
Logic and Abstraction,

Verification and Falsification

Kumulative Habilitationsschrift

vorgelegt zur Erlangung der

Lehrbefugnis für Informatik

an der

Fakultät für angewandte Wissenschaften

der

Albert-Ludwigs-Universität Freiburg i. Br.

von

Jan-Georg Smaus

Freiburg, November 2008

Für Corinna

Summary for Cumulative Habilitation

Abstract

The works collected in this habilitation are concerned with the use of logic and

abstraction techniques for the purpose of verifying and falsifying transition systems.

The works have been structured into two main themes.

For the first theme, the transition systems in question are programs, in particular

logic programs. Various aspects of correctness of such programs are considered.

One aspect is termination; several contributions concerning methods for proving

termination are contained in this habilitation. Another aspect is type safety, where

this habilitation contains results extending the type systems for which type safety

can be guaranteed.

For the second theme, the transition systems in question are timed and hybrid

systems. Heuristic methods for detecting error paths in such systems are presented,

which is important for supporting the design process of the systems. Another con-

tribution is a method for representing propositional formulas compactly as a set

of linear pseudo-Boolean constraints, which is useful, among other reasons, because

propositional logic plays a prominent role in the analysis of transition systems,

namely in the field of bounded model checking.

Contents of the Summary

1 Introduction 5
1.1 Transition Systems and Logic . 5
1.2 The Themes of this Habilitation . 5
1.3 Common Aims and Techniques . 8
1.4 Structure of this Summary . 9

2 Logic Programming and Functional Programming 9
2.1 Termination and Selection Rules . 9
2.2 Typed Programs . 15
2.3 “Formulas as Programs” . 21

3 Logic Approaches to Model Checking of Timed and Hybrid Systems 22
3.1 Finding Error Paths in Timed and Hybrid Systems 22
3.2 Linear Pseudo-Boolean Constraints . 27

4 Conclusion and Outlook 29
4.1 Implementations of Model Checking in Logic Programming 29
4.2 The Web . 29
4.3 Answer Set Programming . 30
4.4 Bioinformatics . 31
4.5 Concluding Remarks and Outlook . 32

References for the Selected Articles 34

Further References 36

Index 51

4

1 Introduction

1.1 Transition Systems and Logic

In one way or the other, all my work is concerned with the correctness of transition
systems. Such a system has a set of states and a transition relation between these
states, both defined in some suitable mathematical formalism. We thus have a graph
whose nodes are states and whose edges represent the transition relation, and the graph
represents the possible behaviours of the system.

The transition systems studied in my work are logic and functional programs on the
one hand, and timed and hybrid automata on the other hand. This can be seen as a
rather arbitrary choice of a number of formalisms out of a spectrum of formalisms for
defining transition systems. However, in the study of correctness of transition systems,
there are commonalities across many different formalisms, both concerning the aims and
the techniques used. It is common for new techniques developed in an exemplary way
for one formalism to be later adopted to other formalisms.

Transition system is thus the first important keyword of my work; logic is the second.
On the one hand, logic formulae can be given an operational interpretation, i. e., be used
as programs, which is what logic programming is about. As any program is a transition
system, we can say that in this case a logic formula defines a transition system. On
the other hand, logic allows one to describe the behaviour of any transition system in
an abstract or concise or summary manner, and in particular, to specify the desired
behaviour. Examples of such desired behaviour are:

• termination: every computation is finite;

• safety: no error state is ever reached.

Correctness then means that the specification and the behaviour of the system agree.
I have chosen these examples of desired behaviour because they are the most relevant

in my work. Analysis of program termination is one of my main topics. Concerning
safety analysis, I have mainly studied falsification, i. e., error detection and diagnosis.

The “study” of transition systems and logic conducted in my work has aspects of
synthesis and analysis. On the one hand, we have a logic formula (program) and want
to synthesise an operational behaviour (a program execution) from it. More specifically,
a concern particularly for logic programs is to execute them in such a way that they
terminate. On the other hand, we have a system (automaton etc.) with a given behaviour,
which we analyse using logic. More specifically, we want to detect the errors of such a
system.

1.2 The Themes of this Habilitation

I have just introduced the research area of this habilitation in broad terms. I will now
go to a more concrete level, just specific enough to explain what the main contributions
are, but without going into much detail. The works included in this habilitation have
been structured into several themes and subthemes, and I will present the contributions
at the subtheme level. In Section 1.3 I shall return to a high-level view, while in Sections
2 and 3, I go into depth and discuss the contributions of the single articles included.

1.2.1 Logic Programming and Functional Programming

Termination and Selection Rules Logic programming has been praised for being
declarative: the programmer should state what the problem to be solved is, rather than
how it is solved [145]. More specifically, a logic program is a formula from a certain
fragment of first-order logic stating the relationships between the objects of interest.

5

The declarative semantics of a logic program is usually defined as the set of all the
atomic consequences of the program — the basic relationships implied by the program.
However, logic programs also have an operational semantics: the execution of a program
is a sequence of logical inference steps, which computes answers to so-called queries.
Referring to Section 1.1, we might say that an operational behaviour is synthesised from
the logic program. There are theoretical results [159] stating the equivalence between
these semantics: the atomic consequences of the program are exactly the computed
answers to atomic queries.

However, in practice, without any concern for how exactly the computation of a
logic program is performed, there are considerable problems about the efficiency and
termination of the computation. Therefore, logic programs often make use of certain
language constructs that go beyond the “pure paradigm” and destroy the correspondence
between the declarative and the operational semantics, for the sake of efficiency and
termination. One such construct is the well-known cut [210], which removes some of the
logically possible inference sequences.

Put simply, an important aim in the research on logic programming is to close the
gap between the declarative and the operational semantics, between theory and practice
so to speak.

One aspect of the operational semantics of logic programs is the so-called selection
rule. It determines the order in which the logical inferences are performed, whenever
several inferences are logically possible. There are some specific non-trivial termination
problems related to the selection rule [29, 161, 163, 164, 167, 180]. My contributions in
this area can be summarised as follows:

• I define on a theoretical level what a selection rule must look like in order to
allow for a program to be used “in many ways” (what this means precisely will be
explained in Section 2.1.2 on page 11), and explain how such a selection rule can
be implemented in existing programming languages.

• I provide techniques for proving formally that programs supplied with such a se-
lection rule terminate.

• The selection rule is implemented in such a way that the declarative semantics of a
program is preserved. Thus, my work is a contribution to closing the “gap between
theory and practice” mentioned above.

Typed Programs This subtheme is mainly concerned with logic programming but
also touches some aspects of functional programming.

Types serve the correctness of programs. They restrict the syntax of programs so that
meaningless operations, such as computing the cosine of a string, are disallowed. This
allows for many programming mistakes to be detected by the compiler.

The type systems I consider here are based on the typed λ-calculus [216]. They
feature the so-called parametric polymorphism. Examples of (functional) programming
languages using such type systems are ML [183] or Haskell [218]. In the design of type
systems for programming languages, the conflicting aims are:

• The type system should be flexible and expressive. One desirable feature, for in-
stance, would be subtyping.

• The type system should give strong correctness guarantees and be easy to handle
from the point of view of the compiler. In particular, the type system should
allow for automatic type inference, so that the user does not have to write type
declarations. Moreover, the type system should ensure static typing, that is to say,
once the program has passed the compiler as being correctly typed, it should be
guaranteed that there cannot be any type errors at runtime.

6

Although type systems with parametric polymorphism are widely established in func-
tional programming languages, there are some aspects and features, related to the con-
flict just explained, that have sparked a considerable amount of research [49, 95, 126,
129, 137, 141, 142, 152, 160, 177, 179, 182].

My contributions in this area are rather diverse and difficult to pinpoint without
becoming too technical, but they address the conflicting aims of type system design. I
have several results stating under which conditions, or more precisely, for which language
features, automatic type inference and static typing can be achieved, thereby extending
the applications of types in logic and functional programming.

“Formulas as Programs” Krzysztof Apt has proposed a new approach to using first
order logic as a programming language [24]. Put very abstractly, the approach takes a
logic formula and synthesises a computation which is independent of the interpretation
of the logic, that is to say, the computation refrains from relying on (e. g., arithmetic)
symbols such as “7” or “+” to have their usual meanings. My contribution in this area
addresses the question of whether this can be done in an optimal way, i. e., whether
there is a theoretical limit to the amount of information that can be extracted from a
formula without making any specific assumptions about the interpretation of the logic.
The answer I give is negative, i. e., there is no such theoretical limit.

