
Towards an Integrated Robot with Multiple Cognitive Functions

Nick Hawes∗ and Aaron Sloman and Jeremy Wyatt and Michael Zillich
School of Computer Science, University of Birmingham, UK

Henrik Jacobsson and Geert-Jan M. Kruijff

Language Technology Lab, DFKI GmbH, Germany

Michael Brenner

Albert-Ludwigs-University, Germany

Gregor Berginc and Danijel Skočaj

University of Ljubljana, Slovenia

Abstract

We present integration mechanisms for combining het-
erogeneous components in a situated information pro-
cessing system, illustrated by a cognitive robot able to
collaborate with a human and display some understand-
ing of its surroundings. These mechanisms include an
architectural schema that encourages parallel and incre-
mental information processing, and a method for bind-
ing information from distinct representations that when
faced with rapid change in the world can maintain a co-
herent, though distributed, view of it. Provisional re-
sults are demonstrated in a robot combining vision, ma-
nipulation, language, planning and reasoning capabili-
ties interacting with a human and manipulable objects.

Introduction

We aim to understand how to build ‘cognitive’ robots, partly
in order to eventually test theories about how humans work.
Such robots should understand their environment and col-
laborate with humans in varied situations, employing many
competences that are recombined as needed. Resulting
behaviour must be extensible, purposive and flexible, i.e.
achieving goals despite changing constraints. It must be ro-
bust in the face of imperfect sensors and effectors, able to
modulate behaviour dynamically, and to learn without re-
programming, among other things. To meet this formidable
combination of challenges we must answer many difficult
questions about how systems can be synthesised from in-
teracting, changeable, components. This paper reports on
progress towards meeting such requirements, within a range
of architectures for which we have implemented tools.

From analysis of detailed scenarios we derive require-
ments that lead to design principles for architectures that can
be expressed in terms of architectural schemata. Schemata
define a (large) design space containing many specific de-
signs: the architectural instantiations. A schema provides
a set of constraints on this space. The next section de-
scribes a scenario, and the requirements and design prin-
ciples that arise from it, which are then expressed in a

∗Corresponding author: n.a.hawes@cs.bham.ac.uk
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

schema, the CoSy Architecture Schema (CAS), and an as-
sociated software toolkit (CAST, the CAS Toolkit) that al-
lows rapid prototyping of CAS instantiations. Some of the
issues that arise are described in terms of a pair of related
systems that perform tasks requiring human-robot collabo-
ration: cross-modal learning of object qualities, and linguis-
tically initiated manipulation. The systems integrate: vision,
language understanding and generation, spatial reasoning,
learning, planning and manipulation – using tens of individ-
ual task-specific modules running concurrently in real time.
Problems addressed concern incremental processing, flow of
information, linking of representations across components,
cross-modal processing and processing control.

Background and Approach

We start from film script-like scenario descriptions of a
collaborative table-top manipulation scenario in which the
robot asks and answers questions about the scene, performs
requested actions, and learns names and qualities of ob-
jects. Behavioural competences include recognising, locat-
ing and manipulating objects; planning action sequences; in-
terpreting and generating natural language; and understand-
ing various (multi-modal) properties such as size, spatial re-
lations and colour. These behaviours must be performed in
real-time in a contextually-appropriate manner. The robot
should behave sensibly when interrupted, when its actions
fail, when it lacks sufficient information and when it must
coordinate different actions (e.g. speaking and moving).

Requirements arising from this task apply to many sim-
ilar robot scenarios, including the ability to cope with ex-
ternal change (objects move, utterances occur during ac-
tion); and the need to integrate information from multiple
sources (speech, vision, touch) where related information
from sources arrives asynchronously. For this, the architec-
ture must support many components running concurrently.
Besides these run time requirements there are also design
time requirements. Architectures should make cognitive sys-
tems (relatively) easy to design, using current technologies.
The best available components will often use specialised
representations to facilitate and speed up processing. This
makes integration harder as they may be incompatible with
other representations. So the architecture needs to allow



Figure 1: The CAS Subarchitecture Design Schema.

easy methods for linking modules using different forms of
representation, without excessive run-time overhead.

