
Decidability and Undecidability Results
for Planning with Numerical State Variables

Malte Helmert
Institut für Informatik, Albert-Ludwigs-Universiẗat Freiburg

Georges-K̈ohler-Allee, Geb̈aude 052, 79110 Freiburg, Germany
helmert@informatik.uni-freiburg.de

Abstract

These days, propositional planning can be considered a quite
well-understood problem. Good algorithms are known that
can solve a wealth of very different and sometimes challeng-
ing planning tasks, and theoretical computational properties
of both general STRIPS-style planning and the best-known
benchmark problems have been established.

However, propositional planning has a major drawback: The
formalism is too weak to allow for the easy encoding of many
genuinely interesting planning problems, specifically those
involving numbers. A recent effort to enhance the PDDL
planning language to cope with (among other additions) nu-
merical state variables, to be used at the third international
planning competition, has increased interest in these issues.

In this contribution, we analyze “STRIPS with numbers”
from a theoretical point of view. Specifically, we show that
the introduction of numerical state variables makes the plan-
ning problem undecidable in the general case and many re-
strictions thereof and identify special cases for which we can
provide decidability results.

Introduction
In recent years, we have seen significant progress on the
solution of propositional planning tasks. Fully automated
planning systems such as FF (Hoffmann & Nebel 2001)
and systems using hand-tailored control knowledge such as
TALplanner (Doherty & Kvarnstr̈om 2001) show impres-
sive performance on the problem suite of the second inter-
national planning competition. Many researchers have seen
this as an indication that it is time to move on to richer – and
perhaps more interesting – domain definition languages than
the STRIPS or ADL subsets of PDDL, and consequently, the
PDDL language has been extended to allow for numerical
state variables, explicit models of concurrency, and specifi-
cation of other metrics of plan quality than sequential length.

The result of this effort, the PDDL2.1 language defined by
Fox and Long (2001), has the potential to becometherepre-
sentation language for planning problems involving numer-
ical conditions and effects, especially since it is going to be
used for the third international planning competition at AIPS
2002.

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

From a practician’s point of view, this means that it is time
some new planning algorithms capable of handling numeri-
cal features were developed, and indeed a number of recent
publications in this area can be found (Haslum & Geffner
2001; Do & Kambhampati 2001).

From a theoretician’s point of view, this is a good oppor-
tunity to look into decidability and complexity issues that
arise in the context of numerical state variables. There is no
work that we are aware of in the planning literature that ad-
dresses these issues, so in this paper we make a first attempt
at closing this gap.

In the following analysis, we restrict ourselves to what
Fox and Long have called “level 2” of PDDL2.1, not con-
sidering the PDDL2.1 formulation of concurrency or plan
metrics. There are five main reasons behind that decision.

First, only investigating one new language feature at a
time makes it easier to judge the impact of the addition of
that feature. If we presented results for “full” PDDL2.1 in-
stead, it might not be immediately obvious which new fea-
tures actually contribute to the increased hardness of the
task.

Second, related to this, restricting ourselves to one feature
makes the results of our analysis more accessible, easier to
understand, and allows for providing a more in-depth picture
than we would have been able to give if we had chosen a
panorama view of PDDL2.1.

Third, we think that the addition of numerical state vari-
ables is the feature of PDDL2.1 that will have the high-
est number of supporters, because it is immediately plausi-
ble and there are few competing models. In contrast, Fox
and Long themselves have presented an interesting alter-
native model for concurrent planning domains with their
PDDL+ language, which favors modeling actions of the
planning agent as instantaneous and modeling change over
time through environmental processes. It is not obvious if
and how decidability results for PDDL2.1 with concurrency
carry over to PDDL+, and vice versa.

Fourth, some of the other additions, especially concerning
plan metrics, are only of importance when we are concerned
with optimalor near-optimalplanning. Our analysis is con-
cerned with the more fundamental problem of findingany
plan, because we feel that at this time, we cannot reasonably
expect to optimally solve bigger problems with numerical
features. While there are first results for optimally solving

planning problems of this kind (Haslum & Geffner 2001),
just finding some plan for these domains seems a goal that
is ambitious enough at the moment.

Last, we will see in the following sections that the addi-
tion of numerical features to the representation language is
already sufficient to witness a sharp increase in the hardness
of the planning task. Thus, we feel no immediate need to
investigate even harder planning tasks.

The rest of this paper is structured as follows: In the fol-
lowing two sections, we introduce a formal notion of plan-
ning with numerical state variables and a convenient way
of specifying restrictions to the domain definition language.
After that, we prove some undecidability and decidability
results for the general case and restrictions thereof. Finally,
we discuss the implications of our analysis, have a look at
related work, and conclude.

Planning with Numbers
To get started, we must introduce a notion of planning with
numerical state variables. Our planning formalisms are
based on propositional STRIPS, enhanced with numerical
preconditions, numerical goal conditions, and numerical ef-
fects. We will look into a variety of different planning for-
malisms, each sharing the same basic propositional planning
properties, but differing in what kind of numerical features
they exhibit. For that reason, we will identify planning for-
malisms with their numerical features.

Definition 1 Planning formalism
A planning formalism is a triple F = (G,P, E), where
G,P, E ⊆

⋃
n≥1(Qn → Q). The three components ofF

are called itsnumerical goal condition functions, numeri-
cal (operator) precondition functions, andnumerical effect
functions, respectively.

The sets of functions that define a planning formalism
characterize the calculations that are allowed to be part of
a condition or effect evaluation. To see how this works, we
first need some auxiliary definitions.

Definition 2 Some terminology
For the rest of this definition, letVP andVN be disjoint fi-
nite sets calledpropositional state variablesandnumerical
state variables, respectively.

The set ofstates(of (VP , VN)) is defined as
S = { (α, β) | α : VP → {⊥,>}, β : VN → Q }.

A propositional condition is given by a propositional
variable v ∈ VP . It is written asv = >. It is satisfied
by state(α, β) iff α(v) = >.

For a set of rational functions (in one or more variables)
C, a numerical conditionoverC is given by ann-ary func-
tion f ∈ C, n numerical state variablesv1, . . . , vn ∈ VN
and a relational operatorrelop ∈ {=, 6=, <,≤,≥, >}.
It is written asf(v1, . . . , vn) relop 0, and it is satisfied by
state(α, β) iff f(β(v1), . . . , β(vn)) relop 0.

A propositional effectis given by a propositional variable
v ∈ VP and a truth valuet ∈ {>,⊥}.
It is written asv ← t andv is called itsaffected variable.

For a set of rational functions (in one or more variables)
E , a numerical effectoverE is given by ann-ary function

f ∈ E andn numerical state variablesv1, . . . , vn ∈ VN .
It is written asv1 ← f(v1, . . . , vn) and v1 is its affected
variable.