1.2.2 Logic Approaches to Model Checking of Timed and Hybrid Systems

Finding Error Paths in Timed and Hybrid Systems This subtheme is related
to safety-critical systems such as trams, airplanes, chemical plants etc. Such systems
usually feature an electronic, discrete control component and a “physical” component. It
is desirable to design such systems so that they are safe and to prove the safety rigorously,
i. e., to verify a system. Various mathematical modellings of such systems have been
proposed, for example communicating sequential processes [192], timed automata [21],
and hybrid automata [130].

Verification of systems is often done using model checking1 [74]. This notion sum-
marises certain techniques that more or less explicitly enumerate the state space of a
system and check whether all transition sequences of the system satisfy a desired prop-
erty, i. e., whether the graph representing the state space is a model of the property to
be checked [120]. The property is often specified using some temporal logic [74].

However, my research is more focused on falsification. Falsification is of interest
because systems are mostly not correct during their design process, and so it is important
to diagnose errors. More specifically, we want to identify error trajectories of the system,
i. e., executions of the system that lead from an initial to some unsafe state. I have
contributed methods for doing this, both for timed and for hybrid automata. Although
the methods are technically quite different, they share one remarkable aspect, namely
that they aim at integrating verification and falsification methods. More specifically:

• I have developed a method for finding error paths in hybrid automata and integrated
this method into a verification tool for hybrid automata. The tool is based on
abstractions, and the remarkable aspect of this work is that the same abstractions
useful for proving the absence of an error can be used for finding an error.

• I have developed heuristics for error search in timed automata, in the spirit of
directed model checking [101, 102]. This allows one to find errors in timed automata
where blind search is hopeless. Apart from being competitive with other heuristics
proposed for this purpose, the heuristics are interesting and novel because they use

1 I would like to draw the reader’s attention to the index at the end of this summary, which points
to the definitions or informal explanations of the most important concepts used in this habilitation.

7

a logic-based technique called predicate abstraction, which has previously been used
for verification.

Linear Pseudo-Boolean Constraints This subtheme is related to propositional logic
and is motivated by the use of propositional logic in symbolic or bounded model checking
[55]. The approach of bounded model checking is to encode a model checking problem as
a (propositional or other) logic formula. To solve the problem, propositional satisfiability
(SAT) solving is then important [165, 173, 226].

Linear pseudo-Boolean constraints are a representation of propositional formulae that
is often very compact. While this has inspired some authors to adapt SAT solvers to
linear pseudo-Boolean constraints [18, 71, 96, 110, 111, 138], the full potential of this
representation has not been exploited yet because of a lack of (practical) methods for
encoding arbitrary propositional formulas as linear pseudo-Boolean constraints.

My main contributions in this area consist of two results, one “negative” and one
“positive”:

• In some cases, there is nothing to gain in terms of compactness using linear pseudo-
Boolean constraints.

• There is a combinatorial algorithm for converting a formula into a single linear
pseudo-Boolean constraint, if this is possible. This has been an open problem for
30 years [83].

1.3 Common Aims and Techniques

After having introduced the main contributions of this habilitation at the subtheme level,
I now mention several common aims and techniques in my work. Throughout the rest of
this summary, I will frequently refer back to this list to substantiate these points.

1. The main common aim of my work is verification or falsification (as applies) of
transition systems (see Sections 2 and 3.1).

2. An operational behaviour is synthesised from logic formulae (see Sections 2.1, 2.3,
and 3.1).

3. A “real” system (e. g., an automaton) has an operational behaviour by definition.
I specify and analyse the desired behaviour using logic (see Section 3.1).

4. On the technical side, abstraction techniques are often used for verification or falsi-
fication. An abstraction of a system, overapproximation to be precise, is a simpli-
fication allowing for more behaviours. Thus, if the abstraction is free from errors,
then the original system is a-fortiori free from errors (see Sections 2.2 and 3.1).

5. Statical correctness conditions such as types or modes are used for verification.
By “statical” I mean that these conditions are imposed on the single (and finitely
many) components defining a transition system, and that the conditions ensure
certain desirable correctness properties as invariants of any execution of the system
(see Sections 2.1 and 2.2).

6. In some of my works a predicative view on transition systems plays a role, i. e., the
behaviour of a system is encoded as logical formula (see Sections 2.2 and 3).

8

1.4 Structure of this Summary

We will now proceed with Sections 2 and 3, corresponding to the two main themes of
this habilitation work. Likewise, each subsection corresponds to a subtheme. In each
subsection, I first very briefly explain the main, distinctive contribution of each included
article. Afterwards, I explain the most important concepts used in each subtheme and
illustrate the main problems using examples.

Of course, I am not the first to recognise that there are various connections between
the themes considered here, most generally speaking, between model checking and logic
programming. In Section 4 we will discuss the related literature, in particular the more
recent works.

2 Logic Programming and Functional Programming

2.1 Termination and Selection Rules

2.1.1 Contributions on this Subtheme

In logic programming, dynamic scheduling refers to a situation where the selection of
the atom in each resolution (computation) step is determined at runtime, as opposed
to a fixed selection rule such as the left-to-right one of Prolog. This has applications
e. g. in parallel programming. A mechanism to control dynamic scheduling is provided in
existing languages in the form of delay declarations. From the point of view of declarative,
model-theoretic semantics [31, 159], programs using dynamic scheduling are more difficult
to reason about than programs using left-to-right execution. In particular, giving a
characterisation of terminating logic programs is more difficult in the presence of dynamic
scheduling.

In the work I did together with Bossi, Etalle and Rossi [1], we made several contribu-
tions to this area. In order to provide a characterisation of dynamic scheduling that is rea-
sonably abstract and hence amenable to semantic analysis, we consider input-consuming
derivations. In an input-consuming derivation, only atoms whose input arguments do
not get instantiated through the unification step may be selected. We demonstrate that
under some statically verifiable conditions, input-consuming derivations are exactly the
ones satisfying the (natural) delay declarations of programs. We then define a model-
theoretic semantics for input-consuming programs. Based on this semantics, we present
a result which fully characterises termination of input-consuming programs.

The subsequent journal version [2] contains all the proofs, more detailed explanations,
and a more extensive comparison of related work. However, the journal version does
not formally analyse the relationship between input-consuming derivations and delay
declarations, and it omits a certain variant of our semantics which was not directly
relevant for our termination results.

Later, I investigated input-consuming derivations with additional assumptions on
the selection rule [3]. Certain additional assumptions can be formalised as a property
that the selected atoms must have, e. g., the property of being ground. This can be
done generically by parametrising the method of proving termination with the set P
of atoms that may be selected. In analogy to the work above [1, 2], I provide a full
characterisation of termination for input-consuming derivations where the selected atoms
must have property P . In addition, I give a sufficient criterion for termination for local
selection rules. Local selection rules specify that an atom A must be resolved away
completely before any of A’s siblings can be selected.2

2Moreover, there is a technical report version [202] which extends the sufficient criterion for termina-
tion for local selection rules to a full characterisation, i. e., a criterion that is sufficient and necessary.

9

permute([],[]).

permute([U|X],Y) :-

permute(X,Z),

insert(Z,U,Y).

insert(Z,X,[X|Z]).

insert([U|Z],X,[U|Y]) :-

insert(Z,X,Y).

PERMUTE

permute([],[]).

permute([U|X],Y) :-

insert(Z,U,Y),

permute(X,Z).

insert(Z,X,[X|Z]).

insert([U|Z],X,[U|Y]) :-

insert(Z,X,Y).

PERMUTE2

append([],Y,Y).

append([X|Xs],Ys,[X|Zs]) :-

append(Xs,Ys,Zs).

APPEND

Figure 1: Example programs

Together with Dino Pedreschi and Salvatore Ruggieri, I have written a survey on
termination of logic programs depending on the selection rule [4]. Generally, one can
say that the stronger assumptions one makes about the selection rule, the bigger is the
class of programs that will terminate under those assumptions (i. e., terminate for all
selection rules meeting those assumptions). We study six classes, ranging from programs
that terminate for all selection rules to programs that terminate only in the weak sense
that there are finitely many computed answers. The contribution of this work lies in the
unification of different formalisms, allowing us to establish a formal hierarchy between
the classes. This work was later invited to become part of a special volume [5], where we
extend the hierarchy by the class of programs studied in my own previous work [3], and
where we extend the discussion of related work.

