems such as the travelingspalisson
problem, set covering problems, satisfiability-type peohs, and
countless others; it is the topic of the areaagfproximation al-
gorithms[1]. In this contribution, we investigate the propositibna
planning domains introduced in the first four InternatioR&Enning
Competitions [2, 7, 9, 10] from this perspective, providingomplete
classification with respect to the standard approximatiasses.

We start our investigation by providing some backgroundhan t
theory of approximation algorithms and how it applies tossieal
planning domains. We then present our main results in twtspar
first discussing planning domains for which good, but noiteatz
ily good, approximation algorithms exist, then planningrdans for
which good approximation algorithms do not exist. Finallg sum-
marize and conclude.

2 APPROXIMATION ALGORITHMS

Due to limited space, we keep our discussion of the theorypef a
proximation algorithms short, pointing to the literatu formal
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For many classical planning domains, the computationaldetail [1]. An optimization problemis either amaximization prob-

lem or aminimization problemwe focus on the latter exclusively.
A minimization problem is given by a set afstancesa set offea-
sible solutionsfor each instance (possibly empty), andn@asure
function associating a number with each feasible solution of each
instance. A solution is calledptimalfor a given instance if it min-
imizes the measure function among all feasible solutiorttat in-
stance. Anapproximation algorithnfor a minimization problem is
a polynomial-time algorithm that, given an instance of thebfem,
generates a feasible solution for that instance or deteatsibne ex-
ists. An approximation algorithm that only generates sohg with
measure at most times the optimal measure (for somes R) is
called c-approximating If such an algorithm exists, the problem is
calledc-approximable

For the purposes of this papgtanning domaingire minimization
problems; their instances are calf@enning tasksSolutions to plan-
ning tasks are sequencesattionscalledplans The only measure
function we consider isequential plan lengttwhich associates each
plan with the number of actions it contains. Other commonsueza
functions include parallel plan length, or weighted sedjatplan
length where some actions are more costly than others.

Optimization problems are grouped into differeproximation
classesn the same way that decision problems are classified into de-
cision complexity classes like andNP. Translating the usual def-
initions to the terminology of planning domains and tasks, ost
important approximation classes are the following ones:

e Domains where optimal plans can be generated in polynomial
time (PO).

e Domains which are-approximable foall ¢ > 1 (PTAS).

e Domains which are-approximable fosomec > 1 (APX).

Domains where plans of length polynomially bounded by thée op
mal plan length can be generated in polynomial tipay-APX).
Domains where optimal plans can be generated in polynomial

time by a non-deterministic Turing MachinsRO).

Itis easy to see th&®#O C PTAS C APX C poly-APX C NPO
and that all these classes are identic® i£ NP. More interestingly,
all these inclusions are strictif £ NP [1].

Membership of a minimization problem (planning domain) meo
of these approximation classes can be shown constructiyepro-
viding a suitable approximation algorithm. Non-membegusban
be shown byapproximation-preserving reductiof&P-reductions)
from problems that are known to be hard, similar to the wayynan
one reductions are employed in classical complexity theDue to
space restrictions, we do not present reductions in futhfdrdetails,
so that we do not need to formally introduce AP-reductions.

2 Full proofs are available from the authors upon request.



3 APPROXIMATION AND PLANNING

There is little work in the literature on the approximatioroper-
ties of planning domains, the main exception being Selmgaafser
which links approximability taeactive planningand shows that the
BLockswoORLD domains is2-approximable and thus iIAPX, but
not in PTAS unlessP = NP [12]. However, the literature does con-
tain classifications of these planning domains from a atassiom-
plexity theory point of view [5, 6], addressing tpé&an existencand
bounded plan existen@kcision problems. We can benefit from this
body of work in the following ways:

e A domain belongs ttNPO if shortest plan lengths are polynomi-
ally bounded by task size. Otherwise, it is noNRO, as it is not
always possible tavrite downa plan in polynomial time.

e Domains with polynomial-time planning algorithms belorg t
poly-APX, and toPO if the algorithms generate optimal plans.

e Domains withNP-hardplan existenc@roblems do not belong to
poly-APX unlessP = NP.

e Domains withNP-hardbounded plan existengaoblems do not
belong toPO unlessP = NP.