The Architecture Schema

Analysis of scenarios led to three design requirements: sup-
port for concurrent modular processing, structured manage-
ment of knowledge, and dynamic control of processing.
These are met by the CoSy Architecture Schema (Hawes,
Wyatt, & Sloman 2006). The schema allows a collection of
loosely coupled subarchitectures (SAs). As shown in Fig-
ure 1, each contains a number of processing components
which share information via a working memory (WM), and
a control component called a task manager. Some process-
ing components within an SA are unmanaged and some
managed. Unmanaged components perform relatively sim-
ple processing on data, and thus run constantly, pushing their
results onto the working memory. Managed processes, by
contrast, monitor the changing working memory contents,
and suggest possible processing tasks using the data in the
working memory. As these tasks are typically expensive,
and computational power is limited, tasks are selected on the
basis of current needs of the whole system. The task man-
ager is essentially a set of rules for making such allocations.
Each SA working memory is readable by any component in
any other SA, but is writable only by processes within its
own SA, and by a limited number of other privileged SAs.
Components within privileged SAs can post instructions to
any other SA, allowing top-down goal creation.

If there are several goals in an SA they are mediated by
its task manager. This mixes top-down and data driven pro-
cessing and allows goals to be handled that require coordi-
nation within one SA or across multiple SAs. At one ex-
treme the number of privileged SAs can be limited to one
(centralised coordination), and at the other all SAs can be
privileged (completely decentralised coordination). In our
scenario the preference seems to be for a small number of
specialised, privileged coordination SAs.

An overriding principle in CAS is that processing compo-
nents work concurrently to build up shared representations.
SAs work concurrently on different sub-tasks, and compo-
nents of an SA work on parts of a sub-task. Instantiations of

CAS function as distributed blackboard systems as used, for
example, in Hearsay-II (Erman et al. 1988).

We have designed and built instantiations of CAS that
have a small number of coordinating SAs, and a large num-
ber of components that concurrently refine common repre-
sentations. Control of individual motor systems is not dis-
tributed in our implemented systems although this is per-
fectly possible using our approach. To support our work, the
architecture schema is realised in a software toolkit (CAST)
(Hawes, Zillich, & Wyatt 2007). CAST allows components
written in different languages to be combined into CAS in-
stantiations. Different instantiations can be created without
recompilation or changes to components, allowing function-
ally different systems to be generated quickly, making it pos-
sible to evaluate the influence of the architecture schema on
various instantiations without altering the components of the
architecture.

Cross-Subarchitecture Binding

In order to combine information from different subarchitec-
tures we need to provide a means for accessing informa-
tion from their working memories. When subarchitectures
are interpreting data from different sensors across an in-
tegrated system, they will generate various representations
that reflect the surrounding environment in different ways.
For example, spatial, visual, planning and communication
SAs may each have their own representations of an object.
Allowing each to influence others (e.g. in resolving uncer-
tainty) and allowing information from different SAs to be
combined (e.g. information about things that are seen and
touched) requires the different representations to be bound
together somehow. For example, if a visual SA notices a
green object of unknown type that is within reach, then a
“grab the green book” command processed by a language
SA may be informative since a likely category for the object
can be inferred (“book”). Alternatively, information from a
visual SA’s working memory might be used by the linguistic
SA to determine the referent of the phrase “the green book”.

We have been experimenting with a CAS instantiation
that uses a binding SA which contains a working memory
that mirrors the contents of all SAs that contain informa-
tion about objects1. The binding SA features a component
called a binder that maintains the contents of binding WM
by joining information from different SAs. The binder re-
ceives candidates for binding from other SAs. These can-
didates must be filtered and abstracted with respect to their
source domains to contain information that could be useful
to other SAs (such as colour and type in the previous ex-
ample). The filtering and abstraction is task-dependent and
therefore each SA requires a corresponding binding monitor.
This is a process which is triggered by updates to the WM
and which translates these into binding candidates before
writing them to the binding WM where they will be bound
together by the binder to form instance bindings (represen-
tations that should roughly correspond to the objects in this
case). Monitors should ideally perform intra-modular bind-

1Although we focus on objects in this discussion, binding could
occur between other classes of things, including processes.



ing (Kruijff, Kelleher, & Hawes 2006) in order for the binder
to be relieved of domain-specific reasoning.

