
Approximation Properties of Planning Benchmarks
Malte Helmert and Robert Mattm üller and Gabi Röger1.

Abstract. For many classical planning domains, the computational
complexity of non-optimal and optimal planning is known. However,
little is known about the area in between the two extremes of finding
someplan and findingoptimalplans. In this contribution, we provide
a complete classification of the propositional domains fromthe first
four International Planning Competitions with respect to the approx-
imation classesPO, PTAS, APX, poly-APX, andNPO.

1 INTRODUCTION

Considering the important role that benchmark domains suchas
LOGISTICSand SATELLITE play in evaluating the performance of
classical planning algorithms, comparatively little is known about
their computational properties. With the notable exception of the
BLOCKSWORLD domain [4, 12, 13], the published results on the
computational complexity of planning benchmarks are rather coarse-
grained. In most cases, they are limited to the analysis of two decision
problems (relative to a certain planning domain):

• Plan existence: Is a given planning task solvable?
• Bounded plan existence: Is a given planning task solvable using

no more than a certain number of actions?

For many planning domains, it turns out that the former problem
is solvable in polynomial time, while the latter isNP-complete [5, 6].
In practice, this means that findingsomeplan for such a planning task
is easy, while finding anoptimalplan is difficult. In such a situation,
it is natural to ask just how close to optimality we can get without
sacrificing polynomial run-time.

This question has been raised and (partially) answered for many
classical optimization problems such as the traveling salesperson
problem, set covering problems, satisfiability-type problems, and
countless others; it is the topic of the area ofapproximation al-
gorithms [1]. In this contribution, we investigate the propositional
planning domains introduced in the first four InternationalPlanning
Competitions [2, 7, 9, 10] from this perspective, providinga complete
classification with respect to the standard approximation classes.

We start our investigation by providing some background on the
theory of approximation algorithms and how it applies to classical
planning domains. We then present our main results in two parts,
first discussing planning domains for which good, but not arbitrar-
ily good, approximation algorithms exist, then planning domains for
which good approximation algorithms do not exist. Finally,we sum-
marize and conclude.

2 APPROXIMATION ALGORITHMS

Due to limited space, we keep our discussion of the theory of ap-
proximation algorithms short, pointing to the literature for formal

1 Institut für Informatik, Albert-Ludwigs-Universität Freiburg, Germany.
Email:{helmert,mattmuel,roeger}@informatik.uni-freiburg.de

detail [1]. An optimization problemis either amaximization prob-
lem or a minimization problem; we focus on the latter exclusively.
A minimization problem is given by a set ofinstances, a set offea-
sible solutionsfor each instance (possibly empty), and ameasure
function associating a number with each feasible solution of each
instance. A solution is calledoptimal for a given instance if it min-
imizes the measure function among all feasible solution forthat in-
stance. Anapproximation algorithmfor a minimization problem is
a polynomial-time algorithm that, given an instance of the problem,
generates a feasible solution for that instance or detects that none ex-
ists. An approximation algorithm that only generates solutions with
measure at mostc times the optimal measure (for somec ∈ R) is
calledc-approximating. If such an algorithm exists, the problem is
calledc-approximable.

For the purposes of this paper,planning domainsare minimization
problems; their instances are calledplanning tasks. Solutions to plan-
ning tasks are sequences ofactionscalledplans. The only measure
function we consider issequential plan length, which associates each
plan with the number of actions it contains. Other common measure
functions include parallel plan length, or weighted sequential plan
length where some actions are more costly than others.

Optimization problems are grouped into differentapproximation
classesin the same way that decision problems are classified into de-
cision complexity classes likeP andNP. Translating the usual def-
initions to the terminology of planning domains and tasks, the most
important approximation classes are the following ones:

• Domains where optimal plans can be generated in polynomial
time (PO).

• Domains which arec-approximable forall c > 1 (PTAS).
• Domains which arec-approximable forsomec > 1 (APX).
• Domains where plans of length polynomially bounded by the opti-

mal plan length can be generated in polynomial time (poly-APX).
• Domains where optimal plans can be generated in polynomial

time by a non-deterministic Turing Machine (NPO).

It is easy to see thatPO ⊆ PTAS ⊆ APX ⊆ poly-APX ⊆ NPO
and that all these classes are identical ifP = NP. More interestingly,
all these inclusions are strict ifP 6= NP [1].