Applying these rules to the complexity results for the benatk
domains of the four International Planning Competition®$]5there
are ten planning domains for which the classification inte &p-
proximation classes introduced in the previous sectionotsim-
plied by the decision complexity results, namelydCKSWORLD,
DEPOT, DRIVERLOG, GRID, LOGISTICS MICONIC-SIMPLEADL,
MicoNIC-STRIPS, RVERS, SATELLITE,and ZENOTRAVEL. In all
these domains, polynomial non-optimal planning algorghexist,
but bounded plan existence is BifP-complete problem. Therefore,
all these domains belong fly-APX, but none belongs tBO un-

The SMPLETRANSPORTdOmMain is not itself a planning competi-
tion benchmark, but it is closely related to some of them:

e LoaisTicsis a generalization of PLETRANSPORTWhere ve-
hicles are partitioned inttrucksand airplanesand locations are
partitioned into a set dfities, each with a distinguisheairport lo-
cation. Trucks may only move between locations in the satye ci
and airplanes may only move between (and be initially latate
airports.

e MiCONIC-STRIPS s the 84PLETRANSPORTdOMaIN restricted
to a single vehicle. In the MoNIC domains, the vehicle is usually
called anelevator the locationdloors and the packaggzassen-
gers Instead of saying that a passenger is picker up or unloaded,
we say that héoardsor leavesthe elevator.

e Miconic-SiIMPLEADL s identical to MicONIC-STRIP S except
that pickup and unload actions are replaced by a sstglgaction.
When this action is applied at locatiénall passengers atwhich
are not at their goal location board the elevator, and ab@agers
inside the elevator with goal locatidrieave.

e ZENOTRAVEL is identical to SMPLETRANSPORT except that
each vehicle has an associafeel level(a natural number). Vehi-
cles can only move if their fuel level is non-zero, and movetme
reduces their fuel level by orfeRefueling actions, increasing the
fuel level of a vehicle by one, are applicable at any time.

It is quite easy to come up witbrapproximation algorithms for
these four domains. Indeed, for three of them, the greedirajem
time approach suffices. Therefore, all these domains betA§X.
We now show that it is hard to generate arbitrarily good plans

Theorem 2 SIMPLETRANSPORT¢ PTAS, unlessP = NP. This is
true even in the special case with only one vehicle.

lessP = NP. The open question, then, is whether these domaindroof sketch: Proof by AP-reduction from the MiiIMUM VERTEX

belong toPTAS, to APX \ PTAS, or topoly-APX \ APX.

As noted above, the approximation properties 0bBKSWORLD
have already been studied: it belong#&\@X, but not toPTAS unless
P = NP. In the following two sections, we present similar classific
tion results for the remaining nine domains. We begin ouestiga-
tion with domains which, like BOCKSWORLD, arec-approximable
but cannot be approximated arbitrarily well unléss- NP.

4 c-APPROXIMABLE DOMAINS

For most domains admitting polynomial planning algorithmisins
can be generated by simple greedy algorithms which satigfyrt-
dividual subgoals one after the other. If the number of stepsired
for each such individual goal can be bounded by a constanaand
optimal plan requires at least one separate action per ayjkpen
such an approach isapproximating for some € R. We first inves-
tigate a family of related domains sharing this propérty.

Planning domain 1 SIMPLETRANSPORT
OBJECTS LocationsV, packagesP, and vehicleq".

CoVER problem for graphs where all vertices have degtes 3,
which is not inPTAS unlessP = NP [11]. A given graphG =
(V, E) is mapped to a MPLETRANSPORTtask with one location
for each vertex inV/, plus one start location for the single vehicle.
For each edggu, v} € E, one package must be moved frento v
and another one from to u. The key observation is that the set of
locations visited at least twice in a plan must form a vertexec of

G (i. e., includes at least one vertex from each edg@)inThe degree
restriction on the graphs guarantees that the size of a mimiwertex
cover isQ2(|V|), which is important for proving that the reduction is
approximation-preserving. u

While the theorem shows that there mustdmmevaluec > 1
for which there is n@-approximating algorithm for MPLETRANS-
pPoORTwith a single vehicle iP # NP, it does not provide us with an
actual lower bound for approximability. In fact, the hardseesult
used for the reduction does not provide a lower bound eithutit is
known that the MNIMuUM VERTEX COVER problem for graphs with
a vertex degree bound 6fis not approximable within.0029 unless
P = NP [1]. By adjusting our reduction accordingly, we can ex-

STATES: Each package has an associated location or is inside a veploit this result to show that MoNIC-STRIPS is not approximable

hicle. Each vehicle has an associated location. Initiatly,package
is inside a vehicle.

within 1.000112 unlessP = NP.