2.1.2 More Details on the Concepts and Problems of this Subtheme

Termination and Selection Rules has been a theme of my research both before [199, 204,
206, 208] and after [1, 2, 3, 4, 5] my PhD. The main aim of this subsection is to provide
the reader with some background on the theme, and thus I will often refer to the work
of my PhD. However, I will also point out the contributions of this habilitation.

Selection Rules, Modes, and Termination The paradigm of logic programming
is based on giving a computational interpretation to a certain fragment of first order
logic. Kowalski [145] advocates the separation of the logic and control aspects of a logic
program and has coined the famous formula

Algorithm = Logic + Control.

One aspect of control in logic programs is the selection rule. This is a rule stating which
atom in a query is selected in each derivation step. Finding the right selection rule is the
most important aspect of synthesising an operational behaviour from a logic program
(see point 2 in Section 1.3).

The standard selection rule is the LD selection rule: in each derivation step, the
leftmost atom in a query is selected for resolution.

Example 2.1 Consider the PERMUTE program in Figure 1 and the following derivation,
where the selected atom is underlined in each query:

permute([1], As) =⇒

permute([], Z′), insert(Z′, 1, As)
Z′/[]

==⇒

insert([], 1, As)
As/[1]

===⇒ �

(1)

To explain this derivation, it is helpful to use the concept of modes : In the second line, Z′

is an output argument of permute([], Z′). The process of resolving this atom instantiates
Z′ to [], which is used by the atom insert(Z′, 1, As) as input.

10

For the moment, we just assume that each argument position of each predicate is
assigned a mode (input or output) according to the intentions of the programmer. We
denote a mode by writing, e. g., permute(I ,O), insert(I , I ,O).

Intuitively, it should be clear that each piece of data must be produced before it can
be consumed. The LD selection rule implies that “before” means “to the left of”. Thus
the convention is to write logic programs in such a way that output (i. e., producing)
occurrences of each variable are to the left of input (i. e., consuming) occurrences.

A different way of saying that producing should come before consuming is to say:
an atom should only be selected when it has a sufficient degree of instantiation. The
following example shows that this is crucial for termination.

Example 2.2 Consider the following derivation for PERMUTE, where the rightmost atom
is always selected:

permute([1], As) =⇒

permute([], Z′), insert(Z′, 1, As)
Z′/[U′′|Z′′]
====⇒

permute([],[U′′|Z′′]), insert(Z′′, 1, Y′′)
Z′′/[U′′′|Z′′′]
=====⇒ . . .

(2)

The derivation is infinite although there exists only one computed answer to the query,
namely As/[1].

Using the notion of modes, it is possible to state precisely a certain minimal re-
quirement for a “sufficient” degree of instantiation: In each derivation step, the input
arguments of the selected atom cannot become instantiated. In other words, an atom in
a query can only be selected when it is sufficiently instantiated so that the most general
unifier with the clause head does not bind the input arguments of the atom. We call
derivations which meet this requirement input-consuming, a notion I developed during
my PhD work [198, 199, 200].

In most cases, the LD selection rule is adequate and in particular, ensures input-
consuming derivations. However, there are at least four purposes for which other selection
rules are useful: using predicates in multiple modes [204], parallel execution [29], the
test-and-generate paradigm [180], and some programs using accumulators [105]. These
purposes, but most importantly the first one, is what I meant by “using a program in
many ways” (see page 6).

To define selection rules that are more flexible than just stating that the leftmost
atom should be selected in each step, several logic programming languages provide delay
declarations [136, 214, 209]. Using delay declarations, the user can specify a degree to
which an atom must be instantiated in order to be selected.

In the literature, the need for sufficient instantiation of the selected atom and hence
the purpose of delay declarations is usually explained as “ensuring termination” and
“preventing runtime errors related to built-in predicates” [29, 161, 163, 164, 167, 180],
both of which are aspects of verification of logic programs. Using the concepts introduced
above, we can be more to the point: The minimal and most important purpose of delay
declarations is to ensure input-consuming derivations in situations where the LD selection
rule is not adequate.

In a work included in this habilitation [1], I show that under some statically verifiable
conditions, input-consuming derivations are exactly the ones satisfying the (natural)
delay declarations of programs.

Modedness For verification of logic programs, modes are useful. However, it is not suf-
ficient just to assign a mode to each argument position in an arbitrary way. Rather, the
useful results usually rest on certain correctness properties concerning those modes [28,

11

29, 30, 33, 59, 60, 65, 104, 105]. In my own work, I have adopted such correctness proper-
ties [199, 200, 204, 205, 206], in particular in the works contained in this habilitation work
[1, 2, 3, 4, 5] (see point 5 in Section 1.3). In previous work, I have also introduced some
new properties [198, 204, 208]. The following example gives a flavour of the properties.

Example 2.3 Consider append(I , I ,O) in Figure 1. The query

append([1],[2], Xs), append([3],[4], Ys), append(Xs, Ys, Zs)

is “well-behaved” in that it meets all correctness properties I introduce.
In particular, note that the third atom has variables Xs and Ys in input positions, and

that these variables occur elsewhere in output positions. In other words, every variable
has a producer. Moreover, Xs and Ys occur each only once in an output position. In other
words, every variable has at most one producer. Finally, for each variable, the output
occurrence precedes any input occurrence.

Having at most one producer is the main aspect of a well-known correctness prop-
erty called nicely-modedness, and having at least one producer is the main aspect of a
correctness property called well-modedness.

The Difficulty of Achieving and Showing Termination for Dynamic Scheduling
In the 1990s, several authors have observed that for programs using dynamic scheduling,
it is difficult to understand under which conditions they terminate [29, 161, 163, 164, 180].
That is, it is difficult to design the program and selection rule in such a way that the
program terminates, and even if the program does terminate, it is difficult to prove that
it does. It is helpful to separate these two aspects.

We have seen in Example 2.2 that if we do not at least require that derivations are
input-consuming, we easily get non-termination. However, requiring input-consuming
derivations is not enough, as the following example demonstrates. It shows a well-known
termination problem of programs with dynamic scheduling, namely circular modes [180].

Example 2.4 Consider the APPEND program in mode append(I , I ,O) (Figure 1). The
following is an infinite input-consuming derivation:

append([],[], As), append([1|As],[], Bs), append(Bs,[], As) =⇒

append([],[], As), append(As,[], Bs′), append([1|Bs′],[], As) =⇒

append([],[],[1|As′]), append([1|As′],[], Bs′), append(Bs′,[], As′) =⇒ . . .

The derivation starts in a query that is well moded but not nicely moded (see Example
2.3). It turns out that requiring programs to be nicely moded eliminates the problem
seen in this example.

Even if we assume input-consuming derivations and correctness properties as shown in
Example 2.3, there is another prominent termination problem for programs with dynamic
scheduling.

Example 2.5 Consider the PERMUTE2 program in Figure 1 in mode permute(O , I),
insert(O ,O , I). Compared to PERMUTE we have swapped two body atoms for the sake
of preserving the left-to-right dataflow in this mode. We have the following infinite
input-consuming derivation:

permute(W,[1]) =⇒

insert(Z′, U′,[1]), permute(X′, Z′)
Z′/[1|Z′′]
====⇒

insert(Z′′, U′,[]), permute(X′,[1|Z′′]) =⇒

insert(Z′′, U′,[]), insert(Z′′′, U′′,[1|Z′′]), permute(X′′, Z′′′) =⇒

insert(Z′′, U′,[]), insert(Z′′′′, U′′, Z′′), permute(X′′,[1|Z′′′′]) =⇒ . . .

12

The example is at the heart of the difficulty of showing termination for programs using
dynamic scheduling. During my PhD work I have developed a method for showing
termination for such programs assuming derivations that choose the leftmost atom among
those atoms that can be chosen without violating the requirement that derivations should
be input-consuming [198, 204]. This can be used to prove termination for programs that
use the so-called test-and-generate paradigm [180]. The paradigm states that solution
candidates are tested for being solutions even before they are completely generated so
that non-solutions can be detected as early as possible.

Several methods for showing termination of logic programs assuming LD-derivations
use models3 and computed answer substitutions [31, 88, 104]. There is a criterion for
clauses, called acceptability, based on a model M of the program, essentially defined
as follows: given a clause h ← a1, . . . , an, for each i and substitution θ where M |=
(a1, . . . , ai−1)θ, it is required that |hθ| > |aiθ|. Here, |.| is a level mapping, i. e., a function
assigning a natural number to each atom. The argument is that for LD-derivations,
a1, . . . , ai−1 must be completely resolved before ai is selected. By the correctness of LD-
resolution [159], the accumulated answer substitution θ, just before ai is selected, is such
that M |= (a1, . . . , ai−1)θ.