Membership of a minimization problem (planning domain) in one
of these approximation classes can be shown constructivelyby pro-
viding a suitable approximation algorithm. Non-membership can
be shown byapproximation-preserving reductions(AP-reductions)
from problems that are known to be hard, similar to the way many-
one reductions are employed in classical complexity theory. Due to
space restrictions, we do not present reductions in full formal details,
so that we do not need to formally introduce AP-reductions.2

2 Full proofs are available from the authors upon request.

3 APPROXIMATION AND PLANNING

There is little work in the literature on the approximation proper-
ties of planning domains, the main exception being Selman’spaper
which links approximability toreactive planningand shows that the
BLOCKSWORLD domains is2-approximable and thus inAPX, but
not in PTAS unlessP = NP [12]. However, the literature does con-
tain classifications of these planning domains from a classical com-
plexity theory point of view [5, 6], addressing theplan existenceand
bounded plan existencedecision problems. We can benefit from this
body of work in the following ways:

• A domain belongs toNPO if shortest plan lengths are polynomi-
ally bounded by task size. Otherwise, it is not inNPO, as it is not
always possible towrite downa plan in polynomial time.

• Domains with polynomial-time planning algorithms belong to
poly-APX, and toPO if the algorithms generate optimal plans.

• Domains withNP-hardplan existenceproblems do not belong to
poly-APX unlessP = NP.

• Domains withNP-hardbounded plan existenceproblems do not
belong toPO unlessP = NP.

Applying these rules to the complexity results for the benchmark
domains of the four International Planning Competitions [5, 6], there
are ten planning domains for which the classification into the ap-
proximation classes introduced in the previous section is not im-
plied by the decision complexity results, namely BLOCKSWORLD,
DEPOT, DRIVERLOG, GRID, LOGISTICS, M ICONIC-SIMPLEADL,
M ICONIC-STRIPS,ROVERS, SATELLITE ,and ZENOTRAVEL. In all
these domains, polynomial non-optimal planning algorithms exist,
but bounded plan existence is anNP-complete problem. Therefore,
all these domains belong topoly-APX, but none belongs toPO un-
lessP = NP. The open question, then, is whether these domains
belong toPTAS, to APX \ PTAS, or topoly-APX \ APX.

As noted above, the approximation properties of BLOCKSWORLD

have already been studied: it belongs toAPX, but not toPTASunless
P = NP. In the following two sections, we present similar classifica-
tion results for the remaining nine domains. We begin our investiga-
tion with domains which, like BLOCKSWORLD, arec-approximable
but cannot be approximated arbitrarily well unlessP = NP.

4 c-APPROXIMABLE DOMAINS

For most domains admitting polynomial planning algorithms, plans
can be generated by simple greedy algorithms which satisfy the in-
dividual subgoals one after the other. If the number of stepsrequired
for each such individual goal can be bounded by a constant andan
optimal plan requires at least one separate action per subgoal, then
such an approach isc-approximating for somec ∈ R. We first inves-
tigate a family of related domains sharing this property.3

Planning domain 1 SIMPLETRANSPORT

OBJECTS: LocationsV , packagesP , and vehiclesT .
STATES: Each package has an associated location or is inside a ve-
hicle. Each vehicle has an associated location. Initially,no package
is inside a vehicle.
ACTIONS: Moving a vehicle between any two locations; picking up
a package with a vehicle at the same location; unloading a package
from a vehicle.
GOALS: Each package has an associated goal location.

3 To keep discussion short, we introduce planning domains informally and
refer to the literature for exact PDDL definitions [2, 7, 9, 10].

The SIMPLETRANSPORTdomain is not itself a planning competi-
tion benchmark, but it is closely related to some of them:

• LOGISTICSis a generalization of SIMPLETRANSPORTwhere ve-
hicles are partitioned intotrucksandairplanesand locations are
partitioned into a set ofcities, each with a distinguishedairport lo-
cation. Trucks may only move between locations in the same city,
and airplanes may only move between (and be initially located at)
airports.

• M ICONIC-STRIPS is the SIMPLETRANSPORTdomain restricted
to a single vehicle. In the MICONIC domains, the vehicle is usually
called anelevator, the locationsfloors, and the packagespassen-
gers. Instead of saying that a passenger is picker up or unloaded,
we say that heboardsor leavesthe elevator.