ACTIONS: Moving a vehicle between any two locations; picking up Corollary 3 LogGisTiIcse APX \ PTAS, unless? = NP.

a package with a vehicle at the same location; unloading &pge
from a vehicle.
GoALs: Each package has an associated goal location.

MicoNIC-STRIPSe APX \ PTAS, unlessP = NP.
MicoNIC-SIMPLEADL € APX \ PTAS, unlessP = NP.
ZENOTRAVEL € APX \ PTAS, unlessP = NP.

3 To keep discussion short, we introduce planning domairerrimdlly and
refer to the literature for exact PDDL definitions [2, 7, 9].10

4 There are also movement actions reducing fuel level by twbttere is no
point in applying them.



Proof sketch: Greedy algorithms delivering one package (or pas-Proof sketch: A greedy algorithm solving one goal at a time (taking

senger) at a tim@-approximate loGisTicsand MiIcONIC-STRIPS  images first, then pointing satellites to their final direns, if any) is

and 3-approximate ZNOTRAVEL. (More sophisticated algorithms 6-approximating, showing membershipAfPX.

yield a %-approximation for loGgisTicsand a %-approximation Limits of approximability can again be shown by an AP-redhrct

for MicoNIc-STRIPS.) These three domains are generalizationgrom MiNIMUM VERTEX COVER for graphs with degreé or 3. A

of SIMPLETRANSPORTWith one vehicle, so they do not belong to graphG = (V, E) is mapped to a SrELLITE task with one satel-

PTAS unlessP = NP. lite for each vertex» € V and one mode for each edges E. The
MicoNIc-SIMPLEADL is 2-approximable by an algorithm that satellite corresponding to has a single instrument supporting ex-

moves to and stops at all initial floors of all passengers) theves  actly the modes corresponding to edges incident tbhere is only

to and stops at all goal floors of all passengers. For provimg n  one pointing directiornl, which also serves as a calibration target for

membership ilPTAS, essentially the same reduction as in the previ-all satellites. An image offi must be taken in each mode. Given a

ous theorem can be used. = plan for the task, the set of satellites used for taking irsaty&ing
the plan defines a vertex cover 6h The reduction is easily shown
There are two more-approximable benchmark domains. One of to be approximation-preserving. =

them is DEPOT, a combination of 84PLETRANSPORT(packages are
transported between locations by trucks) aneBkSwORLD(pack-
ages at each location are stacked into towers). Tihed&XSWORLD
subproblem uses named and limited table positions; howeueks
provide unlimited auxiliary storage, so limitation of tabposi-
tions is not problematic. Hardness for BPOT follows from the
BLockswoRLDand SMPLETRANSPORTresults immediately, and 5 NON-APPROXIMABLE DOMAINS
membership IPAPX is again fairly straightforward, so we do not
define the domain formally but simply state our results byiefl

Instead of using many satellites with a single instrumenhewe
could also prove hardness for the case of a single satellitermany
instruments. Similarly, instead of requiring many imagésie di-
rection, we could also require one image each of many desti

In this section, we discuss the remaining three planningaiiosn
ROVERS DRIVERLOG, and QRID. The results we present are mostly
negative: While it is easy to see that all these domains apsliy+
- : APX, none of them admit constant-factor approximations unless
Proof sketch: A straight-forward adaptation of the well-knovth  p _ NP, Like some of the domains we have seen previously, all three
approximation for EOCKSWORLD leads to a3-approximation of  jomains have a transportation or path-planning flavoresfitly to
DePOT. The PTAS result follows because the domain generallzesthe domains we have seen previously, however, they do niegh
both SMPLETRANSPORTaNd BLOCKSWORLD. fixed roadmapln the RovERsdomain, different vehicles use differ-
) ) ) o ent roads. In RIVERLOG, some edges can only be traversed by car,

Finally, we turn our attention to theaSeLLITE domain, which i others only on foot. In @ID, locations can be initially inaccessible

defined as follows. and need to be opened by using keys. We will see that thesetasfe

] ) the problems are responsible for hardness of approximagtarting
Planning domain 5 SATELLITE with the RovERS domain.