An operatorover sets of rational functionsC andE is a
pair (Pre,Eff), wherePre is a finite set of propositional
conditions and numerical conditions overC and Eff is a
finite set of propositional effects and numerical effects over
E such that different effects have different affected variables.

This is all we need to define planning tasks:

Definition 3 Planning task
A planning taskover a planning formalismF = (G,P, E)
is a 5-tupleT = (VP , VN , Init ,Goal ,Ops), such thatInit
is a state,Goal is a finite set of conditions overG, andOps is
a finite set of operators overP andE , withVP andVN being
the underlying state variables (propositional and numerical,
respectively).

Init is called theinitial state, Goal the set ofgoal condi-
tions, andOps theoperator setof T .

The next definition captures the semantics of applying an
operator to a state.

Definition 4 State transition graph
Let T = (VP , VN , Init ,Goal ,Ops) be a planning task
over a planning formalism(G,P, E), and letS denote the
set of states ofT . Thestate transition graphof T is de-
fined as the digraph with vertex setS containing the arc
((α, β), (α′, β′)) iff there is an operator(Pre,Eff) ∈ Ops
such that:

(α, β) satisfies all conditions inPre.
For all propositional effectsv ← t ∈ Eff :

α′(v) = t.
For all v ∈ VP that are not affected by any effect inEff :

α′(v) = α(v).
For all numerical effectsv1 ← f(v1, . . . , vn) ∈ Eff :

β′(v1) = f(β(v1), . . . , β(vn)).
For all v ∈ VN that are not affected by any effect inEff :

β′(v) = β(v).
We complete our formal definitions by specifying the

family of decision problems we want to analyze.

Definition 5 PLAN EX-F
For a planning formalismF = (G,P, E), the decision prob-
lemPLAN EX-F is defined as follows:
Given: A planning taskT overF .
Question: In the state transition graph ofT , is there a di-
rected path from the initial state to some state(α, β) satis-
fying all goal conditions?

To provide some examples, PLAN EX-(∅, ∅, ∅) is plan ex-
istence for propositional STRIPS (while therearenumerical
state variables according to our definition, they are not re-
ferred to at all and hence can be ignored), and PLAN EX-
(∅, {id}, {inc, dec}), where id : Q → Q is defined by
x 7→ x, inc : Q → Q is defined byx 7→ x + 1, and
dec : Q → Q is defined byx 7→ x − 1, is the plan exis-
tence problem for a planning formalism where no numerical
conditions can be evaluated as part of the goal test, precon-
ditions can test numerical state variables against zero, and
effects can increase or decrease numerical state variables by
one.

A Hierarchy of Planning Formalisms
Having defined the framework, we now have to answer the
question which planning formalisms we are interested in an-
alyzing. It is evident that we have to pose some restrictions
on the sets of functions that define a planning formalism. If,
for example, we included functions that are not computable,
such as thebusy beaverfunction (Boolos & Jeffrey 1989),
we could easily prove undecidability results without getting
any real insight into the problem of planning with numerical
state variables.

It seems natural to restrict ourselves to functions that can
be expressed by only using the usual arithmetic operators
{+,−, ·, /}, which is in fact the approach of PDDL2.1. For
our purposes, the problem of that approach is that many
functions that make use of the division operator are not total,
because division by zero is not possible.

Partial functions are forbidden in our definition of a plan-
ning formalism for a reason: Consider an operator which
updates the value of state variablev by settingβ′(v) =
β(v)2/β(v). While this looks like a no-op, it is in fact a
hidden preconditionfor the operator, because this calcula-
tion can only be performed ifβ(v) 6= 0. We do not want
operator effects to play the part of operator preconditions
because this is not what they are meant for. Thus, we further
restrict the class of functions we want to analyze by only
allowing divisionby constantsother than zero, rather than
division by values of state variables. This means that the
most general class of functions we will investigate for oper-
ator effects isQ[x1, x2, x3, . . .], the class of multi-variable
polynomials over the rational numbers.

Although there is no immediate need to be equally re-
strictive with regard to the sets of functions allowed for
goal conditions and operator preconditions, we will do so
for a simple reason: A condition that uses division arbitrar-
ily can easily be transformed into a set of polynomial pre-
conditions by multiplying with the squares of all denomina-
tors1 and adding preconditions stating that the denominators
must be different from zero. For example, the precondition
2/(x − 1) + 1 > 0 can be replaced by the two polynomial
preconditions2(x− 1) + (x− 1)2 > 0 andx− 1 6= 0.

We will see that even with these restrictions, the PLAN EX
problem is undecidable, and thus we will investigate more
specialized planning formalisms to identify the boundary of
decidability. Specifically, we will use the following classes
of functions for numerical goal conditions and numerical
preconditions2:
• C∅ = ∅: No numerical conditions.

• C0 = {x 7→ x}: Compare with zero. Numerical condi-
tions are of the typev relop 0.

• Cc = { x 7→ x − c | c ∈ Q }: Compare with a constant.
Numerical conditions are of the typev − c relop 0, for
which we will use the alternative notationv relop c.
1We use squares in order to be sure not to multiply with a neg-

ative number, which is important if the relational operator is from
the set{<,≤,≥, >}.

2We writex 7→ f(x) for the function inQ → Q which maps
x to f(x), and(x1, . . . , xn) 7→ f(x1, . . . , xn) for the function in
Q
n → Q which maps(x1, . . . , xn) to f(x1, . . . , xn).

• C= = {(x1, x2) 7→ x1 − x2}: Compare with another
numerical state variable. Numerical conditions are of the
typev1−v2 relop 0, for which we will use the alternative
notationv1 relop v2.

• Cp = Q[x]: Compare a polynomial of a state variable with
zero. Numerical conditions are of the typep(v) relop 0,
wherep is a polynomial.

• Cp+ = Q[x1, x2, x3, . . .]: Compare a polynomial of many
state variables to zero. Numerical conditions are of the
typep(v1, . . . , vn) relop 0, wherep is a polynomial.

C∅ C0 Cc Cp

C= Cp+

Figure 1: Containment for the function classes used in con-
ditions. Arrows indicate subset relations.

For numerical effects, we will investigate the following
classes of functions:

• E∅ = ∅: No numerical effects.

• E=c = { x 7→ c | c ∈ Q }: Assign a constant. Numerical
effects are of the typev ← c.

• E+1 = {x 7→ x+ 1}: Increase by one. Numerical effects
are of the typev ← v + 1.

• E=c
+1 = E=c ∪E+1. Numerical effects are either of the type
v ← c or of the typev ← v + 1.