This argument does not apply for derivations that are merely required to be input-
consuming. This is illustrated in Example 2.5. In the third line of the derivation,
permute(X′,[1|Z′′]) is selected, although there is no instance of insert(Z′′, U′,[]) in the
model of the program. This problem has been described by saying that insert makes a
speculative output binding [180], here Z′/[1|Z′′].

Now of course, the derivation in Example 2.5 does not terminate, so it is perfectly
correct that an argument for proving termination does not apply! However, even for
programs that do terminate the argument does not apply:

Example 2.6 The following is a terminating input-consuming derivation for APPEND of
Figure 1 on page 10:

append([1, 2],[], As), append(As,[3], Bs)
As/[1|As′]
====⇒

append([2],[], As′), append([1|As′],[3], Bs)
Bs/[1|Bs′]
====⇒

append([2],[], As′), append(As′,[3], Bs′)
As′/[2|As′′]
=====⇒

append([],[], As′′), append([2|As′′],[3], Bs′)
Bs′/[2|Bs′′]
=====⇒

append([],[], As′′), append(As′′,[3], Bs′′)
As′′/[]

====⇒

append([],[3], Bs′′)
Bs′′/[3]

====⇒ �

The above examples show the difficulties of achieving and proving termination for
programs using dynamic scheduling. My contribution in this area [1, 2] lies in over-
coming those difficulties and defining a notion of model that is adequate for dynamic
scheduling, under carefully specified conditions. This model allows us to give a criterion
for termination of input-consuming derivations that is sufficient and necessary, explaining
the termination and non-termination of the above examples.

There is a class of recursive clauses, using a natural pattern of programming, that
narrowly misses the property of termination for input-consuming derivations. Put simply,
theses clauses have the form p(X):-q(X, Y), p(Y), where the mode is p(I), q(I ,O). Due to
the variable in the head, it follows that an atom using p may always be selected, and hence

3 A model of a logic program is a set of atoms M such that for every program clause h← a1, . . . , an,
whenever a1, . . . , an ∈M , then h ∈M . That is, a model contains all atoms implied by the program [23].
There are generally many models and in any case there are variations of this definition, but for these
intuitive explanations we do not have to worry about this.

13

we have non-termination. Sometimes, just requiring the argument of p to be at least non-
variable is enough to ensure termination. Showing this is the main contribution of my
subsequent work on input-consuming derivations [3, 202]. The next example illustrates
this point.

Example 2.7 Consider the program obtained from PERMUTE2 in Figure 1 on page 10 by
replacing the recursive clause for insert by its most specific variant [180]:

insert([U|Z],X,[U,H|T]) :- insert(Z,X,[H|T]).

Assume the mode permute(O , I), insert(O ,O , I) as in Example 2.5.
This program does not terminate for all input-consuming derivations. However, we

can make the additional requirement that all selected atoms must be at least non-variable
in their input positions. Under this assumption, I have shown that this program termi-
nates [3].

Several authors including myself have written a number of articles about termination
of input-consuming derivations, where the progress was mostly in extending the class for
which termination could be proven, or in specifying minimal additional assumptions on
the selection rule to ensure termination for programs that would otherwise not termi-
nate [1, 2, 3, 60, 62, 63, 64, 65, 199], or in proposing a simple decidable sufficient criterion
for termination [147].

Selection Rules in General There is an enormous body of literature on termination
of logic programs, and a considerable number of works that study the impact of various
selection rules on termination ([25, 29, 31, 54, 89, 146, 161, 163, 164, 167, 180, 184,
193, 194] and citations above). Due to the inhomogeneity of the approaches, formal
comparisons among those works are non-trivial, and are the contribution of the surveys
[4, 5], establishing the following hierarchy of termination:

1. Programs that terminate for all selection rules: strong termination [54];

2. Programs that terminate for input-consuming derivations: input termination [1, 2,
60, 62, 63, 64, 65, 199];

3. Programs that terminate for input-consuming derivations with an additional as-
sumption about the selection rule, formalised as a set P : input P-termination [3];

4. Programs that terminate for local selection rules (see the paragraph about [3] on
page 9) controlled by delay declarations: local delay termination [163, 164];

5. Programs that terminate for LD-derivations: left-termination (considered by the
vast majority of works on termination [86]);

6. Programs for which a selection rule exists so that they terminate: ∃-termination
[193, 194];

7. Programs that do not terminate at all, but for which there are only finitely many
computed answers: bounded nondeterminism. These programs can be converted
into terminating programs without compromising the logical meaning [184].

The hierarchy is shown in Figure 2. Solid arrows correspond to implications that hold
without any restrictions, whereas dashed arrows correspond to implications that only
hold under side conditions that are natural but must be stated very carefully — these
implications are the main contribution of the work [4, 5].

14

Strong termination
A

A
A

A
A

A
A

A
AAK

6

�
��

Input termination
�

��>

I

K

K

Input P-termination

y
Local delay termination

*

�

Left-termination

6
∃-Termination

6
Bounded nondeterminism

Figure 2: The termination hierarchy. Solid arrows stand for implication, dashed arrows
for implication under additional assumptions.

Termination for other Paradigms Of course, termination has been studied for all
programming paradigms and under all conceivable aspects, and some of the work on ter-
mination is either independent of the programming paradigm or can be applied to several
paradigms with some adaptations. I will discuss one particular approach to showing ter-
mination of imperative programs [186] because it establishes a link to model checking
(see the paragraph on predicate abstraction for termination on page 26). To show ter-
mination of an imperative program, the authors propose to use a transition invariant,
which is a binary relation holding between any pair of program states in the transitive
closure of the transition relation. The transition relation should be decomposable into
several parts such that for each part, it is easy to establish well-foundedness. One might
say that the work provides a technique for modularising termination proofs, an aspect
also studied for logic programs [32, 104].

While the notion of transition invariant would certainly translate to logic program-
ming, and some interesting insights might be derived from that, this would concern
aspects of the termination problem quite different from the ones considered in this ha-
bilitation, which are related to the selection rule.

2.2 Typed Programs

2.2.1 Contributions on this Subtheme

I have worked on typed logic programming languages (such as Gödel or Mercury). Typed
logic (as well as functional) programs usually have the subject reduction property, which
means that only well-typed queries can occur during the execution of a program.

Together with François Fages and Pierre Deransart, I have studied subject reduction
for typed logic programs allowing for subtyping à la int < real.4 For such type systems,
subject reduction depends on a clear notion of dataflow: wherever a real is expected, an
int can also be accepted, but not vice versa. This is problematic in logic programming
where, contrary to functional programming, an argument of a procedure (predicate) can
serve both as input and output. We have given syntactic conditions that ensure subject

4int stands for integer.

15

reduction also in the presence of general subtyping relations between type constructors
[6, 203]. The idea is to consider logic programs with a fixed dataflow, given by modes.

Together with Pierre Deransart, I have phrased subject reduction as a property of the
proof-theoretic semantics of a program, thus abstracting from the usual operational (top-
down) semantics [7]. This proof-theoretic view led us to questioning a condition which is
usually considered necessary for subject reduction, namely the head condition. It states
that the head of each clause must have a type which is a variant (and not a proper
instance) of the declared type. We study more general conditions, thus reestablishing a
certain symmetry between heads and body atoms.

I investigated the relationship between typing and recursion in both logic and func-
tional programming [8]. The head condition was just mentioned [7], and is a concept
known in the logic programming context. In typed functional programming, polymorphic
recursion means that in a recursive definition of a function f , the recursive call to f
uses a type which is a proper instance of the declared type of f . I have shown that both
notions are also meaningful in the respectively other paradigm, and observed a symmetry
between the head condition and polymorphic recursion. This leads to an investigation
of arguments for and against the head condition and polymorphic recursion, in both
paradigms.

In logic programming, analysing which arguments of a predicate are (partially) ground
when the predicate is called is an important application of abstract interpretation, be-
cause such information is useful for compiler optimisations. For typed languages, the
types can be used to characterise the degree of instantiation of a term in a precise and
yet inherently finite way, e. g. by speaking about a list that is instantiated but whose
elements are not instantiated. I have developed a formalism for expressing the degree of
instantiation (an abstract domain for each type) that works for polymorphically typed
programs [9, 201]. The analysis of the program is performed by running the program
with the usual terms being replaced by abstract terms (members of the abstract domain),
and the usual unification being replaced by unification modulo a theory including certain
associativity and commutativity axioms.