OBJECTS SatellitesS, instruments/, modesM, and directionsD.

Each instrument is located on one satellite, supports aketagles, ~ Planning domain 7 SIMPLEROVERS

and has one direction as its calibration target. OBJECTs RoversR, waypointsi¥, and soil sample waypoints C
STATES: Each satellite points at a certain direction. Each instruthe V. Each rover has an associated roadmap graph, which is a tree
may be powered on or off. Each instrument may or may not be caloh @ subset of waypoints. Each waypoint must be includedrireso
ibrated. For each direction and mode, an image of this diecin ~ roadmap graph. There is a waypoint common to all roadmap lgsap
this mode may or may not be available. Initially, no instrumis  called the lander location.

powered on or calibrated, and no images are available. STATES: Each rover has an associated location, a waypoint on its
AcTIONS: Pointing a satellite at another direction; powering on an roadmap graph. Rovers may carry a soil sample for a given way-
instrument (requires that no other instrument on this digsls pow-  Point or be empty. Soil data for a given waypoint may or may not
ered on; the instrument is not calibrated afterwards); pdwne off have been transmitted. Initially, all rovers are empty andsoil data

an instrument; calibrating an instrument (requires that gatellite ~ has been transmitted.

Theorem 4 DepoT€e APX \ PTAS, unlessP = NP.

points at its calibration target); taking an image of the ptig di- ~ ACTIONS: Moving a rover between two waypoints connected on its
rection of a satellite in some mode (requires a powered-alibated ~ roadmap; sampling soil on a soil sample waypoint with somerro
instrument supporting this mode on this satellite). (loads a soil sample into the rover, which must be empty; aay o

GoALs: Satellites may have associated target directions; images€ done once for each waypoint); transmitting data for a saihple
may need to be available for certain combinations of dimwsiand ~ With some rover (the soil sample must be inside the roverjitgimg
modes. a rover.
GoALS: For each soil sample waypoint, a soil sample must be trans-
SATELLITE falls into the same approximation category as the mitted.

other domains in this section. The domain is called $1PLEROVERShecause it excludes features

of the full RovErRsdomain such as other science targets besides soil
samples (namely, rock samples and images), restricteuilitisfor
5 We require that there is at least one truck in eagpDTtask. DEPOTtasks transmitting science data, and rovers equipped for onlybaetuof

without trucks would partition into sets of unrelated @k swoRLDtasks S(?ience task.s.[9]. Including the_se_would require many metait
with limited table positions. This BockswoRLDvariant is polynomially ~ without providing much further insight. Our results equalpply to
solvable [4], but we do not claim that it is lPX. the unrestricted domain.

Theorem 6 SATELLITE € APX \ PTAS, unlessP = NP.




Theorem 8 ROVERS € poly-APX \ APX, unlessP = NP. This is
true even in the restricte8iIMPLEROVERSdomain.

Proof sketch: Any solvable ROVERStask can easily be solved one
goal at a time, which shows membershiioly-APX. For the non-
approximability result, we reduce from theiMMuM SET COVER
problem: Given a collection of subsefsof a setS, find a sub-
collectionC’ C C with J/ ., €' = S, using the cardinality of the
chosen sub-collection as the measure of the solution. Tdtdgm is
not c-approximable for any € R unlessP = NP [1].

For a given instancéC, S), the corresponding IBPLEROVERS
task has one rover for each subsef jand one soil sample waypoint
for each element of. The roadmaps for the rovers are designed in
such a way that the rover faf' € C can reach exactly those soil
sample waypoints corresponding to elementgofAll soil sample
waypoints reachable by a rover are very near to each othex aay
long distance from the original rover location, so that pemgths are
dominated by the number of rovers used for solving the gadaiy.
such set of rovers defines a solution to the set coveringriostahe
reduction is approximation-preserving. =

We presented this proof first because the other two are simila
spirit, but somewhat more involved technically. In bothesgshe key
idea is again that selecting a certain subset for the set ad\svs
achieving a set of goals corresponding to the elements b§thrset,
and the total length of the plan is dominated by the numbeho$en
subsets. This is enforced by requiring that a very larg@adcst needs
to be crossed in the planning task at least once for eachmclsobset.
We continue our exposition with theADVERLOG domain.