• E±1 = { x 7→ x + c | c ∈ {−1,+1} }: Increase or
decrease by one. Numerical effects are either of the type
v ← v + 1 or of the typev ← v − 1.

• E=c
±1 = E=c∪E±1. Numerical effects are either of the type
v ← c, or of the typev ← v+1, or of the typev ← v−1.

• E+c = { x 7→ x+ c | c ∈ Q+ }: Add a positive constant.
Numerical effects are of the typev ← v + c for c ∈ Q+.

• E=c
+c = E=c ∪E+c. Numerical effects are either of the type
v ← c for c ∈ Q or of the typev ← v + c for c ∈ Q+.

• E±c = { x 7→ x+ c | c ∈ Q }: Add an arbitrary constant.
Numerical effects are of the typev ← v + c.

• E=c
±c = E=c ∪E±c. Numerical effects are either of the type
v ← c or of the typev ← v + c.

• Ep = Q[x]: Assign a polynomial of the old value. Nu-
merical effects are of the typev ← p(v), wherep is a
polynomial.

• Ep+ = Q[x1, x2, x3, . . .]: Assign a polynomial of the old
values of multiple state variables. Numerical effects are
of the typev1 ← p(v1, . . . , vk), wherep is a polynomial.

With six options each for goal conditions and operator
preconditions and twelve options for operator effects, there
is a total of 432 different planning formalisms that we can
define using combinations of the above classes of functions
(not all of them interesting, of course). The following result
shows that they need not be considered in isolation:

E+c

E∅ E+1 E±c

E±1

E=c
+c

E=c E=c
+1 E=c

±c Ep Ep+

E=c
±1

Figure 2: Containment for the function classes used in ef-
fects. Arrows indicate subset relations.

Proposition 6 Generalization/specialization
For planning formalismsF = (G,P, E), F ′ = (G′,P ′, E ′)
satisfyingG ⊆ G′,P ⊆ P ′, andE ⊆ E ′, the following holds:
PLAN EX-F ≤ PLAN EX-F ′.

This is immediately obvious because if these containment
conditions hold, the one decision problem is just a special
case of the other one, and the identity function can be used as
a membership-preserving mapping. This proposition makes
it worthwhile to look at the containment graphs for the func-
tion classes we have defined. They are illustrated in Figure
1 for the conditions and Figure 2 for the effects.

Undecidability Results
We have now finished our preparations and can start proving
results. In this section, we prove undecidability for five of
the planning formalisms introduced. Together with Propo-
sition 6, this allows us to conclude that for 258 of the 432
different variants of planning with numbers, complete algo-
rithms for plan generation cannot be found. The remaining
174 variants will then be analyzed in the following section.

Our first result shows that general goals, with individual
goal conditions referring to polynomials of multiple state
variables, lead to undecidability even if no numerical op-
erator preconditions and only a very weak type of numerical
effects are present. The proof is based on the decision prob-
lem DIOPHANTN0 , which asks if a given Diophantine equa-
tion (polynomial in multiple variables) has a solution in the
natural numbers. This problem is known to be undecidable
(Cutland 1980).3

Theorem 7 PLAN EX-(Cp+, C∅, E+1) is undecidable.
Proof: Let p ∈ Q[x1, . . . , xn] be a polynomial. The equa-
tion p(x1, . . . , xn) = 0 has a solution in the natural numbers
iff the planning taskT described below is solvable:
T = (VP , VN , Init ,Goal ,Ops), where

VP = ∅,
VN = {v1, . . . , vn},

3The reference only gives a proof of undecidability for solutions
in the integersrather than in the natural numbers, but it is easy to
see thatp(x1, . . . , xn) = 0 has an integer solution if and only if
one of the polynomials that can be obtained fromp by substitut-
ing some of the variablesxi by −xi has a solution in the natural
numbers, providing a Turing reduction.

Init = (∅, {(v1, 0), . . . , (vn, 0)}),
Goal = {p(v1, . . . , vn) = 0}, and
Ops = { (∅, {vi ← vi + 1}) | i ∈ {1, . . . , n} }.

This is not hard to see: If(m1, . . . ,mn) is a solution top,
then applying the operator affectingv1 m1 times, applying
the operator affectingv2 m2 times, and so on, results in a
plan satisfying the goal. On the other hand, the values of the
state variables at the end of the execution of any plan that
solves the task form a solution to the Diophantine equation.

It is evident that this transformation is computable and
that the resulting planning task obeys the constraints of
the planning formalism. Thus, DIOPHANTN0≤ PLAN EX-
(Cp+, C∅, E+1), proving the theorem.

Note that the planning tasks constructed in the proof even
obey some further constraints: There are no operator pre-
conditions whatsoever, there is only one goal condition, and
there is only one effect per operator. This emphasizes the
fact that goal conditions referring to multiple numerical state
variables are indeed a great challenge.

Corresponding results could be shown for multi-variable
polynomials in the preconditions rather than the goal, or for
multi-variable polynomials in the numerical effects and tests
against 0 as the only valid goal conditions, with only a few
adjustments to the proof. However, we do not provide these
proofs since the following theorems already entail those un-
decidability results.

While the previous result is not too limiting – polyno-
mials in multiple variables are quite powerful mathematical
objects and thus it does not seem unreasonable to disallow
them –, the following result uncovers more severe restric-
tions. But first we have to introduce the decision problem
that the reduction is based on.

Definition 8 01-MPCP
Given: A modified PCP (MPCP) over the alphabet{0, 1},
i. e. non-empty wordsa1, . . . , an, b1, . . . , bn over{0, 1}.
Question: Is there a solution for the MPCP, i. e. a se-
quence of indicesi1, . . . , im such that the concatenation of
the wordsai1 , . . . ,aim equals the concatenation of the words
bi1 , . . . ,bim , and such thati1 = 1?

This problem is undecidable, even ifn is fixed to be 7
(Matiyasevich & Senizerguez 1996), a special case we de-
note as 01-MPCP[7].

Theorem 9 PLAN EX-(C=, C∅, Ep) is undecidable.
Proof: Let ((a1, b1), . . . , (a7, b7)) be a binary MPCP. We
assume thata1 andb1 start with the same digit (otherwise
the problem is trivially unsolvable and can be mapped to a
trivially unsolvable planning task), and that this digit is 1
(otherwise 0 and 1 are flipped in all words). We write#w to
denote the number that has the wordw ∈ {0, 1}∗ as its bi-
nary notation, e. g.#110 equals 6. The MPCP can be solved
iff the planning taskT described below has a solution:
T = (VP , VN , Init ,Goal ,Ops), where

VP = ∅,
VN = {a, b},
Init = (∅, {(a,#a1), (b,#b1)}),
Goal = {a = b}, and

Ops = { opi | i ∈ {1, . . . , 7} }, where
opi = (∅, {a← 2|ai|a+ #ai, b← 2|bi|b+ #bi}).