2.2.2 More Details on the Concepts and Problems of this Subtheme

Type System with Parametric Polymorphism In logic programming, types have
been used as a tool for program analysis even for untyped programming languages (de-
scriptive types). However, these are not the kind of types considered in this subtheme.
Here, I consider types that are a part of the programming language [91, 136, 209], some-
times called “prescriptive” types for emphasis. In functional programming, types are
more wide-spread [183, 217, 218] and although not all functional programming languages
are typed (LISP [224] is not), when one speaks of types in functional programming one
means prescriptive types.

My research on typed languages has addressed rather diverse questions, but in all
cases, I assumed a type system with parametric polymorphism. Let us explain the central
notions of such a type system using an example that applies to logic and functional
programming.

Example 2.8 Let int/0, list/1 be some type constructors, 0→int,, . . . , nil→list(U),
consU,list(U)→list(U) be some term constructors, , appendlist(U),list(U),list(U) be a (logic
programming) predicate, and appendlist(U),list(U)→list(U) be a (functional programming)
function. Then, U is a (type) parameter, U, list(U), and list(list(int)) are examples
of types,[7] is an example of a constructor term5, and append(nil,[7], X) is an example
of a (logic programming) atom.

5We use the usual list notation [7] instead of cons(7, nil).

16

In the example, we have written the declared type of each symbol in the term language
as a subscript. Typed programming languages provide some syntax for declaring which
type constructors there are and what the type of each symbol in the term language is.
Moreover, the programming language has fixed rules for specifying well-typed syntactic
objects. These rules would, for instance, rule out an atom append(5,[7, 3], X) since 5 is
of type int and not of type list(int) as required.

Subject Reduction A type system as just described allows for many programming
errors to be detected by the compiler. Moreover, it ensures that once a program has
passed the compiler, the types of arguments of predicates can be ignored at runtime,
since it is guaranteed that they will be of correct type (see point 5 in Section 1.3). This
has been turned into the famous slogan: Well-typed programs cannot go wrong [171, 178].
Adopting the terminology from the theory of the λ-calculus [216], this property of a
typed program is called subject reduction. There, subject reduction states that the type
of a λ-term is invariant under reduction. Translated to logic programming, resolving a
“well-typed” query with a clause will always result in a “well-typed” query, and so the
successive queries obtained during a derivation are all “well-typed”.

The subject reduction property depends on the details of the formalisation of the type
system. For example, one condition discussed in the literature is the transparency condi-
tion [135, 137]. It states that for the declared type τ1, . . . , τn → τ of a term constructor f ,
each type parameter occurring in τ1, . . . , τn must also occur in τ . The condition ensures
that if we have two terms f(t1, . . . , tn) and f(s1, . . . , sn) of identical type, then the two
terms have identical types in all matching subterms, which is crucial when we attempt
to unify the two terms. In the first famous article advocating typed logic programming
[178], this condition was ignored, leading to an erroneous claim of subject reduction, as
explained by Hill [135].

Subject reduction is particularly problematic for logic programs with subtyping. This
is illustrated by the following example.

Example 2.9 Consider a typed language consisting of the predicates sqrtreal,real and
factint,int, and assume that int is a subtype of real. Consider the program

fact(3,6).

sqrt(6,2.449).

and the derivations

fact(3, x), sqrt(x, y) =⇒ sqrt(6, y) =⇒ �

sqrt(6, x), fact(x, y) =⇒ fact(2.449, y)

In the first derivation, all arguments always have a type that is less than or equal to the
declared type, and so we have subject reduction. In the second derivation, the argument
2.449 to fact has type real, which is strictly greater than the declared type. The atom
fact(2.449, y) is illegal, and so we do not have subject reduction.

The problem for subject reduction can be attributed to the fact that in logic programs,
there is a-priori no fixed direction of dataflow. In the work with Fages and Deransart [6],
we introduce the notion of nicely typed program, which is an adaptation of nicely moded
programs, used in the works discussed above [1, 2, 3, 4, 5] (see Ex. 2.3 on page 12), to
the typed context. For such programs, we can guarantee subject reduction even in the
presence of subtyping.

The head condition, also called definitional genericity [152], is also an important
property for subject reduction. It states that the head of each clause must have a type
which is a variant (and not a proper instance) of the declared type. For example, if the
predicate append has declared type list(U), list(U), list(U), then it would be forbidden

17

h(X):-q(X), p(X).
q([]).
p(X):-r(X).

⊥

〈q([]), ∅〉 〈p(X′):-r(X′), {X′/[]}〉
���

@@

〈h(X):-q(X), p(X), {X/[]}〉

Figure 3: A program and a derivation tree

to have a clause head append([1], nil,[1]), as its type is list(int), list(int), list(int)
and thus more specific than the declared type. The condition ensures that whenever there
is an atom append(s, r, t) in a query of a derivation of a logic program, then the type of
every clause for append is always consistent with that atom.

Proof-theoretic Semantics In logic programming, one is interested in the logic or
proof-theoretic semantics of a logic program, as opposed to the operational semantics
given by SLD resolution [159]. Deransart and Ma luszyński established what they call
a grammatical view of logic programming [93].6 The execution of a program is viewed
as a derivation tree, composed of the clauses used, together with the substitution being
applied to each clause. Figure 3 illustrates this. This view abstracts away from the order
in which atoms are selected, in fact from any notion of past, current, and future queries,
which in turn suggests that there should be a symmetry between the head and the body
atoms of a query, i. e., one would intuitively expect that any atom that is legal as a body
atom is also legal as a head and vice versa.

In the work with Deransart [7], we applied this proof-theoretic view to the subject
reduction property. We defined subject reduction as stating that every derivation tree
that can be constructed consists of well-typed nodes, i. e., the substitution of the node
applied to the clause of the node yields a well-typed instance of the clause. Since the
head condition contradicts the desired symmetry of heads and body atoms, we questioned
this condition. We showed that when lifting this condition, subject reduction is an
undecidable property. We then introduced sufficient conditions for subject reduction
that generalise the head condition.

The Head Condition and Polymorphic Recursion In the work with Deransart
[7], it has already been observed that the head condition, or better, violations thereof,
is somehow related to a phenomenon discussed in functional programming, namely poly-
morphic recursion [56, 129, 141, 142], which refers to the situation that in a recursive
definition of a function f , the recursive call to f uses a type which is a proper polymor-
phic instance of the declared (generic) type of f . A (contrived) example is the following
Miranda program defining list length:

len :: [*] -> num

len [] = 0

len (a:l) = 1 + len (lift l)

The first line is a type declaration stating that len is a function from the (built-in)
parametric list type to the (built-in) type of numbers. The other two lines form a recursive
definition. Here we assume that lift is the function that takes a list [t1, . . . , tn] and
returns the list[[t1], . . . ,[tn]]. When len is called with the list, say,[1, 2, 3]of type[num]

6This is somewhat similar to a predicative view of transition systems (see point 6 in Section 1.3),
in that one abstracts away from a transition sequence by turning it into something “statical”, here a
derivation tree.

18

(Miranda notation for a list of numbers), the recursive calls will be with types [[num]],
[[[num]]], and[[[[num]]]].

I have written an article establishing a strong relationship between the head con-
dition and polymorphic recursion [8]. Adjusting the terminology, one can speak of a
symmetry: the head condition is symmetric to monomorphic recursion, meaning absence
of polymorphic recursion. The symmetry can be illustrated with the logic programs
Ppr = {p(X)., p(X):-p([X]).} and Phc = {p([])., p([X]):-p(X).}. Letting list(U) be the
declared type of p, Ppr uses polymorphic recursion, and Phc violates the head condition.
The symmetry also shows up in the operational semantics: when Ppr is called with p([]),
an infinite sequence of calls p([]), p([[]]), . . . arises, whereas Phc has infinitely many
computed answers p([]), p([[]]),

Both the head condition and polymorphic recursion have been debated in the litera-
ture [56, 126, 129, 137, 141, 142, 152, 160, 177, 179, 182]. However, due to the fact that
the former was mainly discussed in logic programming and the latter in functional pro-
gramming, the formalisations of the type systems were quite different. My contribution
[8] to this area lies in a uniform formalisation of the type systems that allows for com-
parisons between functional and logic programming and comparisons between the head
condition and polymorphic recursion. I give an example of a term language for which
one finds that the head condition and monomorphic recursion create (almost) unaccept-
able obstacles for programming, but I also discuss the advantages of these conditions.
Furthermore, violations of the head condition, as well as polymorphic recursion, may
be responsible for an infinite number of different types occurring in the semantics of a
program. This phenomenon is undesirable in certain contexts of program analysis, an
issue which I actually took up in later work [9], discussed below.