Planning domain 9 DRIVERLOG

OBJECTS TrucksT, drivers D, major locationsL, minor locations
L (disjoint from L), and packaged. There is a connected road
graph, whose vertices are the major locations, and a coraukftiot-
path graph, whose vertices are the major and minor locatitmghe
footpath graph, the degree of all minor locationgisand both adja-
cent vertices of a minor location are major locations.

STATES: A truck is located at some major location, a package at
some major location or inside a truck, a driver at some major o
minor location or inside a truck. Initially, all are locatedt major
locations.

ACTIONS: Having a driver walk from one location to another (must
be connected in the footpath graph); driving a truck from toea-
tion to another (must be connected in the road graph, muse lzav
driver inside the truck); boarding a truck with a driver atetsame
location (must not have another driver inside the truck)baiking
from a truck with a driver; loading a package into a truck aétkame
location; unloading a package from a truck.

GoALsS: Packages, drivers, and trucks may have associated goal |
cations (which are always major locations).

The somewhat peculiar restriction on footpath graphs menel
sures that walking from one major location to another rexputwvo
actions rather than just one, to reflect the fact that walkisgally
takes longer than driving. There is never a good reason to fnah
a major location to a minor location except to continue todtieer
adjacent major location, so instead of modeling minor liocet ex-
plicitly, our following proof assumes that there is only dkiad of
location and assigns a cost of 2 to walk actions.

Theorem 10 DRIVERLOG € poly-APX \ APX, unlessP = NP.
This is true even when there is only a single driver, and gosés
only defined for packages.

Proof sketch: Again, a simple greedy algorithm solving one goal
at a time suffices for showing membershippialy-APX. For hard-
ness, we again provide an approximation-preserving remuéitom
MINIMUM SET COVER, mapping instancéC, S) to the following
DRIVERLOG task:

e There is a central locatioh., where the only driver starts. This
is connected taubset locationéc for eachC' € C by very long
disjoint footpaths. There is a truck at each subset location

For each element € S, there is arelement start locatiofi; and
anelement goal locatioti", and a road connecting the two. There
is a truck and a package at each element start location. Tdke pa
age must be moved to the corresponding element goal location
For each subset € C and element € C, there is a locatiofc, s
connected tdc by a road and té; by a footpath.

It is easy to see that the subsets corresponding to the slaoset
tions visited in a plan correspond to a set cover. By makiegais-
tances between central location and subset locations Inaggh,

we can ensure that plan length is dominated by the cardinafit
this set cover, so that the reduction is approximationgykésg. (The
DRIVERLOGtask does not have connected road and footpath graphs,
but this can be repaired by introducing connecting pathisatteatoo

long to be useful for generating short plans.) u

The last missing domain is /8D, another variation of the trans-
portation theme.

Planning domain 11 GRID

OBJECTS A single robot, locationd. arranged into a rectangular
grid, key shape$, and keysK. Each key has a shape frofh A lo-
cation may be initially locked by a lock with a certain shapaf S.
STATES: The robot has an associated location. Keys have an associ-
ated location or are carried. Locations can be open or locked
tially, no key is carried.

AcCTIONS: Moving the robot to an adjacent open location; picking
up a key at the current robot location if no key is currentlyrigecar-
ried; dropping a key being carried; switching the currentsrried
key with a key at the current robot location; opening a locleazh-
tion adjacent to the robot with a key of the same shape as tike lo
GoALsS: Keys may have associated goal locations.

From our earlier analysis of the KB domain, we know that
GRID € poly-APX [5]. This reference also contains two proofs
of hardness for the bounded plan existence problem in thizadg
one based on satisfiability and one based on a travelinggitson
type problem. However, neither of these reductions can bd ts

oProve hardness of approximation. Indeed, thristasks generated

by the satisfiability reduction can easily Beapproximated, and the
restricted version of the @b domain considered in the traveling
salesperson reduction even belongPTAS. We thus require a new
reduction.

Theorem 12 GRID € poly-APX \ APX, unlessP = NP.

Proof sketch: Membership inpoly-APX is known [5]. Again, we
map MINIMUM SET COVER instanceqC, S) to planning tasks via
an approximation-preserving reduction. Th&i6 task has three
kinds of keys: for each subsét € C, there is asubset ke with

key shapeS¢; for each subsef’ € C and element € C, there is an
element key:c,s with key shapeS;; for each element € S, there

is agoal keyk with a key shape that cannot be used for opening any
location. Goals are only defined for the goal keys.