To enable other SAs to communicate with the binding SA,
both to generate binding candidates and to use the infor-
mation represented by instance bindings, a shared language
is needed. In our instantiations this language is oriented
around features and relations. The features describe prop-
erties of objects that can be provided by SAs, e.g. colour,
shape, position, etc. The relations describe states that can
exist between two or more objects, e.g. spatial relations.
Some features can be compared with (or be in common with)
features of other modalities in which case a common ground
for evaluating the binding is established. New features and
comparison functions between features can be added if new
SAs are added that support, or require, new features. Bind-
ing candidates and instance bindings are represented in the
binding WM as sets of these features. The feature set can
contain zero, one or more instantiations of values for each
feature. This means that the object description conveyed by
the binding candidates and instance bindings are open-ended
in terms of how much they specify about their referent: ei-
ther the feature is not represented at all, or it is instantiated
with one or more values (e.g. an object may have more than
one colour). To maintain instance bindings, the binder com-
pares the features of newly generated candidates to those of
the existing bindings (using a scoring function). If a clear
match emerges from this process then the new candidate is
bound into the matching instance binding. If no matching
instance binding is found, a new one is created. If more than
one instance binding matches equally well with a new can-
didate, this creates a disambiguation problem. Investigating
this is part of our ongoing work.

Once an instance binding has been created, any compo-
nent in the architecture can use this to access all of the can-
didates bound into it. Moreover, these binding candidates
may in turn refer back to more detailed representations in
their source SAs. The binding SA WM thereby serves as
a provider for proxies between all SAs in the system. This
proxy service, based on a shared feature language, greatly
simplifies the problem of exchanging information between
SAs that use heterogeneous representations.

Instantiations and Empirical Work

Our integration mechanisms have been tested by incre-
mentally implementing two systems using CAST: a cross
modal learning instantiation (CLI), and a linguistically-
driven manipulator instantiation (LMI). The CLI (Figure 2,
dark lines) combines SAs for cross-modal language inter-
pretation and generation (Kruijff, Kelleher, & Hawes 2006)
and visual property learning (Skočaj et al. 2007) to produce
a system that can learn and describe object properties in di-
alogue with a tutor. The LMI (Figure 2, light and dark lines)
extends the CLI with SAs for planning, spatial reasoning and
manipulation (Brenner et al. 2007) to produce a system that
executes manipulation commands that refer to objects using
the previously learnt visual properties. In these instantia-
tions information exchange between the subarchitectures is
mediated by the binding mechanism discussed previously.

Figure 2: The instantiation designs.

A Red object placed on table.
B Tutor (T): “This is a red thing.”
C Red object replaced with blue object.
D Robot (R): “Is that red?”
E T: “No, this is a blue thing.”
F Blue object replaced with red object.
G Blue object placed to right of red object.
H Blue object placed to left of red object.
I T: “Put the blue things to the left of the red thing.”
J R moves right hand blue object to left of red object.

Figure 3: Events from the instantiation run

In the CLI the subarchitectures are as follows: the com-
munication SA (CSA) containing components for speech
recognition, dialogue interpretation and production, and
speech synthesis; the vision SA (VSA) containing compo-
nents for change detection, segmentation, and visual prop-
erty learning (three components); the binding SA (BSA)
containing components for generating visual and linguistic
binding candidates, and the binder; the spatial SA (SSA)
containing components for monitoring instance bindings
and representing the current scene; and the control subar-
chitecture containing components for motive generation and
management. In the LMI the SSA is extended with com-
ponents for adding spatial relationships to the current scene,
and with these additional subarchitectures: the planning sub-
architecture containing components for planning, problem
generation, and execution monitoring; and the manipula-
tion subarchitecture containing a component for translating
planned actions into behaviour via visual servoing.

The architecture schema and binding mechanisms can be
illustrated with an extended example from the combined
CLI and LMI system. In this example the tutor teaches the
colours of objects one by one, before giving a manipula-
tion command (see Figure 3). The implemented system is
capable of discriminating many more colours and other vi-
sual properties, and giving verbal descriptions of the scene,



Figure 4: How processing occurs across SAs in the example. The lower diagram contains a detailed view of the circled area
from the upper one. Grey areas represent processing. Black lines on the lower diagram represent data exchanged via WMs.

but because of space we consider only this example. The ac-
count is organised by the integration mechanisms employed.
These mechanisms are the collaborative refinement of com-
mon representations, cross-modal binding based on known
mappings between ontologies, top down and bottom up goal
raising, learning mappings between ontologies, lazy bind-
ing and mediation between qualitative and quantitative rep-
resentations. None of these is enforced by the schema, but
they arise naturally from the decision to employ a variety of
representations in separate subarchitectures. All are general,
none rely on properties of the example. To aid the reader we
annotate the text with markers for the events A to J described
in Figure 3. How subarchitecture activity varies with these
events can be seen in Figure 4. Although the instantiation
is usually distributed across a number of machines, this data
was generated by running it on a single machine. This deci-
sion was taken to ease the process of collecting data. With a
distributed setup processes complete quicker, but the pattern
of information processing remains the same.