Again, it is easy to see that this transformation is a com-
putable function and that it maps to a planning instance sat-
isfying the requirements for the chosen planning formalism
(note that2|ai| and2|bi| areconstants, asai andbi arenot
state variables).

To see that the mapping is solution-preserving, observe
that after applying an operator sequenceopi2 , . . . ,opim for
ij ∈ {1, . . . , 7} to the initial state, the state variablesa and
b, written down as binary numbers, equal the concatenation
of ai1 , . . . , aim andbi1 , . . . , bim , respectively, fori1 = 1.

Thus, if i1, . . . , im is a solution to the MPCP, then apply-
ing opi2 , . . . , opim , in sequence, to the initial state solves
the planning task, and vice versa.

This shows 01-MPCP[7]≤ PLAN EX-(C=, C∅, Ep), prov-
ing the theorem.

This result is complemented by the following:

Theorem 10 PLAN EX-(C0, C∅, Ep) is undecidable.
Proof: In this case, we only need to slightly adjust the map-
ping from the previous proof to accommodate for the differ-
ent type of goal. We only describe the changes to the pre-
vious mapping. First, we introduce two propositional vari-
ables,Work , with an initial value of>, andFinish, with an
initial value of⊥. The goal is adjusted to requirea andb to
both have values of 0, rather than just be equal.

We makeWork = > a precondition of each of the oper-
atorsopi, i ∈ {1, . . . , 7}, and introduce two new operators,
opS = ({Work = >}, {Work ← ⊥,Finish ← >}) and
opD = ({Finish = >}, {a← a− 1, b← b− 1}).

It is not hard to see that this is again a solution-preserving
reduction. If the MPCP is solvable, then applying a se-
quence of operators over{op1, . . . , op7} leads to equal val-
ues fora andb. Then,opS can be applied once andopD a
number of times until both values are 0, meeting the goal.
On the other hand, it is easy to see that valid plans can be
transformed into MPCP solutions in the same way as in the
previous proof if the trailing instances ofopS andopD are
removed.

Thus, 01-MPCP[7]≤ PLAN EX-(C0, C∅, Ep), proving the
theorem.

Similar results hold for preconditions (rather than goal
conditions) fromC= andC0, but again, those are entailed
by results to come. Note from the two proofs that the results
still hold if only polynomials of degree 1 are allowed in nu-
merical effects. This basically shows that from the effect
function sets in our hierarchy, everything that is beyond as-
signment, addition and subtraction of constants is too hard,
even for the most simple types of pre- and goal conditions.
In fact, the proof of Theorem 9 even shows undecidability
for the very restricted case of no preconditions, only seven
operators, and only two state variables, if polynomials of
degree 1 are allowed for effects.

For the last two results in this section, we first have to
define abacus programs.

Definition 11 Abacus program
An abacus programis a 5-tuple(V,L, l0, lH , P), whereV
andL are disjoint finite sets calledvariablesand labels, re-
spectively,l0 ∈ L is called theinitial label, lH ∈ L is called
thehalt label, andP : L \ {lH} → CV,L is called thepro-
gram. CV,L is defined as follows:
CV,L = { INC v;→ l | v ∈ V, l ∈ L }

∪ { DEC v;→ l>, l= | v ∈ V, l>, l= ∈ L }
We cannot afford the space to formally introduce the se-

mantics of abacus programs, so we hope that the following
informal account will suffice.

The variables of the program correspond to registers of a
virtual machine which can hold arbitrary natural numbers.
They are initialized to zero. Initially, the current label isl0.
If at any time the current label islH , execution terminates.
Otherwise, if the current label isl, andP (l) = INC v;→ l′,
the value of variablev is increased by one andl′ becomes
the new current label. IfP (l) = DEC v;→ l>, l=, the value
of variablev is inspected. If it is greater than zero, it is de-
creased by one andl> becomes the current label. Otherwise,
it is not changed andl= becomes the current label. The pro-
cess is repeated with the new current label.

Abacus machines are as powerful as Turing Machines
(Boolos & Jeffrey 1989), which implies that it is algorith-
mically impossible to decide whether execution of a given
abacus program stops or not, i. e. the halting problem for
abacus programs, HALT-ABACUS, is undecidable, following
from a well-known theorem about Turing Machines (Boolos
& Jeffrey 1989). This leads to the following result:

Theorem 12 PLAN EX-(C∅, C0, E±1) is undecidable.
Proof: Let (V,L, l0, lH , P) be an abacus program. Then the
planning taskT is defined as follows:
T = (VP , VN , Init ,Goal ,Ops), Init = (αI , βI), where

VP = L,
VN = V ,
αI(l0) = >; αI(l) = ⊥ for all otherl ∈ L,
βI(v) = 0 for all v ∈ V ,
Goal = {lH = >}, and
Ops contains the following operators:
For l, l′, v such thatP (l) = INC v;→ l′:

({l = >}, {l← ⊥, l′ ← >, v ← v + 1}).4
For l, l>, l=, v such thatP (l) = DEC v;→ l>, l=:

({l = >, v > 0}, {l← ⊥, l> ← >, v ← v − 1}) and
({l = >, v = 0}, {l← ⊥, l= ← >}).
To understand the mapping, note that states of the plan-

ning task correspond to execution states of the abacus pro-
gram, where propositional variablel is true iff l is the current
label. It is easy to verify that plans for this task correspond
to execution traces of the abacus program, and that the goal
will be met iff the halt label ever becomes the current label,
i. e. iff the abacus program halts.

Thus, HALT-ABACUS≤ PLAN EX-(C∅, C0, E±1), proving
the theorem.

We consider it interesting to point out that the values of
the numerical state variables in a goal state correspond to

4If l = l′, the propositional effects are omitted. Similar com-
ments apply to the other operators ifl = l> or l = l=, respectively.

the values of the abacus program variables upon termination.
This close correspondence means that we could employ a
planning formalism as a programming language, computing
functions of the natural numbers. The previous proof shows
that, viewed as a programming language, the formalism is
Turing-complete (like abacus programs).

The last result in this section is a minor variation of the
previous theorem.

Theorem 13 PLAN EX-(C∅, C=, E+1) is undecidable.
Proof: We use the same reduction as in the proof of the pre-
ceding theorem, with two changes. First, for each numer-
ical state variablev ∈ V , we introduce another numerical
state variablev−, also initialized to 0. Second, in the oper-
ators corresponding to decrement statements in the abacus
program, the preconditions that comparev against zero are
changed to comparev againstv−, and the effect that de-
creasesv is changed to an effect that increasesv−.