• M ICONIC-SIMPLEADL is identical to MICONIC-STRIPS except
that pickup and unload actions are replaced by a singlestopaction.
When this action is applied at locationl, all passengers atl which
are not at their goal location board the elevator, and all passengers
inside the elevator with goal locationl leave.

• ZENOTRAVEL is identical to SIMPLETRANSPORT except that
each vehicle has an associatedfuel level(a natural number). Vehi-
cles can only move if their fuel level is non-zero, and movement
reduces their fuel level by one.4 Refueling actions, increasing the
fuel level of a vehicle by one, are applicable at any time.

It is quite easy to come up withc-approximation algorithms for
these four domains. Indeed, for three of them, the greedy goal-at-a-
time approach suffices. Therefore, all these domains belongto APX.
We now show that it is hard to generate arbitrarily good plans.

Theorem 2 SIMPLETRANSPORT /∈ PTAS, unlessP = NP. This is
true even in the special case with only one vehicle.
Proof sketch: Proof by AP-reduction from the MINIMUM VERTEX

COVER problem for graphs where all vertices have degree2 or 3,
which is not inPTAS unlessP = NP [11]. A given graphG =
(V, E) is mapped to a SIMPLETRANSPORTtask with one location
for each vertex inV , plus one start location for the single vehicle.
For each edge{u, v} ∈ E, one package must be moved fromu to v
and another one fromv to u. The key observation is that the set of
locations visited at least twice in a plan must form a vertex cover of
G (i. e., includes at least one vertex from each edge inE). The degree
restriction on the graphs guarantees that the size of a minimum vertex
cover isΩ(|V |), which is important for proving that the reduction is
approximation-preserving.

While the theorem shows that there must besomevalue c > 1
for which there is noc-approximating algorithm for SIMPLETRANS-
PORTwith a single vehicle ifP 6= NP, it does not provide us with an
actual lower bound for approximability. In fact, the hardness result
used for the reduction does not provide a lower bound either,but it is
known that the MINIMUM VERTEX COVER problem for graphs with
a vertex degree bound of5 is not approximable within1.0029 unless
P = NP [1]. By adjusting our reduction accordingly, we can ex-
ploit this result to show that MICONIC-STRIPS is not approximable
within 1.000112 unlessP = NP.

Corollary 3 LOGISTICS∈ APX \ PTAS, unlessP = NP.
M ICONIC-STRIPS∈ APX \ PTAS, unlessP = NP.
M ICONIC-SIMPLEADL ∈ APX \ PTAS, unlessP = NP.
ZENOTRAVEL ∈ APX \ PTAS, unlessP = NP.

4 There are also movement actions reducing fuel level by two, but there is no
point in applying them.

Proof sketch: Greedy algorithms delivering one package (or pas-
senger) at a time2-approximate LOGISTICSand MICONIC-STRIPS
and 3-approximate ZENOTRAVEL. (More sophisticated algorithms
yield a 4

3
-approximation for LOGISTICS and a 7

6
-approximation

for M ICONIC-STRIPS.) These three domains are generalizations
of SIMPLETRANSPORTwith one vehicle, so they do not belong to
PTAS unlessP = NP.

M ICONIC-SIMPLEADL is 2-approximable by an algorithm that
moves to and stops at all initial floors of all passengers, then moves
to and stops at all goal floors of all passengers. For proving non-
membership inPTAS, essentially the same reduction as in the previ-
ous theorem can be used.

There are two morec-approximable benchmark domains. One of
them is DEPOT, a combination of SIMPLETRANSPORT(packages are
transported between locations by trucks) and BLOCKSWORLD(pack-
ages at each location are stacked into towers). The BLOCKSWORLD

subproblem uses named and limited table positions; however, trucks
provide unlimited auxiliary storage, so limitation of table posi-
tions is not problematic.5 Hardness for DEPOT follows from the
BLOCKSWORLD and SIMPLETRANSPORTresults immediately, and
membership inAPX is again fairly straightforward, so we do not
define the domain formally but simply state our results briefly.

Theorem 4 DEPOT∈ APX \ PTAS, unlessP = NP.
Proof sketch: A straight-forward adaptation of the well-known2-
approximation for BLOCKSWORLD leads to a3-approximation of
DEPOT. The PTAS result follows because the domain generalizes
both SIMPLETRANSPORTand BLOCKSWORLD.

Finally, we turn our attention to the SATELLITE domain, which is
defined as follows.