Collaborative Refinement of Representations

A subarchitecture couples the results of processing via the
types of objects can that can reside in the working mem-
ory. For example, in the visual WM (VWM) there are
two main types of data object, corresponding to regions-
of-interest (ROIs) and proto-objects (POs). Each is struc-
tured and typed. Visual components refine knowledge about
either by overwriting their fields. Components can refine
different fields of the same data-object in parallel. If the
data-objects are well chosen they provide a degree of bind-

ing of the results of processing. When, for example, an ob-
ject is placed in front of the robot (events A, C, F, G, H)
the visual change detection component is triggered, causing
a scene changed fact to be added to the VWM. The appear-
ance of this fact causes the segmentor component to run on
the changed scene, which results in a new ROI being gener-
ated along with a related PO. Once these data structures are
in working memory other components start to process them
in parallel (as seen in Figure 4). In the visual SA the prop-
erty learning components extract features from the ROI and
these are added into the ROI data structure. Their presence
in turn triggers the recogniser, which adds any recognised
property data — such as the colour and shape. When objects
are added in quick succession (events F,G,H) each triggers a
similar sequence. New objects are therefore processed con-
currently with old ones. The only current restriction is that
each component processes one object at a time.

Cross Modal Binding

Previously we described the cross-subarchitecture binding
mechanism we use in the instantiations. This mechanism
does not bind directly between pairs of subarchitectures, but
via a shared feature-based language. The important point
here is that it relies on mappings between the ontologies for
different subarchitectures, e.g. between the binding features
used for the visual entity red and the name red. This shared
language has a mapping to each different SA representation.
Typically, this mapping would be defined by the system de-
signer, an approach taken in our system for most of the map-
pings. We would like, however, for the system to be able to



acquire such mappings, and this is what the learning part of
the example interaction demonstrates. Later on, when refer-
ences are made to objects (e.g. in event I), the binder works
using the mappings learnt previously between the ontologies
(in events A to E) to carry out the binding.

Learning Mappings Between Ontologies

In the first learning case (events A and B) the tutor puts down
a red object. As no colours have been learnt yet no visual
property information is added to the ROI. When the tutor
says “this is a red thing” the speech recognition component
adds the speech string into the CSA where it is processed by
the parser and the dialogue interpretation component. The
result is a structure in the communication WM describing
the teaching instruction. This triggers the coordination SA
to generate and act on a motive to learn the visual properties
of the thing referred to by “this”. Since there is no mapping
between ontologies to guide binding, the robot assumes that
the object the human is teaching it about is the most recent
one to appear. The motive manager in the coordination SA
uses this binding to get a reference to the associated PO and
ROI. It now pushes a goal down to the VSA by posting a
visual learning instruction together with information about
the properties of the object. This is an example of top down
goal creation. A description of an object for learning may
contain several different types of properties (“a small round
red thing”). When the learning goal is written to the VWM
the visual property learning component is triggered and up-
dates its internal representations. The learning algorithm we
use is able to learn quite general correlations between ele-
ments in two ontologies (Skočaj et al. 2007). The colour
information is translated from the linguistic representation
(as a structured logical form) into the visual representation
(a colour index) using the binding feature language.

When the red object is used for learning (event C) the
visual system now guesses that the object is blue, due to
generalisation from the previous case. It doesn’t regard the
match as reliable, so a query is raised by writing a structure
containing references to the PO and the colour blue into the
VWM. In a reverse of the previous interaction this causes a
clarification dialogue in which the robot says “is this blue?”,
to which the tutor replies “no, this is red”. This demonstrates
how the mix of top down and bottom up control gives the
robot the ability to take initiative in the dialogue.