Again, we can verify that plans correspond to abacus pro-
gram execution traces. To understand this, observe that the
value of the abacus program variablev in state(α, β) can be
calculated asβ(v) − β(v−). Thus, following the same rea-
soning as above, HALT-ABACUS≤ PLAN EX-(C∅, C=, E+1),
proving the theorem.

This completes our list of undecidability results. The fol-
lowing section will provide some good news.

Decidability Results
We begin the discussion of decidable planning formalisms in
our numerical planning framework by mentioning two trivial
results.

Theorem 14 PLAN EX-(C∅, C∅, Ep+) is decidable.
Proof: Since the planning formalism does not feature nu-
merical goal conditions or operator preconditions, all nu-
merical state variables and effects can simply be ignored.
The problem therefore reduces to plan existence for propo-
sitional STRIPS, which is known to be decidable, in fact
PSPACE-complete (Bylander 1994).

The preceding result is not of much relevance and was
only included for sake of completeness. The next result is a
bit more interesting, but still obvious.

Theorem 15 PLAN EX-(Cp+, Cp+, E=c) is decidable.
Proof: In this planning formalism, only constants are as-
signed to numerical state variables. Since there is only a
finite setC of such constants in each planning task, no nu-
merical state variable can take on more than|C|+1 different
values, namely its initial value and the values fromC. The
set of states reachable from the initial state is thus finite and
the reachable part of the state transition graph can be explic-
itly constructed and the problem then solved using standard
graph search techniques.

Having considered the trivial cases, we will now look
at more interesting planning formalisms and provide some
simplification results. To do so, we must first introduce a
new term.

Definition 16 Scalable function sets
A set of rational functionsF is calledscalableif for each
q ∈ Q+ and for eachn-ary functionf ∈ F there exists
some functionf[q] ∈ F such that for allx1, . . . , xn ∈ Q,
sgn(f(x1, . . . , xn)) = sgn(f[q](qx1, . . . , qxn)).5

Some examples of scalable function sets:
Cp: (x 7→ p(x))[q] = (x 7→ p(xq))
Cc: (x 7→ x− c)[q] = (x 7→ x− qc)
C=: ((x1, x2) 7→ x1 − x2)[q] = ((x1, x2) 7→ x1 − x2)

Our first simplification result shows that in certain cases
we can restrict the domain of numerical state variables to the
set of integers.

Algorithm 17 Domain simplification
Let T be a planning task over(G,P, E) such thatG and
P are scalable andE ∈ {E=c, E+c, E=c

+c , E±c, E=c
±c}. Then

the following “domain simplification” algorithm translates
T into an equivalent task over(G,P, E) such that all numer-
ical effects are of the typev ← v+ c or v ← c for c ∈ Z and
all initial values of numerical state variables are integers.
Thus, for each reachable state(α, β), the domain ofβ is a
subset ofZ.

LetT = (VP , VN , Init ,Goal ,Ops), Init = (αI , βI).
LetM = { βI(v) | v ∈ VN } ∪

{ c | ∃(Pre,Eff) ∈ Ops ∃v ∈ VN : v ← c ∈ Eff } ∪
{ c | ∃(Pre,Eff) ∈ Ops ∃v ∈ VN : v ← v + c ∈ Eff }.

In words,M contains all the constants that appear in the
initial state and operator effects.

Letd ∈ N+ be a common denominator of allq ∈M .
Replace, for allv ∈ VN , initial valuesβI(v) by dβI(v),

effects of typev ← c by v ← dc, effects of typev ← v + c
by v ← v + dc, and conditionsf(v1, . . . , vn) relop 0 by
f[d](v1, . . . , vn) relop 0.

This satisfies the requirements, which can be shown by
verifying that the function which maps(α, β) to (α, dβ) is a
state isomorphism from the original to the modified planning
task, i.e. initial and goal states are mapped to initial and
goal states, and((α, β), (α′, β′)) is an arc in the original
state transition graph iff((α, dβ), (α′, dβ′)) is an arc in the
modified state transition graph.

Furthermore, the requirements of integrality and staying
within (G,P, E) are met.

Our second simplification result, which is applicable un-
der the same conditions as domain simplification, shows that
in many cases numerical conditions using polynomials can
be replaced by simple comparisons.

Theorem 18 Condition simplification
Let(G,P, E) be a planning formalism such thatG andP are
scalable andE ∈ {E=c, E+c, E=c

+c , E±c, E=c
±c}. Then

PLAN EX-(G,P, E) ≤T PLAN EX-(G′,P ′, E)
for G′ = (G \ Cp) ∪ Cc andP ′ = (P \ Cp) ∪ Cc.
Proof: The following algorithm provides the required Tur-
ing reduction. First, apply domain simplification to the input

5sgn denotes the signum, or sign function. To be strict, we must
also require that there is an algorithm that calculates a representa-
tion of f[q] from representations off andq. However, as the most
general class of functions we are concerned with in this paper are
polynomials, we can safely assume that this is the case.

planning task. We can now assume all numerical state vari-
ables to only take on integral values, which allows to trans-
late conditions of the typep(v) relop 0 for polynomialsp
into disjunctions of simpler conditions of typev relopi ci
in the following way.6

Using standard numerical algorithms, calculate integersl
andu such that for allx0 solvingp(x0) = 0, l < x0 < u (we
ignore the trivial casep(x) = 0 for all x). Because of the
intermediate value theorem and the assumptionβ(v) ∈ Z
for all states(α, β), p(v) relop 0 is equivalent to

(v ≤ l ∧ p(l) relop 0)
∨ (v = l + 1 ∧ p(l + 1) relop 0)
∨ . . .
∨ (v = u− 1 ∧ p(u− 1) relop 0)
∨ (v ≥ u ∧ p(u) relop 0),
where the subexpressionsp(k) relop 0 can be evaluated
statically to simplify the expression to a simple disjunction.

Once this has been done for all polynomial conditions,
operators with disjunctive preconditions can be translated
to sets of standard operators using well-known techniques
(Nebel 1999), and the goal can be translated into a set of
conjunctive goals analogously. We can then use the subrou-
tine for PLAN EX-(G′,P ′, E) to check if at least one of those
conjunctive goals can be satisfied. If so, we succeed, other-
wise we fail.

Our last simplification result shows that in many cases nu-
merical operator preconditions can be compiled away com-
pletely if numerical state variables can only be assigned con-
stants or increased.