Planning domain 5 SATELLITE

OBJECTS: SatellitesS, instrumentsI , modesM , and directionsD.
Each instrument is located on one satellite, supports a set of modes,
and has one direction as its calibration target.
STATES: Each satellite points at a certain direction. Each instrument
may be powered on or off. Each instrument may or may not be cal-
ibrated. For each direction and mode, an image of this direction in
this mode may or may not be available. Initially, no instrument is
powered on or calibrated, and no images are available.
ACTIONS: Pointing a satellite at another direction; powering on an
instrument (requires that no other instrument on this satellite is pow-
ered on; the instrument is not calibrated afterwards); powering off
an instrument; calibrating an instrument (requires that its satellite
points at its calibration target); taking an image of the pointing di-
rection of a satellite in some mode (requires a powered-on, calibrated
instrument supporting this mode on this satellite).
GOALS: Satellites may have associated target directions; images
may need to be available for certain combinations of directions and
modes.

SATELLITE falls into the same approximation category as the
other domains in this section.

Theorem 6 SATELLITE ∈ APX \ PTAS, unlessP = NP.

5 We require that there is at least one truck in each DEPOTtask. DEPOTtasks
without trucks would partition into sets of unrelated BLOCKSWORLDtasks
with limited table positions. This BLOCKSWORLDvariant is polynomially
solvable [4], but we do not claim that it is inAPX.

Proof sketch:A greedy algorithm solving one goal at a time (taking
images first, then pointing satellites to their final directions, if any) is
6-approximating, showing membership inAPX.

Limits of approximability can again be shown by an AP-reduction
from MINIMUM VERTEX COVER for graphs with degree2 or 3. A
graphG = (V, E) is mapped to a SATELLITE task with one satel-
lite for each vertexv ∈ V and one mode for each edgee ∈ E. The
satellite corresponding tov has a single instrument supporting ex-
actly the modes corresponding to edges incident tov. There is only
one pointing directiond, which also serves as a calibration target for
all satellites. An image ofd must be taken in each mode. Given a
plan for the task, the set of satellites used for taking images during
the plan defines a vertex cover onG. The reduction is easily shown
to be approximation-preserving.

Instead of using many satellites with a single instrument each, we
could also prove hardness for the case of a single satellite with many
instruments. Similarly, instead of requiring many images of one di-
rection, we could also require one image each of many directions.

5 NON-APPROXIMABLE DOMAINS

In this section, we discuss the remaining three planning domains:
ROVERS, DRIVERLOG, and GRID. The results we present are mostly
negative: While it is easy to see that all these domains are inpoly-
APX, none of them admit constant-factor approximations unless
P = NP. Like some of the domains we have seen previously, all three
domains have a transportation or path-planning flavor. Differently to
the domains we have seen previously, however, they do not exhibit a
fixed roadmap. In the ROVERSdomain, different vehicles use differ-
ent roads. In DRIVERLOG, some edges can only be traversed by car,
others only on foot. In GRID, locations can be initially inaccessible
and need to be opened by using keys. We will see that these aspects of
the problems are responsible for hardness of approximation, starting
with the ROVERSdomain.

Planning domain 7 SIMPLEROVERS

OBJECTS: RoversR, waypointsW , and soil sample waypointsS ⊆
W . Each rover has an associated roadmap graph, which is a tree
on a subset of waypoints. Each waypoint must be included in some
roadmap graph. There is a waypoint common to all roadmap graphs
called the lander location.
STATES: Each rover has an associated location, a waypoint on its
roadmap graph. Rovers may carry a soil sample for a given way-
point or be empty. Soil data for a given waypoint may or may not
have been transmitted. Initially, all rovers are empty and no soil data
has been transmitted.
ACTIONS: Moving a rover between two waypoints connected on its
roadmap; sampling soil on a soil sample waypoint with some rover
(loads a soil sample into the rover, which must be empty; can only
be done once for each waypoint); transmitting data for a soilsample
with some rover (the soil sample must be inside the rover); emptying
a rover.
GOALS: For each soil sample waypoint, a soil sample must be trans-
mitted.

The domain is called SIMPLEROVERSbecause it excludes features
of the full ROVERSdomain such as other science targets besides soil
samples (namely, rock samples and images), restricted visibility for
transmitting science data, and rovers equipped for only a subset of
science tasks [9]. Including these would require many more details
without providing much further insight. Our results equally apply to
the unrestricted domain.