Groundness Analysis Analysis of (partial) groundness [36, 37, 51, 75, 76, 77, 78, 79,
80, 112, 127, 128, 143, 166, 215] is an important application of abstract interpretation [82]
(see point 4 in Section 1.3). There have been several proposals for improving the precision
of such an analysis by exploiting type information [70, 78, 81, 113, 114, 140, 151, 195],
including also some work I did for my PhD [198, 207]. For typed languages, the types can
be used to characterise the degree of instantiation of a term in a precise and yet inherently
finite way. For example, one might infer that the call append(list(any), list(any), any)
leads to the answer append(list(any), list(any), list(any)), that is to say: when the
APPEND program (see Figure 1 on page 10) is called with the first two arguments being
instantiated to lists (but the list elements are not necessarily instantiated), then on
successful completion of the run, the third argument will also be instantiated to a list (but
the list elements are not guaranteed to be instantiated) [78]. The expressions list(any)
and any are called abstract terms from an abstract domain. In this context, an abstract
domain is a language that can be used to express the degree of instantiation of a term.
E. g., list(any) represents a higher degree of instantiation than any.

The question is: how can the types give rise to a generic definition of an abstract
domain, i. e., how can the types determine the granularity with which the instantiation
of the corresponding terms can be characterised? What I mean by “generic” is best
illustrated by a counterexample: I might propose an abstract domain that can express
that a list is ground in its 2nd, 3rd, 5th, 7th, 11th etc. element, i. e., in all positions
corresponding to prime numbers. The key concept of a generic definition [9] is the
subterm type relation (written ⊳), subdivided into the recursive type relation (written ⊲⊳)
and the non-recursive subterm type relation (written ⊳⊳).

Example 2.10 The relations can be illustrated using a graph with the types as nodes.
Consider Figure 4. We have (assuming type declarations as in Example 2.8) int ⊳
list(int) because a term of type int, say 7, can be a subterm of a term of type
list(int), say [5, 7, 2]. Since the converse does not hold, we have int ⊳⊳ list(int).

19

U
?

list(U)
.

.

..

.

..

..

.

..

..

..

.

.

.

..

...

..

...

..

..

.......
......

...........

..............

............
.......

..

...
...
..
...
.

..

..

..

..

..

.

..

..

..

.

..

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..W

int
?

list(int)
.

.

..

.

..

..

.

..

..

..

.

.

.

..

...

..

...

..

..

.......
......

...........

..............

............
.......

..

...
...
..
...
.

..

..

..

..

..

.

..

..

..

.

..

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..W

elist(U)

U

6

?
6

?

olist(U)

V
?

nest(V)
?

6

list(nest(V))
.

.......................

......................

.....................

....................

...................

..................
........

....
....
.....
.....
.

...
...
...
...
...
...
..

...
...
...
...
...
...
...

..

..

..
..
..
..
..
..
..
..
..

..

..

..

..

..
..
..
..
..
..
..
.R

bal

string

U
?

?

?

table(U)
.

.....................

...................

..................

.................

................

....
.....
.....
...

..
...
...
...
...
...

..

..
..
..
..
..
..
..
..

..

..

..

..
..
..
..
..
..
.R

LISTS LISTS with INT EVENODDLISTS NESTS TABLES

Figure 4: Illustrating the subterm type relation

Next, consider a typed language where we have nil→elist(U), econsU,olist(U)→elist(U),
oconsU,elist(U)→olist(U), i. e., a somewhat unusual pair of list types, one for lists of even
length, one for lists of odd length. We have U ⊳⊳ elist(U), U ⊳⊳ olist(U), and elist(U) ⊲⊳
olist(U).

Next, consider a typed language where we have eV→nest(V), nlist(nest(V))→nest(V), plus
the list constructors. This language implements rose trees [56, 170], i. e., trees where the
number of children of each node is not fixed. This example illustrates a phenomenon that
accounts for a lot of complication in the formalism I developed [9]: the ⊳⊳-relation is not
closed under type instantiation! We have U ⊳⊳ list(U), but nest(V) ⊲⊳ list(nest(V)).

A table is a data structure containing an ordered collection of nodes, each of which has
two components, a key of type string, and a value, of arbitrary type. The typed language
consists of lh→bal, rh→bal, eq→bal, null→table(U), nodetable(U),string,U,bal,table(U)→table(U).
The type bal contains three constants representing balancing information. We have
table(U) ⊲⊳ table(U) and U ⊳⊳ table(U), bal ⊳⊳ table(U), string ⊳⊳ table(U). This is an
example where one type has more than just one non-recursive subterm type, a possibility
ignored by previous work [78].

In devising an analysis for polymorphically typed programs, one main problem is to
achieve a construction of an abstract domain for c(τ1, . . . , τn), where c is a type con-
structor, that is truly parametric in τ1, . . . , τn, that is to say, the abstract domain for
list(int), say, should relate to int in exactly the same way as the abstract domain
for list(nest(int)) relates to nest(int), in spite of the fact that int ⊳⊳ list(int) but
nest(int) ⊲⊳ list(nest(int)). Another problem is that abstract domains should be
finite for a given program and query. These requirements are non-trivial, as suggested
by the NESTS example, but they are fulfilled by my approach [9]. Previous works [78, 81]
only deal with a specific set of types including integers, lists, difference lists, and trees,
while the follow-up work [151] does not consider polymorphism at all.

For types that have no non-recursive subterm types (such as int), the abstract terms
in my approach simply characterise whether a term is ground. For types that do have
non-recursive subterm types, the abstract terms are constructed in a recursive way so
that they can represent the degree of instantiation of the subterms, for each non-recursive
subterm type. For example, the abstract term tableA(intA ⊕ X, balA, strA) represents
any table whose values might be ground (represented by intA) or variables (represented
by the variable X), and whose balancing labels and keys are ground.

The analysis of programs follows the abstract compilation [78, 79, 81, 87, 134, 151]
approach, i. e., an abstract program is obtained by replacing each term in the program
by its abstraction, and then the abstract program is “run”. However, there is one
difference to the way logic programs are usually run, namely that the usual syntac-
tic unification is replaced with unification modulo a theory that includes associativity,
commutativity, and idempotence. In this theory, tableA(intA ⊕ X, balA, strA) and

20

tableA(intA, balA, Y) would have the unifier {X/intA, Y/strA} and the common in-
stance tableA(intA, balA, strA).

As an example of the information that might be inferred by such an analysis, suppose
there is a predicate insert/4 whose arguments represent: a table t, a key k, a value v,
and a table obtained from t by inserting the node whose key is k and whose value is v.
From the abstract semantics of the program, it is possible to read that a query whose
abstraction is

insert(tableA(intA, balA, strA), strA, V2, T),

i. e., a query to insert an uninstantiated value into a ground table, yields an answer whose
abstraction is

insert(tableA(intA, balA, strA), strA, V2, tableA(intA ⊕ V2, balA, strA)),

i. e., the result is a table whose values may be uninstantiated.

Types and Termination Analysis To relate the subthemes considered in Sections
2.1 and 2.2, let us mention that several authors have used types to improve the precision
of termination analyses [29, 61, 68, 69, 150, 168].

2.3 “Formulas as Programs”

Krzysztof Apt et al. have proposed a new approach to using first order logic as a pro-
gramming language, based on analogies between logic concepts and features in imperative
programming languages [24, 26, 27, 35]. Together we have written an article comparing
this approach with logic programming [34]. The approach might be seen as a “fresh look”
at how to synthesise an operational behaviour from a logic formula (see point 2 in Section
1.3). One motivation was to gain a better understanding of the distinction between the
“purely logic-based” aspects of a computation and the aspects involving domain-specific
knowledge.

At the heart of this approach is a semantics, i. e., a set of solutions, for an equation
s = t. In full generality, the problem of giving such a set of solutions cannot be addressed
properly. For example, x2 − 1 = 0 has one solution {x/1} if we assume the set of
arithmetic expressions interpreted over the natural numbers, but two solutions {x/1}
and {x/− 1} if we assume the integers. Apt’s objective was to define a semantics for an
arbitrary algebra. This means that the definition must not refer to any particular algebra
(or language) or use any knowledge about it other than how to evaluate a ground term.
Apt has given such a semantics and showed that it generalises syntactic unification, and
moreover argued informally that this semantics is optimal in the sense that it is the best
one can do without specific knowledge of the algebra [24].