Theorem 19 Precondition elimination
Let G be a scalable function set andE ∈ {E=c, E+c, E=c

+c}.
ThenPLAN EX-(G, Cp, E) ≤T PLAN EX-(G, C∅, E).
Proof: Because the previous theorem implies the relation-
ship PLAN EX-(G, Cp, E) ≤T PLAN EX-(G, Cc, E), we only
need to eliminate operator preconditions that compare to
constants. First, we apply domain simplification, obtaining
a taskT = (VP , VN , Init ,Goal ,Ops) over(G, Cc, E), with
Init = (αI , βI). AssumeVN 6= ∅ (otherwise, this is trivial).

Let l = min({ βI(v) | v ∈ VN } ∪
{ c | ∃(Pre,Eff) ∈ Ops ∃v ∈ VN : v ← c ∈ Eff }).

l is the least initial value of any numerical state variable,
or the least value that can be assigned to a state variable,
whichever is lower. Values of numerical state variables will
never be belowl.

Let u = 1 + max{ c | ∃(Pre,Eff) ∈ Ops ∃v ∈ VN
∃relop ∈ {=, 6=, <,≤,≥, >} : v relop c ∈ Pre }

(assuming this set is non-empty, otherwise there is nothing
to do).u is one greater than the highest number that is com-
pared to in any numerical precondition. For evaluating nu-
merical preconditions, values beyondu need not be distin-
guished. Our key idea is to keep track of numerical state
variables having values betweenl andu by using newpropo-

6Note that we need domain simplification: Ifx can take on any
rational value, than conditions likex2 − 2 ≥ 0 cannot be trans-
lated into a finite number of simple comparisons ofx to rational
numbers.

sitional variableseqv,k for eachv ∈ VN , k ∈ {l, . . . , u}7,
whereeqv,k is to be read as “the value ofv is k” with the ex-
ception ofk = u, where it means “the value ofv is at least
u”.

The initial value of these new propositional variables is
defined byαI(eqv,k) = > ↔ βI(v) = k. Their meaning
is maintained throughout operator applications by adjusting
operator definitions as follows:

For operators having an effectv ← c, add the effects
eqv,c ← > andeqv,k ← ⊥ for eachk ∈ {l, . . . , u} \ {c}.

For operators having an effectv ← v + c, for each
old ,new ∈ {l, . . . , u} add aconditionalpropositional ef-
fect IF eqv,old = > THEN eqv,new ← t, wheret = >
if the equationmin(old + c, u) = new is true, andt = ⊥
otherwise.

Once this has been done, each numerical precondition
v relop c can be replaced by the following disjunctive
propositional precondition:∨
{k∈{l,...,u} | k relop c } eqv,k = >.
Finally, disjunctive preconditions and conditional effects

can be compiled away (Nebel 1999).

Now that we have provided a number of simplification re-
sults, it is time we presented the main result of this section.
In the following, letT = (VP , VN , Init ,Goal ,Ops) be a
planning task over the formalismF = (Cc ∪ C=, C∅, E=c

±c).
Note that there are no numerical preconditions in this for-
malism.

Definition 20 Propositional states
For states(α, β), α is called apropositional state.

For propositional statesα andα′, an operator sequence
is called apropositionally acyclic path fromα toα′ if there
is a corresponding path in the state transition graph from
(α, β) to (α′, β′) (for someβ, β′) such that all nodes in the
path have different propositional states.

For propositional statesα, a non-empty operator se-
quence is called apropositional cycle inα if it corresponds
to a path in the state transition graph from(α, β) to (α, β′)
such that all nodes in the path except the start and end node
have different propositional states.

The planning taskT has2|VP | propositional states, a fi-
nite number. Without numerical preconditions, knowing the
propositional state is sufficient for deciding if an operator
sequence is applicable in a given state, and the values of the
numerical state variables are only important for checking
goal conditions. Thus, we will also talk about an operator
or sequence of operators beingapplicable in a propositional
state.

Note that the sets of propositionally acyclic paths and
propositional cycles can be computed by analyzing the (fi-
nite) transition graph of the planning task obtained by delet-
ing all numerical state variables, effects and goal conditions
from T . Only operator sequences of length at most2|VP |
must be taken into account.

7For simplicity of notation, we assumel < u, which can be
enforced by increasingu if needed.

Definition 21 Additive and assigning effects
For operatorso = (Pre,Eff) and numerical state variables
v, theincreaseof v byo is defined as follows:
incr(o, v) = c if v ← v + c ∈ Eff .
incr(o, v) = 0 if no effect inEff affectsv.
incr(o, v) is undefined ifv ← c ∈ Eff for somec ∈ Q.
In the formalismF , exactly one of those conditions must

be true for eacho andv. If the third holds, we say thato has
anassigning effect, otherwise anadditive effectonv.

For calculating the value of a numerical state variablev at
the end of plan execution, we can ignore all plan steps that
precede an operator with an assigning effect onv. We say
thatv becomesactivein that plan after the last assignment to
it, or with the first planning step, if it is never assigned a new
value. Plan steps that cause some state variable to become
active are calledactivating steps. The sequence of activat-
ing steps is called theactivation sequence. It can comprise
no more than|VN | operators, because each numerical state
variable is activated at most once.

The key idea of our algorithm is to “guess” the activation
sequence and flesh out the details of the plan by inserting
subplans between steps of the activation sequence, and be-
fore the first and after the last activating step.

We will use a “guess” operation in the description of the
algorithm a number of times. The algorithm makes a num-
ber of guesses that can be bounded by a computable function
in the size of the instance, and in each case, the set of pos-
sible guesses is finite and can be generated systematically.
Thus, the algorithm can be made deterministic by systemat-
ically exploring the space of possible guesses. If the task is
solvable, there is a sequence of guesses that leads to success.
If it is unsolvable, all possible guesses lead to failure.

Algorithm 22 Cycle counting, part 1
First, guess a natural numberk ∈ {0, . . . , |VN |} and an ac-
tivation sequenceaseq = (o1, . . . , ok) ∈ Opsk. Verify that
aseq is a valid activation sequence by checking that each
oi has an assigning effect on some numerical state variable
that is not assigned to by any operatoroj for j > i.

For eachv ∈ VN , theactivation timeof v is defined as
atime(v) = max { i ∈ {1, . . . , k} | oi assigns tov }, or
0 if this set is empty. Theactivation valueaval(v) of v is
defined as the value thatv is assigned byoatime(v), or the
initial value ofv, if atime(v) = 0.

Next, guess a sequence(α1, . . . , αk) of propositional
states such that eachoi is applicable in states with propo-
sitional partαi. Calculate the propositional statesα′i that
result from applyingoi in a state with propositional partαi.
We assume that eachoi is applied in a state with proposi-
tional partαi. We defineα′0 = αI , the propositional part of
the initial state, and guess another propositional stateαk+1

satisfying all propositional goal conditions, assuming that
this is the propositional part of some reachable goal state.