Theorem 8 ROVERS∈ poly-APX \ APX, unlessP = NP. This is
true even in the restrictedSIMPLEROVERSdomain.
Proof sketch: Any solvable ROVERS task can easily be solved one
goal at a time, which shows membership inpoly-APX. For the non-
approximability result, we reduce from the MINIMUM SET COVER

problem: Given a collection of subsetsC of a setS, find a sub-
collectionC′ ⊆ C with

S

C′∈C′ C′ = S, using the cardinality of the
chosen sub-collection as the measure of the solution. The problem is
not c-approximable for anyc ∈ R unlessP = NP [1].

For a given instance(C, S), the corresponding SIMPLEROVERS

task has one rover for each subset inC, and one soil sample waypoint
for each element ofS. The roadmaps for the rovers are designed in
such a way that the rover forC ∈ C can reach exactly those soil
sample waypoints corresponding to elements ofC. All soil sample
waypoints reachable by a rover are very near to each other anda very
long distance from the original rover location, so that planlengths are
dominated by the number of rovers used for solving the goals.Any
such set of rovers defines a solution to the set covering instance; the
reduction is approximation-preserving.

We presented this proof first because the other two are similar in
spirit, but somewhat more involved technically. In both cases, the key
idea is again that selecting a certain subset for the set cover allows
achieving a set of goals corresponding to the elements of that subset,
and the total length of the plan is dominated by the number of chosen
subsets. This is enforced by requiring that a very large distance needs
to be crossed in the planning task at least once for each chosen subset.
We continue our exposition with the DRIVERLOG domain.

Planning domain 9 DRIVERLOG

OBJECTS: TrucksT , driversD, major locationsL, minor locations
LM (disjoint fromL), and packagesP . There is a connected road
graph, whose vertices are the major locations, and a connected foot-
path graph, whose vertices are the major and minor locations. In the
footpath graph, the degree of all minor locations is2, and both adja-
cent vertices of a minor location are major locations.
STATES: A truck is located at some major location, a package at
some major location or inside a truck, a driver at some major or
minor location or inside a truck. Initially, all are locatedat major
locations.
ACTIONS: Having a driver walk from one location to another (must
be connected in the footpath graph); driving a truck from oneloca-
tion to another (must be connected in the road graph, must have a
driver inside the truck); boarding a truck with a driver at the same
location (must not have another driver inside the truck); debarking
from a truck with a driver; loading a package into a truck at the same
location; unloading a package from a truck.
GOALS: Packages, drivers, and trucks may have associated goal lo-
cations (which are always major locations).

The somewhat peculiar restriction on footpath graphs merely en-
sures that walking from one major location to another requires two
actions rather than just one, to reflect the fact that walkingusually
takes longer than driving. There is never a good reason to walk from
a major location to a minor location except to continue to theother
adjacent major location, so instead of modeling minor locations ex-
plicitly, our following proof assumes that there is only onekind of
location and assigns a cost of 2 to walk actions.

Theorem 10 DRIVERLOG ∈ poly-APX \ APX, unlessP = NP.
This is true even when there is only a single driver, and goalsare
only defined for packages.

Proof sketch: Again, a simple greedy algorithm solving one goal
at a time suffices for showing membership inpoly-APX. For hard-
ness, we again provide an approximation-preserving reduction from
M INIMUM SET COVER, mapping instance(C, S) to the following
DRIVERLOG task:

• There is a central locationl⋆, where the only driver starts. This
is connected tosubset locationslC for eachC ∈ C by very long
disjoint footpaths. There is a truck at each subset location.

• For each elements ∈ S, there is anelement start locationl−s and
anelement goal locationl+s , and a road connecting the two. There
is a truck and a package at each element start location. The pack-
age must be moved to the corresponding element goal location.

• For each subsetC ∈ C and elements ∈ C, there is a locationlC,s

connected tolC by a road and tol−s by a footpath.

It is easy to see that the subsets corresponding to the subsetloca-
tions visited in a plan correspond to a set cover. By making the dis-
tances between central location and subset locations long enough,
we can ensure that plan length is dominated by the cardinality of
this set cover, so that the reduction is approximation-preserving. (The
DRIVERLOG task does not have connected road and footpath graphs,
but this can be repaired by introducing connecting paths that are too
long to be useful for generating short plans.)

The last missing domain is GRID, another variation of the trans-
portation theme.