I have investigated the optimality issue [10]. I proposed an improvement of the seman-
tics and showed that this improved semantics is nonetheless not optimal in any formal
sense, since there seems to be no satisfactory formalisation of what it means to have “no
specific knowledge of the algebra”. It is always possible to “improve” a semantics in a
formal sense, but such semantics become more and more contrived. For example, we
might propose a semantics that considers as solution candidates all substitutions defined
by the replacement of each variable x occurring in the equation by a ground subterm r
also occurring in the equation. This is an unambiguous description independent of any
particular language. For x + 1 = 2, it would compute the solution {x/1} since the equa-
tion contains the candidate 1, but for x + 1 = 3 it would not work because the equation
does not contain any occurrence of 2. Such a semantics would be “better” than the one
I propose, but it would be unacceptably contrived.

21

3 Logic Approaches to Model Checking of Timed and

Hybrid Systems

3.1 Finding Error Paths in Timed and Hybrid Systems

3.1.1 Contributions on this Subtheme

Hybrid systems are systems featuring the interaction between a continuous part (often
modelling some physical entities such as temperature or speed), and a discrete control
part. The behaviour (flow) of real-valued variables over time is usually described by
differential equations. Given a hybrid system with a suitably specified error state, one
is interested in verification, i. e., proving that the error state is unreachable (safety).
However, if the system is actually not safe, one is also interested in falsification, i. e.,
one looks for an actual trajectory over time that will lead to an error state. Falsification
is usually difficult since the solutions to the differential equations are trigonometric and
similar functions. However, for nondeterministic systems, i. e., systems where the flow
is described by differential inequalities rather than equations, falsification is often easier
because one can find error paths where the flows are described by polynomials or even
piecewise linear functions. Together with Stefan Ratschan, I have devised a method for
coupling safety verification algorithms for nondeterministic hybrid systems (implemented
in a tool called HSolver) with the ability of finding concrete error trajectories, i. e.,
with falsification [11]. Such a tight integration of verification with falsification has the
advantage that verification attempts guide the search for concrete error trajectories, and
endless attempts to verify unsafe systems or to falsify safe systems can often be avoided.

Together with Jörg Hoffmann, Andrey Rybalchenko, Sebastian Kupferschmid and
Andreas Podelski, I have worked on the design of heuristic functions for speeding up di-
rected model checking, i. e., error search, of timed automata [12]. These heuristic functions
can be plugged into the well-known Uppaal system. The heuristic functions are defined
based on an over-approximation of the timed automaton, more precisely a predicate ab-
straction, which is a technique previously used for verification. Here, a predicate is a logic
formula that speaks about the automaton; e. g., a predicate might state: the automaton
is in location ℓ5. Fixing a list of such predicates, the abstraction of a timed automaton
state is just a bitvector stating which of the predicates are true and which ones are false
in this state. The abstract state space is then defined as an over-approximation of the
concrete state space, and for each concrete state, the heuristic value is given by the length
of a path leading to an error state, within the abstraction. The abstract state space is
exhaustively built in a pre-process, and used as a lookup table (pattern database) during
search. We have empirically explored the behaviour of the resulting family of heuris-
tics, showing that one can easily obtain heuristic functions that are competitive with
the state-of-the-art in directed model checking. As a follow-up on this work, we studied
how predicates for predicate abstraction can be generated using specialised variants of
abstraction refinement [13].

3.1.2 More Details on the Concepts and Problems of this Subtheme

Hybrid Automata and Timed Automata One formalisation of hybrid systems is
that of hybrid automata [20, 130, 133, 212]. A hybrid automaton is a finite automaton
enhanced with real-valued variables. Figure 5 shows an example of a hybrid automaton,
modelling a car (with the variables denoting the angle of the steering wheel, the speed,
etc.) trying to steer clear of a canal. Each box depicts a location (state, according to
the usual terminology of finite automata) with a name (e. g., “go ahead”). In each loca-
tion, the behaviour of the variables is governed by logic formulae built from differential
(in)equations, i. e., equations using the variables of the hybrid automaton as well as their
derivatives, as in ẋ = −r sin γ. In the example, all locations except “in canal” have

22

in_canal

straight_aheadcorrect_left

left_border right_border

correct_right

go_ahead

x ≥ 1

c := 0 c := 0

x ≤ −1

ċ = −2

γ̇ = ω

ẋ = −r sin(γ)

ċ = 0

γ̇ = 0

ẋ = −r sin(γ)

ċ = −2

γ̇ = −ω

ẋ = −r sin(γ)
c ≤ 0

x ≥ 1

c := 0c := 0

x ≤ −1x ≤ 2

x ≤ 1

ċ = 1ċ = 1

ẋ = −r sin(γ)

c ≤ 0

x ≥ −1

γ̇ = −ω

ẋ = −r sin(γ)

γ̇ = ω

ċ = 0

γ̇ = 0

ẋ = −r sin(γ)

Figure 5: Model of a car steering clear of a canal

a conjunction of three differential equations. We say that these (in)equations describe
the possible flows of the variables. The (in)equations might also just use the automaton
variables without the derivatives, e. g. x ≤ 5 (not in the car example above), in which
case we speak of an invariant of that location. For transitions, there can be guards,
which are also logic formulae, restricting the possibilities of taking the transition. In the
example, c ≤ 0 or x ≥ 1 are guards. Moreover, there are updates, e. g. c := 0, which are
executed when a transition is taken.

The semantics of a hybrid automaton is given by its trajectories. Intuitively, the
trajectory starts in some location marked as initial, remains there for some time l during
which the variables change according to some differentiable function f : [0, l] → R

n

(where n is the number of variables) that solves the differential equations mentioned
above, then a transition is taken (if the guards permit it), and so on. A formal definition
can be found in the work by Henzinger [130], or in the according contribution in this
habilitation [11].

Timed automata are a special case of hybrid automata, essentially obtained by re-
stricting the behaviour of each real-valued variable x in each location using the differential
equation ẋ = 1 [21, 50, 225]. That is, each variable changes at the same rate as time and
is thus a clock. When a transition is taken, a clock may be reset to 0, but afterwards, it
immediately starts running again. Figure 6 shows a timed automaton. Actually, it is the
product of two automata. In the parlance of Uppaal [48, 153], which is a model checker
for timed automata, we have a system composed of two processes. The initial location
of each process is drawn as a double circle. The labels “study”, “idle” etc. denote the
names of the locations. The symbol “press” is a channel ; two transitions labelled “press!”
and “press?” must be taken simultaneously. Apart from that the figure should be read
similarly as Figure 5.

Reachability and Safety There are a number of (model checking) problems for timed
and hybrid automata, which have been studied for numerous variations of the two for-
malisms (typically, restrictions of hybrid automata or generalisations of timed automata)
[19, 20, 50, 131, 133, 212]. This gives rise to plethora of decidability issues and results.

In my work, and in other work conducted within the AVACS project7 (e. g. [16,
17, 94, 98, 109, 148, 149, 189, 190]), the focus was on proving or disproving safety. A

7 Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex
Systems” (SFB TR14/AVACS) of the Deutsche Forschungsgemeinschaft

23

bright

off

dim press?

x<=10
press?

press?
x:=0

x>10
press?

study

idle

relax

t

y<5

y>10
press!

press!
y:=0

press!press!
y:=0

press!

Figure 6: A timed automaton system composed of two processes

system is safe if and only if no unsafe state (specified in a suitable way) is reachable
from an initial state. Otherwise we have an error trajectory. Reachability is decidable
for timed automata. The algorithm is based on the insight that it is not necessary to
distinguish infinitely many system states, but that the infinite continuous state space can
be partitioned into so-called regions, so that the state space becomes effectively finite [50].

However, consider an extension of the clock notion of timed automata, namely stop-
watches. A stopwatch is a clock that is allowed to stop running, i. e., its behaviour may
be specified by ẋ = 0 or ẋ = 1. For timed automata with one single stopwatch, the
reachability problem is undecidable [130]. Not surprisingly, for general hybrid automata
the reachability problem is undecidable [133].

The works included in this habilitation are concerned with reachability for timed
[12, 13] and for hybrid [11] automata.

Directed Model Checking For timed automata, the model checker Uppaal can be
used to find an error trajectory, but since the state spaces of timed automata can be huge,
the search for an error can benefit greatly from heuristics. This approach has been called
directed model checking [101, 102] and has been applied to timed automata within the
AVACS project [98, 148, 149], including two works contained in this habilitation [12, 13].