What remains to be done is finding (possibly empty) op-
erator sequencesπi for i ∈ {0, . . . , k} such that eachπi is
applicable in the propositional stateα′i and results in propo-
sitional stateαi+1 and such thatπ0o1π1o2 . . . πn also satis-
fies the numerical parts of the goal. We call such a sequence
πi thei-th episodeof the plan.

Episodes cannot contain arbitrary operators: In episodei,
operators that have assigning effects for any numerical state
variable with activation time less than or equal toi are for-
bidden, because these state variables are active in that part
of the plan.

If we make sure that these operators are ruled out, we can
safely ignore assigning effects within an episode: All state
variables that are assigned a value will be assigned a dif-
ferent value later, when they become active. So all relevant
numerical effects are additive, which is important because
addition is commutative and associative: We do not need
to know the episode exactly, we only need the information
which operators are executed and how often they are exe-
cuted.

Each operator sequence linking propositional nodesα and
α′ can be partitioned, by iteratively removing propositional
cycles, into a propositionally acyclic path and a number of
propositional cycles. If for each episode we know its acyclic
path and the number of times each propositional cycle in it is
traversed, we can calculate the values of all numerical state
variables in the goal.

The correct acyclic pathsπac
i can be guessed, as there

is only a finite number of candidates. We can also guess the
setsCi of propositional cycles that are traversed at least once
in the episode, as there is only a finite number of possible
choices here, too. As noted above, for bothπac

i andCi, we
must restrict ourselves to sequences containing no operators
with assigning effects that are illegal for thei-th episode.

Not every choice forCi is feasible: We need to check
for each chosen cycle that it touches a propositional node
traversed byπac

i , or a propositional node on some other fea-
sible cycle. This can be done with a fixpoint reachability test
as described in the following part of the algorithm.

Algorithm 22 (continued) Cycle counting, part 2
For all i ∈ {0, . . . , k}, guess a propositionally acyclic path
πac
i fromα′i to αi+1 and a set of propositional cyclesCi.
Verify thatπac

i and the cycles inCi contain no operators
with assigning effects for numerical state variables with ac-
tivation timei or less. Check that the choice forCi is valid
as follows:

First, label all cycles inCi which pass through proposi-
tional nodes onπac

i as feasible. Then, label all cycles inCi
passing through propositional nodes on some feasible cycle
as feasible. Iterate this step until a fixpoint is reached, and
reject the choice ofCi if some cycle inCi has not been la-
beled.

The only important piece of information which is still
lacking is thenumber of timeseach cycle inCi is executed
in episodei. We cannot use a systematic enumeration tech-
nique here, because any positive integer would be a valid
choice and thus, choices cannot be explored exhaustively.
For this reason, we introduce a variablexπi for each cycle
π ∈ Ci, representing the number of times this cycle is tra-
versed in thei-th episode. The planning task is solvable if
and only if there is a function which maps each such vari-
ablexπi to a positive integer such that the final values of
the numerical state variables, which can be computed from
the guessed information and the values of thexπi variables,

match the requirements of the goal.

Algorithm 22 (continued) Cycle counting, part 3
Write down the following linear equations in the rational
variablesgoalv for v ∈ VN and integer variablesxπi for
i ∈ {0, . . . , k} andπ ∈ Ci:8

goalv = aval(v)
+
∑
i∈{atime(v)+1,...,k} incr(oi, v)

+
∑
i∈{atime(v),...,k}

∑
o∈πac

i
incr(o, v)

+
∑
i∈{atime(v),...,k}

∑
π∈Ci

∑
o∈π incr(o, v) · xπi

Additionally, write down the following formulas:
For eachi ∈ {0, . . . , k}, π ∈ Ci: xπi ≥ 1.
For goal conditionsv1 relop v2: goalv1 relop goalv2 .
For goal conditionsv relop c: goalv relop c.
Taking these together, we obtain a mixed integer program

in the variablesgoalv andxπi that has a solution if and only
if the planning task is solvable. A mixed integer program
solver can be used to generate such a solution or prove that
none exists (Bixbyet al.2000).

Putting this algorithm and the preceding results together,
we obtain the following corollary.

Corollary 23 Some decidability results
PLAN EX is decidable for these planning formalisms:
(Cp, C∅, E=c

±c) (Theorem 18 and Algorithm 22)
(C=, C∅, E=c

±c) (Algorithm 22)
(Cp, Cp, E=c

+c) (Theorem 19, Theorem 18 and Algorithm 22)
(C=, Cp, E=c

+c) (Theorem 19 and Algorithm 22)

Combining these four results with the two trivial results
stated at the beginning of the section and the generaliza-
tion/specialization relationships in our framework, we see
that plan existence is decidable for all planning formalisms
that were not covered in the previous section. This com-
pletes our analysis.

Discussion
Let us summarize the results of our analysis. We have de-
fined and investigated a family of decision problems related
to planning with numerical state variables. Many of these
were undecidable, due to the fact that the state space is infi-
nite. The results are repeated in Figure 3.

Type of effects Decidability status
E∅, E=c Always decidable
E+1, E+c, E=c

+1 , E=c
+c Decidable iffG 6= Cp+,

P /∈ {C=, Cp+}
E±1, E±c, E=c

±1 , E=c
±c Decidable iffG 6= Cp+, P = C∅

Ep, Ep+ Decidable iffG = P = C∅

Figure 3: Results for the variants of PLAN EX-(G,P, E) in
the hierarchy.

8We use the notationo ∈ π to traverse the operators in an oper-
ator sequence. This isnot supposed to mean thatπ is viewed as a
set: Operators that appear multiple times inπ mustbe considered
multiple times.

Some of the undecidability results, as mentioned before,
even apply to very restricted special cases, such as a con-
stant number of operators, no operator preconditions, no
propositional state variables, and only two numerical state
variables. Additionally, as can be verified from the proofs
provided, all undecidability results still hold if the set of re-
lational operators is limited to{=, 6=} (rather than the full
set{=, 6=, <,≤,≥, >}).