Lazy Binding and Mediation

The last stages of the example concern the planning and ex-
ecution of a manipulation. This demonstrates our approach
to binding through planning, and the need to mediate be-
tween qualitative and quantitative representations of space.
After the first blue object is put down (event G), a second
blue object is placed to the left of the red object (event H).
Following this the human commands the robot to “put the
blue things to the left of the red thing” (event I). The CSA
interprets the utterance as a command and, consequently,
the coordination SA sends it to the planning SA. The com-
mand is translated to a planning goal formula (Brenner et al.
2007). One particularly important aspect of this approach
is that referential constraints used in the command can be

kept unbound in the goal formula and will be resolved by
the planner in a context-dependent manner. This is particu-
larly important for resolving referential expressions involv-
ing plurals and binding constraints, e.g. “the blue things
near the green thing”, that may not be bound completely be-
fore starting the execution of a plan. If, for example, during
plan execution a new blue object is perceived, the monitor-
ing component of the planning SA will trigger re-planning
in which the planner will resolve the same goal formula dif-
ferently, this time moving the newly detected object too. We
refer to this process as lazy binding.

To convert the world state into an initial state for planning
the problem generation component in the planning SA pulls
a spatial description of the current scene from the spatial
SA WM. Similar information about visual features is pulled
from the visual SA (via the binding SA) and included in the
initial state. These facts about objects and their relations are
then used by the planner to generate a plan that satisfies the
goal formula, resolving the referential constraints on-the-fly.
In our example, the planner correctly detects which objects
are to be moved and which target positions satisfy the de-
scription “to the left of the red thing”.

This interaction demonstrates how the binder mediates the
exchange of information between components. In this case,
it provides the planning SA with the necessary qualitative
representation of objects and their relations, but allows it to
ignore the underlying quantitative representations used by
the SAs the information comes from. This is also illustrated
by the information flow when a plan is executed. In the im-
plemented system when the plan is successfully created the
coordination SA passes it on to the manipulation subarchi-
tecture. Each object in the plan is represented as a refer-
ence to an instance binding, which can be used to access the
binding candidate from the visual SA which in turn can be
used to access detailed information about the object’s pose
in the world. The robot must then pick a particular loca-
tion in the world that satisfies the qualitative goal position
“left of”. This is achieved by inverting the mapping from
a quantitative to qualitative spatial representation. We refer
to this as the process of mediating between qualitative and
quantitative representations of space. It’s this quantitative
information that is used by the manipulation SA when plans
are executed, but it’s precisely this kind of detailed, volatile
information that the planning system must be isolated from
when planning about object positions.

Discussion and Conclusion
We can compare the presented schema to related work on
architectures for modelling human cognition and to archi-
tectures for robotic systems. It is also beneficial to consider
what features are commonly required by robotic integrated
systems such as the ones we ultimately wish to produce.

One of the crucial differences between the CoSy Archi-
tecture Schema and architectures for modelling human cog-
nition such as ACT-R (Anderson et al. 2004), Soar (Laird,
Newell, & Rosenbloom 1987) and ICARUS (Langley &
Choi 2006) is that these commit to unified representations
for all information, whereas CAS permits the specialised
representations typically required by robotic systems. This



is related to the fact that processing components in cogni-
tive modelling architectures are typically logical rule sys-
tems, whereas CAS components can be arbitrary processing
modules. Architectures for modelling human cognition also
typically include mechanisms for learning (e.g. chunking in
Soar and spreading activation in ACT-R). Such mechanisms
are not present in CAS at the schema level, but could be de-
signed into an instantiation.

A key feature of CAS is that it allows components to be
active in parallel. An architecture that ran the components
from the lower half of Figure 4 in serial would require ap-
proximately four seconds longer to process the data. This
is simply a result of parallelism, but an architecture must
support parallelism in terms of control and the concurrent
access to information. Concurrently active components are
common in existing robotic systems (e.g. (Mavridis & Roy
2006)), but support for them is missing from the cogni-
tive modelling architectures mentioned previously. Paral-
lelism is usually present at a low level in robotic architec-
tures designed to operate reactively on their world (e.g. the
Subsumption architecture (Brooks 1986)). On top of this
many robotic tier-based architectures build scheduling ap-
paratus to generate goal directed behaviour (Gat 1997).
Such scheduling systems are not explicitly required by our
schema, but the task manager plays a similar role by pro-
viding control over processing components. Cognitive mod-
elling architectures typically do not support parallel com-
ponents, but rather feature serial rule execution (although
Minsky’s work is an exception (Minsky 1987)).