Planning domain 11 GRID

OBJECTS: A single robot, locationsL arranged into a rectangular
grid, key shapesS, and keysK. Each key has a shape fromS. A lo-
cation may be initially locked by a lock with a certain shape fromS.
STATES: The robot has an associated location. Keys have an associ-
ated location or are carried. Locations can be open or locked. Ini-
tially, no key is carried.
ACTIONS: Moving the robot to an adjacent open location; picking
up a key at the current robot location if no key is currently being car-
ried; dropping a key being carried; switching the currentlycarried
key with a key at the current robot location; opening a lockedloca-
tion adjacent to the robot with a key of the same shape as the lock.
GOALS: Keys may have associated goal locations.

From our earlier analysis of the GRID domain, we know that
GRID ∈ poly-APX [5]. This reference also contains two proofs
of hardness for the bounded plan existence problem in this domain,
one based on satisfiability and one based on a traveling-salesperson
type problem. However, neither of these reductions can be used to
prove hardness of approximation. Indeed, the GRID tasks generated
by the satisfiability reduction can easily be2-approximated, and the
restricted version of the GRID domain considered in the traveling
salesperson reduction even belongs toPTAS. We thus require a new
reduction.

Theorem 12 GRID ∈ poly-APX \ APX, unlessP = NP.
Proof sketch: Membership inpoly-APX is known [5]. Again, we
map MINIMUM SET COVER instances(C, S) to planning tasks via
an approximation-preserving reduction. The GRID task has three
kinds of keys: for each subsetC ∈ C, there is asubset keykC with
key shapeSC ; for each subsetC ∈ C and elements ∈ C, there is an
element keykC,s with key shapeSs; for each elements ∈ S, there
is agoal keyks with a key shape that cannot be used for opening any
location. Goals are only defined for the goal keys.

The grid of the planning tasks consists of two areas which arevery
distant from each other. The first area contains the initial locations of
the element and goal keys and the robot as well as the goal locations
of the goal keys. The second area contains the initial locations of
the subset keys. The initial location of element keykC,s is locked
with a lock of shapeSC , and the initial location of goal keyks is
locked with a lock of shapeSs. These are the only locations which
are initially locked.

To solve the task, the robot must unlock the initial locations of all
goal keys, which requires obtaining keys of shapeSs for all s ∈ S.
This in turn requires obtaining subset keys for a collectionof subsets
that coversS, so the set of subset keys picked up in a plan defines
a set cover. By putting a large enough distance between the first and
second area, we can ensure that the cardinality of this set cover dom-
inates total plan length. (Note that the robot can only carryone key
at a time.) Thus, the reduction is approximation-preserving.

We point out that the hardness of approximately solving GRID

tasks is largely due to the necessity of opening locations. If we re-
strict ourselves to tasks where opening is impossible (i. e., the shapes
of locks are disjoint from the shapes of keys), we can providea
(2 + ε)-approximating planning algorithm for allε > 0. However,
we will not prove this result here, but instead turn to discussion.

6 SUMMARY AND CONCLUSION

The approximation properties of the benchmark domains are summa-
rized in Fig. 1. There are some interesting observations to be made.
First, there are no domains in the benchmark set that fall into the
classPTAS \ PO. There is no fundamental reason why this should
be the case, except maybe for the fact thatPTAS problems are rare
in general.6 However, as we pointed out when discussing the GRID

domain, there areNP-hard special cases of the competition domains
that do admit polynomial-time approximation schemes.

Looking into the hardness proofs, we observe that we could easily
get away with only using two different optimization problems for our
reductions, both of which are set covering problems. We believe that
this is no coincidence: Set covering problems arise naturally in plan-
ning tasks through positive interactions of subgoals. We believe that
finding a good way of integrating heuristics for set coveringproblems
into admissible heuristics for domain-independent planning could
lead to a significant advance for optimal planning algorithms. How-
ever, we consider this a very challenging avenue of research.

What to do with these results? After our earlier results [5, 6] on
the decision complexity of planning in the benchmark domains, we
see our work as a second step on the road towards a better under-
standing of the benchmark suite, which we believe to be critical
to provide “the level of understanding required for its effective use
as a benchmark” [13, Slaney and Thiébaux on BLOCKSWORLD].
In comparison to Slaney and Thiébaux’s effort, at least twomore
steps are required until we can consider these standard benchmarks
“understood”: one is the identification of phase transitionregions to
know where the hard instances are, and the other is the provision of
(domain-dependent) optimal solvers as a reference point for evalua-
tion of solution quality.