Our classification approach for planning formalisms is
based on the idea of restricting the type of calculations that
can be performed by the planner. There are other possible
restrictions to facilitate planning. One of them is to assign
lower and upper bounds to each state variable. Operators
that try to set the value of a numerical state variable to some
number which is beyond these bounds can either be disal-
lowed, or increases and decreases can be “capped”. If in
addition to this, differences in the values of state variables
cannot be arbitrarily small (e. g., if the values must be inte-
gers), this immediately leads to a finite state space and hence
decidability.9

On a more practical note, what is the impact of unde-
cidability? Even the most general decision problem in our
framework has the property ofsemi-decidability, because
it is possible to systematically enumerate all operator se-
quences, say in lexicographical order, and check for each
of them whether it solves the task or not. Such an algorithm
would succeed in generating a plan for all solvable tasks. For
tasks that do not have a solution, however, it would not ter-
minate, and the undecidability results we have proved show
that there is no algorithm that can possibly recognizeall un-
solvable planning tasks.

However, even without numerical state variables, many
planning systems do not make an effort to always detect un-
satisfiable goals. This has practical reasons, one of them
being that this kind of result is usually hard to find without
completely exploring the state space. Systematic planning
systems, likeGraphplan (Blum & Furst 1997) or the sym-
bolic breadth-first exploration mode ofMips (Edelkamp &
Helmert 2001), can detect unsolvable tasks with simple ter-
mination criteria, but sacrifice efficiency in doing so, com-
pared to local search approaches that are by design better
suited for finding plans than for proving their non-existence.

We do not think that there is a general answer to the ques-
tion how important it is to be able to reliably detect failure in
planning, but it is evident that the decidability status of the
underlying decision problem is of high relevance to that dis-
cussion: If undecidable formalisms are employed, not being
able to reliably detect unsolvable tasks is a necessary prop-
erty ofanyplanning algorithm.

Related Work
We are not aware of any work in the AI planning litera-
ture that is directly concerned with the decidability issues
that arise when numbers are introduced into a planning for-

9In our framework, bounds lead to decidability of PLAN EX for
all numerical effect function sets exceptEp andEp+. For Ep and
Ep+, bounds do not make a difference. Unfortunately, we do not
have the space to prove this here.

malism. Some interesting decidability and undecidability
results for general cases of STRIPS-style planning can be
found, e. g. in work by Erol et al. (1995), covering problems
that arise when function symbols and/or an infinite num-
ber of constant symbols are introduced into the formalism
(which would correspond to an infinite number of propo-
sitional variables in the terminology of this paper). Other
related problems, such as reachability for hybrid automata,
are investigated in the model checking literature.

Researchers such as Bylander (1994) or Bäckstr̈om and
Nebel (1995) have studied hierarchies of planning for-
malisms similar to the ones in our paper with regard to com-
plexity. In this context, work on compilation schemes for
translating between different planning formalisms should
also be mentioned (Nebel 1999).

As for algorithms for planning with numerical state vari-
ables, a multitude of approaches have been proposed. Only
recently, Do and Kambhampati have presented a planning
system using an action representation which they describe as
“influenced by the PDDL+ language proposal”, and which
is at least as general as the most general planning formalism
considered in this paper (2001).

Haslum and Geffner have recently presented an optimal
planning system capable of dealing with some of the features
we have investigated in this paper (2001). Apart from their
model of time and concurrency, which has no counterpart
in our formalism, their planning formalism most closely re-
sembles(C∅, Cc, E±c), which is undecidable. However, they
say that they have implemented the algorithm “with the re-
striction that consumable resources are monotonically de-
creasing”, which relates to the decidable(C∅, Cc, E+c).

Outlook
As is usually the case in research, in the process of answer-
ing a question we also leave some open ends, issues that
might or even should be addressed in the future. In this pa-
per, we have only cared about decidability – can the deci-
sion problem be solved? We were able to say “yes” in a few
non-trivial cases. For these, a natural next question would
be “How efficiently can we solve it?”, i. e. computational
complexity should be analyzed.

We also provided some translations between different
planning formalisms, or translations to some “normal form”
(e. g., only using integers) within the same formalism. This
is an area that could be expanded, proving domain compila-
tion results like the ones obtained for propositional planning
by Nebel (1999). Here, we only required our translations
to be computable, but for practical applications in planning
systems, a polynomial translation is much more useful.

When more PDDL2.1 planning domains involving num-
bers become available, it will be interesting to investigate to
what extent – and how easily – they can be represented in
the decidable planning formalisms we have studied.

Finally, recalling our introductory comments, the moti-
vation for conducting this analysis was the advent of the
PDDL2.1 planning formalism. As we mentioned in the be-
ginning, PDDL2.1 is not just planning with numbers, and
although we gave good reasons why numerical state vari-

ables were foremost on our agenda, there are some interest-
ing questions around the new features of PDDL2.1 in the
area of concurrent planning that have not been covered yet.

References
Bäckstr̈om, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence11(4):625–
655.
Bixby, R.; Fenelon, M.; Gu, Z.; Rothberg, E.; and Wun-
derling, R. 2000. MIP: Theory and practice – Closing the
gap. In Powell, M. J. D., and Scholtes, S., eds.,System
Modelling and Optimization: Methods, Theory and Appli-
cations, volume 174 ofInternational Federation for Infor-
mation Processing. Kluwer Academic Press. 19–49.
Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis.Artificial Intelligence90(1–2):281–
300.
Boolos, G. S., and Jeffrey, R. C. 1989.Computability and
Logic. Cambridge University Press.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence
69(1–2):165–204.
Cesta, A., and Borrajo, D., eds. 2001.Pre-proceedings of
the Sixth European Conference on Planning (ECP’01).
Cutland, N. J. 1980.Computability — An Introduction to
Recursive Function Theory. Cambridge University Press.
Do, M. B., and Kambhampati, S. 2001. Sapa: A domain-
independent heuristic metric temporal planner. In Cesta
and Borrajo (2001), 109–120.
Doherty, P., and Kvarnström, J. 2001. TALplanner: A
temporal logic based planner.AI Magazine22(3):95–102.
Edelkamp, S., and Helmert, M. 2001. The model check-
ing integrated planning system (MIPS).AI Magazine
22(3):67–71.
Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995. Com-
plexity, decidability and undecidability results for domain-
independent planning.Artificial Intelligence76(1–2):65–
88.
Fox, M., and Long, D. 2001. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Avail-
able at http://www.dur.ac.uk/d.p.long/competition.html.
Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources. In Cesta and Borrajo (2001), 121–132.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:253–302.
Matiyasevich, Y., and Senizerguez, G. 1996. Decision
problems for semi-Thue systems with a few rules. InPro-
ceedings of the Eleventh Annual Symposium on Logic in
Computer Science (LICS ’96), 523–531.
Nebel, B. 1999. What is the expressive power of disjunc-
tive preconditions? In Fox, M., and Biundo, S., eds.,Re-
cent Advances in AI Planning. 5th European Conference on
Planning (ECP’99), volume 1809 ofLecture Notes in Arti-
ficial Intelligence, 294–307. New York: Springer-Verlag.