The grid of the planning tasks consists of two areas whiclvang c PO:
distant from each other. The first area contains the initigdiions of GRIPPER MOVIE, PROMELA-OPTICALTELEGRAPH,
the element and goal keys and the robot as well as the goaidonsa PROMELA-PHILOSOPHERS PSR, SHEDULE

of the goal keys. The second area contains the initial lonatof
the subset keys. The initial location of element Key is locked
with a lock of shapeSc, and the initial location of goal ke¥, is

€ PTAS\ PO (unlessP = NP):
none

locked with a lock of shap&s. These are the only locations which - aApx \ PTAS (unlessP = NP):

are initially locked. BLOCKSWORLD, LOGISTICS MICONIC-SIMPLEADL,
To solve the task, the robot must unlock the initial locatiofiall MICONIC-STRIPS, RVERS SATELLITE, ZENOTRAVEL

goal keys, which requires obtaining keys of sha&pdor all s € S.

This in turn requires obtaining subset keys for a collectibsubsets € poly-APX \ APX (unlessP = NP):
that coversS, so the set of subset keys picked up in a plan defines DEPOT, DRIVERLOG, GRID
a set cover. By putting a large enough distance between ttafid € NPO\ poly-APX (unlessP = NP):

second area, we can ensure that the cardinality of this get dom-
inates total plan length. (Note that the robot can only cang key

FREECELL MicoNIc-FULLADL, MPRIME, MYSTERY,

; o o - PIPESWORLD'
at atime.) Thus, the reduction is approximation-presgrvin =
¢ NPO:
We point out that the hardness of approximately solvingiss AIRPORT, ASSEMBLY

tasks is largely due to the necessity of opening locatidnselre-
strict ourselves to tasks where opening is impossible, ihe.shapes
of locks are disjoint from the shapes of keys), we can prodde
(2 4 ¢)-approximating planning algorithm for afl > 0. However,
we will not prove this result here, but instead turn to disows.

Figure 1. Classification results. ForlPESwORLD only hardness is

known; membership ilNPO is open.

6 SUMMARY AND CONCLUSION

The approximation properties of the benchmark domainsi.arers-

obtained by generalizing the analyses conducted for thehmeark
domains in a suitable way, for example by identifying sytitaar se-
mantic fragments of PDDL for which the planning problem e

rized in Fig. 1. There are some interesting observationetmade.
First, there are no domains in the benchmark set that fall tim¢
classPTAS \ PO. There is no fundamental reason why this should
be the case, except maybe for the fact RaAS problems are rare
in generaf However, as we pointed out when discussing tha G
domain, there arblP-hard special cases of the competition domains [1]
that do admit polynomial-time approximation schemes.

Looking into the hardness proofs, we observe that we coudityea
get away with only using two different optimization problgfior our [2]
reductions, both of which are set covering problems. Weehelthat (3]
this is no coincidence: Set covering problems arise ndyiraplan-
ning tasks through positive interactions of subgoals. Wiebethat [4]
finding a good way of integrating heuristics for set covepngblems
into admissible heuristics for domain-independent plagriould 5]
lead to a significant advance for optimal planning algorghiow- [6]
ever, we consider this a very challenging avenue of research

What to do with these results? After our earlier results [9r6
the decision complexity of planning in the benchmark domaime
see our work as a second step on the road towards a better undeﬁ]
standing of the benchmark suite, which we believe to becatiti
to provide “the level of understanding required for its effee use
as a benchmark” [13, Slaney and Thiébaux onoBKSWORLD]. [8]
In comparison to Slaney and Thiebaux’s effort, at least taare
steps are required until we can consider these standardhinanks 9]
“understood”: one is the identification of phase transitiegions to
know where the hard instances are, and the other is the o
(domain-dependent) optimal solvers as a reference paimvidua-  [10]
tion of solution quality. (1]

In addition to such deeper domain-specific studies, we ettt
some important insights into domaiindependenplanning can be
[12]

6 To readers familiar with other approximation classes, watpmut that there
is a good reason why there is no domain in the cEB3AS \ PO; this fol-
lows quite easily from Theorem 3.15 in the book by Ausiellalefl]. Sim-
ilarly, we cannot have planning domains in the clesg-APX\ poly-APX.

to APX, in the spirit of the work on tractable subclasses of the SAS
planning formalism [3, 8].
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