In addition to such deeper domain-specific studies, we believe that
some important insights into domain-independentplanning can be

6 To readers familiar with other approximation classes, we point out that there
is a good reason why there is no domain in the classFPTAS\PO; this fol-
lows quite easily from Theorem 3.15 in the book by Ausiello etal. [1]. Sim-
ilarly, we cannot have planning domains in the classexp-APX\poly-APX.

∈ PO:
GRIPPER, MOVIE, PROMELA-OPTICALTELEGRAPH,
PROMELA-PHILOSOPHERS, PSR, SCHEDULE

∈ PTAS \ PO (unlessP = NP):
none

∈ APX \ PTAS (unlessP = NP):
BLOCKSWORLD, LOGISTICS, M ICONIC-SIMPLEADL,
M ICONIC-STRIPS, ROVERS, SATELLITE , ZENOTRAVEL

∈ poly-APX \ APX (unlessP = NP):
DEPOT, DRIVERLOG, GRID

∈ NPO \ poly-APX (unlessP = NP):
FREECELL, M ICONIC-FULL ADL, MPRIME, MYSTERY,
PIPESWORLD∗

/∈ NPO:
A IRPORT, ASSEMBLY

Figure 1. Classification results. For PIPESWORLD, only hardness is
known; membership inNPO is open.

obtained by generalizing the analyses conducted for the benchmark
domains in a suitable way, for example by identifying syntactic or se-
mantic fragments of PDDL for which the planning problem belongs
to APX, in the spirit of the work on tractable subclasses of the SAS+

planning formalism [3, 8].

REFERENCES

[1] Giorgio Ausiello, Pierluigi Crescenzi, Giorgo Gambosi, Viggo Kann,
Alberto Marchetti-Spaccamela, and Marco Protasi,Complexity and Ap-
proximation, Springer-Verlag, 1999.

[2] Fahiem Bacchus, ‘The AIPS’00 planning competition’,AI Magazine,
22(3), 47–56, (2001).

[3] Christer Bäckström and Bernhard Nebel, ‘Complexity results for SAS+

planning’,Computational Intelligence, 11(4), 625–655, (1995).
[4] Naresh Gupta and Dana S. Nau, ‘On the complexity of blocks-world

planning’,Artificial Intelligence, 56(2–3), 223–254, (1992).
[5] Malte Helmert, ‘Complexity results for standard benchmark domains

in planning’,Artificial Intelligence, 143(2), 219–262, (2003).
[6] Malte Helmert, ‘New complexity results for classical planning bench-

marks’, in Proceedings of the Sixteenth International Conference on
Automated Planning and Scheduling (ICAPS 2006), eds., Derek Long,
Stephen F. Smith, Daniel Borrajo, and Lee McCluskey, pp. 52–61.
AAAI Press, (2006).

[7] Jörg Hoffmann and Stefan Edelkamp, ‘The deterministicpart of IPC-4:
An overview’,Journal of Artificial Intelligence Research, 24, 519–579,
(2005).

[8] Peter Jonsson and Christer Bäckström, ‘State-variable planning under
structural restrictions: Algorithms and complexity’,Artificial Intelli-
gence, 100(1–2), 125–176, (1998).

[9] Derek Long and Maria Fox, ‘The 3rd International Planning Competi-
tion: Results and analysis’,Journal of Artificial Intelligence Research,
20, 1–59, (2003).

[10] Drew McDermott, ‘The 1998 AI Planning Systems competition’, AI
Magazine, 21(2), 35–55, (2000).

[11] Christos H. Papadimitriou and Mihalis Yannakakis, ‘Optimization, ap-
proximation, and complexity classes’,Journal of Computer and System
Sciences, 43, 425–440, (1991).

[12] Bart Selman, ‘Near-optimal plans, tractability, and reactivity’, in Pro-
ceedings of the Fourth International Conference on Principles of
Knowledge Representation and Reasoning (KR’94), eds., Jon Doyle,
Erik Sandewall, and Pietro Torasso, pp. 521–529. Morgan Kaufmann,
(1994).

[13] John Slaney and Sylvie Thiébaux, ‘Blocks World revisited’, Artificial
Intelligence, 125, 119–153, (2001).