Although we are aware that our work overlaps and con-
trasts in various interesting ways with many other robotic
and integrated system projects, some with primarily engi-
neering goals, and some aiming towards modelling human
and animal capabilities, space constraints have forced us to
leave detailed comparisons to be addressed in future papers.
Although our work can be superficially compared to that of
Mavridis & Roy (2006), McGuire et. al (2002) and Bauck-
hage et. al (2001), the crucial difference is that whereas these
systems have been created to perform in a limited task do-
main, our instantiations have been designed and built to sup-
port what we call “scaling out” (as opposed to “scaling up”):
new components have access to data produced by existing
components via working memories, the binding mechanism
is able to accommodate new information and representations
into its feature set, and additional functionality provided by
new components allows new tasks and problems to be dealt
with, using the same architectural framework.

In summary we have presented an architectural schema
and a number of novel integration mechanisms, and shown
how they can support flexible interactions between a human
and robot in a tabletop domain with objects. We have shown
how the integrated system is able to scale itself out (the on-
tology learning works for tens of object properties) and ar-
gued that it is the innovative integration mechanisms and the
schema as a whole that have enabled this flexibility.

Acknowledgements
This work was supported by the EU FP6 IST Cognitive Sys-
tems Integrated Project “CoSy” FP6-004250-IP.

References

Anderson, J. R.; Bothell, D.; Byrne, M. D.; Douglass, S.;
Lebiere, C.; and Qin, Y. 2004. An integrated theory of the
mind. Psychological Review 111(4):1036–1060.

Bauckhage, C.; Fink, G. A.; Fritsch, J.; Kummert, F.;
Lömker, F.; Sagerer, G.; and Wachsmuth, S. 2001. An
Integrated System for Cooperative Man-Machine Interac-
tion. In IEEE Int. Symp. on Comp. Int. in Robotics and
Automation, 328–333.

Brenner, M.; Hawes, N.; Kelleher, J.; and Wyatt, J. 2007.
Mediating between qualitative and quantitative represen-
tations for task-orientated human-robot interaction. In
Proc. IJCAI ’07.

Brooks, R. A. 1986. A robust layered control system for a
mobile robot. IEEE J. of Robot. and Automation 2:14–23.

Erman, L.; Hayes-Roth, F.; Lesser, V.; and Reddy, D. 1988.
The HEARSAY-II Speech Understanding System: Inte-
grating Knowledge to Resolve Uncertainty. Blackboard
Systems 31–86.

Gat, E. 1997. On three-layer architectures. In Kortenkamp,
D.; Bonnasso, R. P.; and Murphy, R., eds., Artificial Intel-
ligence and Mobile Robots.

Hawes, N.; Wyatt, J.; and Sloman, A. 2006. An archi-
tecture schema for embodied cognitive systems. Technical
Report CSR-06-12, Uni. of Birmingham, School of Com-
puter Science.

Hawes, N.; Zillich, M.; and Wyatt, J. 2007. BALT &
CAST: Middleware for cognitive robotics. Technical Re-
port CSR-07-1, Uni. of Birmingham, School of Computer
Science.

Kruijff, G.-J.; Kelleher, J.; and Hawes, N. 2006. Infor-
mation fusion for visual reference resolution in dynamic
situated dialogue. In Andre, E.; Dybkjaer, L.; Minker, W.;
Neumann, H.; and Weber, M., eds., Proc. PIT ’06, 117 –
128.

Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987. Soar:
An architecture for general intelligence. Artificial Intelli-
gence 33(3):1–64.

Langley, P., and Choi, D. 2006. A unified cognitive archi-
tecture for physical agents. In Proc. AAAI ’06.

Mavridis, N., and Roy, D. 2006. Grounded situation
models for robots: Where words and percepts meet. In
Proc. IROS ’06.

Mcguire, P.; Fritsch, J.; Steil, J. J.; Rothling, F.; Fink,
G. A.; Wachsmuth, S.; Sagerer, G.; and Ritter, H. 2002.
Multi-modal human-machine communication for instruct-
ing robot grasping tasks. In Proc. IROS ’02.

Minsky, M. L. 1987. The Society of Mind. London:
William Heinemann Ltd.

Skočaj, D.; Berginc, G.; Ridge, B.; Štimec, A.; Jogan, M.;
Vanek, O.; Leonardis, A.; Hutter, M.; and Hawes, N. 2007.
A system for continuous learning of visual concepts. In
Proc. ICVS ’07.