Nondeterminism For hybrid automata, we distinguish continuous nondeterminism
and discrete nondeterminism. By continuous nondeterminism, we mean that the flow of
the variables is not uniquely determined. This could be caused by having disjunctions
such as ẋ = 2 ∨ ẋ = −2 or by having differential inequalities such as 2 ≤ ẋ ≤ 3. The
continuous nondeterminism caused by inequalities is the one assumed in my work [11].
By discrete nondeterminism, we mean that it is not specified uniquely at which point
in time a jump from one location to another should take place, and that there could be
several possibilities of where to jump to. In timed automata, we only have the latter
type of nondeterminism, but usually to a very big extent, which makes the reachability
problem non-trivial.

Verification and (Predicate) Abstraction In our context, verification means to
show that a system is safe, i. e., that no error trajectory exists. Verification can be done
by defining a suitable abstraction or over-approximation of the system. This is a system

24

ℓ1 ℓ2

ℓ3 ℓ4 ℓ5

x > 3

j
:=

1

j = 1
i := i + 1

x
<

2

i = 2

Figure 7: A timed automaton with spurious abstract error path (ℓ5 is the error state)

which exhibits all the behaviours of the concrete system and possibly more, and which is
easier to handle than the original system. If in this abstract system no error trajectory
exists, then surely there exists no error trajectory in the concrete system (see point 4 in
Section 1.3).

One particular abstraction method is that of predicate abstraction [42, 72, 132, 188].
Here, a system is abstracted by specifying a finite set of logic formulas, called predicates,
each of which formulates some property of a system state. Fixing a list of such predicates,
the abstraction of a system state is just a bitvector stating which of the predicates are
true and which ones are false in this state. Figure 7 shows a simple timed automaton used
for illustrating this idea. Suppose we have abstraction predicates loc = 2, loc = 5, i > 0.
The first two state that the automaton is in location 2 or 5, respectively, and the third
makes a statement about the integer variable i.

In the abstraction, there is the following error path:





¬loc = 2
¬loc = 5
¬i > 0



→





loc = 2
¬loc = 5
¬i > 0



→





loc = 2
¬loc = 5
i > 0



→





¬loc = 2
¬loc = 5

i > 0



→





¬loc = 2
loc = 5
i > 0



 .

This error path uses the transitions ℓ1 → ℓ2, ℓ2 → ℓ2, ℓ2 → ℓ4, and ℓ4 → ℓ5, as shown
by the dashed curve in the figure. Note that the abstraction is too coarse to check
whether the guard of ℓ2 → ℓ2 is fulfilled, since the abstraction does not speak about j
— this is where the abstraction loses information compared to the concrete system, i. e.,
it is an over-approximation. In fact, this path is spurious, i. e., it does not correspond
to a concrete path. Thus, the abstraction is not (yet) fine enough for verifying this
system. This can often be resolved by abstraction refinement [43, 73, 188], but not in
this example, because this timed automaton is actually unsafe! The example was chosen
deliberately because in our work [12, 13], predicate abstraction is not used for verification
as in previous works, but for defining heuristic functions.

Note that logic is used here for analysing the operational behaviour of the timed
automaton (see point 3 in Section 1.3). However, the use of logic for defining a heuristic
might also be seen as a synthesis of operational behaviour (of the search algorithm) from
logic (see point 2 in Section 1.3).

Compared to other kinds of abstraction (consider for example HSolver discussed be-
low), predicate abstraction is an approach that explicitly rests on logic, and in the ARMC

25

model checker [188], this approach has been implemented using logic programming. The
implementation makes use of features such as the automatic renaming of clause instances
built into logic programming, but also of add-on features such as the possibility to assert
and retract clauses during the execution, which are sometimes frowned upon because they
destroy the declarative semantics of logic programs discussed in Sections 1.2.1 and 2.1.
However, it is the use of these features that make this implementation a very interesting
application of logic programming.

Predicate Abstraction for Termination Analysis Predicate abstraction has also
been used for termination analysis [187], thus linking the present theme of this habilita-
tion to the theme discussed in Section 2.1. The work is on termination of (imperative)
programs, but in fact the modelling of programs is such that one can interpret them as an
Uppaal system composed from possibly several processes, but without clocks (see also
the paragraph on termination for imperative programs on page 15).

Transition predicates are predicates which do not formulate a property of a system
state, but of a system transition, typically by using unprimed and primed variables for the
predecessor and successor state, e. g. x′ ≥ x+ 1 which states that the transition increases
the value of x by at least 1. Thus depending on the choice of transition predicates, one
may or may not be able to describe certain behaviours of transitions. If the predicates
are well chosen, then it is possible to show termination of the program by showing a
decrease of some well-founded order for each of the finitely many abstract transitions of
the program.

HSOLVER HSolver is a tool for verification of hybrid systems [189, 190]. It works
by partitioning the continuous state space into finitely many boxes and using interval
arithmetic [172] for determining for any box pair A, B whether there is a trajectory from
some point in box A to some point in box B, in which case there should be an edge
connecting A and B (see point 4 in Section 1.3). As usual with abstractions (see above),
one aims at an abstraction that is fine enough so that it contains no error trajectories, in
which case the system has been proven safe. In HSolver, abstractions are successively
refined for this purpose. The refinement is done by splitting a box in two. My work [11]
interleaves the HSolver verification procedure with a falsification procedure.

Bounded Model Checking Bounded model checking is an approach for proving un-
safety, or a limited degree of safety, for a system, by translating the behaviour of the
system into a logic formula [16, 55, 111, 169, 174, 175, 211] (see point 6 in Section 1.3).
Given some bound k, the formula encodes the statement “there exists an error path of
length up to k in this system”. Clearly, if this formula is satisfiable, then there exists an
error path; otherwise, there exists no error path for path lengths up to k. To decide (or
at least: attempt to decide) the satisfiability, one uses a suitable logic solver. Depending
on several parameters (the kind of system considered, the logic used etc.), it may be
possible to read an actual error path off the satisfying instance computed by the solver.

In my approach for finding error paths of hybrid systems [11], I use a formula that is
similar to the one used in bounded model checking. The search for error paths is guided
by the HSolver abstraction [189, 190]. The formula states “there exists an error path
which closely corresponds to an abstract error path in the current abstraction” (see also
point 3 in Section 1.3). This restriction to error paths that closely correspond to a certain
abstract error path provides good guidance for the search.

One important method that bounded model checking rests on is SAT solving. In fact,
several authors have studied adaptations of general SAT solving for the bounded model
checking context [16, 111, 211], which is an important topic in the AVACS project7. For
SAT solving, concise representations of propositional formulae are an important issue,
which leads us to Section 3.2.

26

3.2 Linear Pseudo-Boolean Constraints

3.2.1 Contributions on this Subtheme

A linear pseudo-Boolean constraint (LPB) is an expression of the form a1 · l1 + . . . +
am · lm ≥ d, where each li is a literal (it assumes the value 1 or 0 depending on whether
a propositional variable xi is true or false) and the a1, . . . , am, d are natural numbers.
The formalism can be viewed as a generalisation of a propositional clause, on the other
hand it is a restriction of integer linear programming. It has been said that LPBs can
be used to represent Boolean functions more compactly than the well-known conjunctive
or disjunctive normal forms (CNF or DNF). I have studied the question: how much
more compactly? In a first work, I have compared the expressiveness of a single LPB to
that of related formalisms. Moreover, there is a formal statement that outlines how the
problem of computing an LPB representation of a given CNF or DNF might be solved
recursively. On the other hand, I have shown that there is a class of monotone Boolean
functions for which the LPB representation saves nothing compared to the CNF or DNF
[14]. In subsequent work, I have completed the above outline and given a full recursive
algorithm for computing an LPB representation of a given formula if this is possible [15].

3.2.2 More Details on the Concepts and Problems of this Subtheme

Monotone Boolean Functions An m-dimensional Boolean function is a function
Boolm → Bool . It can be represented as a propositional formula. A Boolean function
is monotone if it can be written as ∨,∧-combination of literals, where each variable
occurs in only one polarity [219]. The class of monotone Boolean functions is a superset
of the functions that can be represented as a single LPB, the so-called threshold functions
[83]. One interesting problem, unsolved until today, is to give a closed form expression
for the number of monotone Boolean functions of a given dimension. This is known as
Dedekind’s problem [144, 219].

SAT Solving SAT solving is the problem of deciding whether a propositional formula
is satisfiable [165, 173, 226]. This problem has applications in verification and design
automation concerning finite state systems. Several authors [18, 71, 96, 110, 111, 138]
have focused on generalising techniques applied in CNF-based propositional satisfiability
solving to LPBs, emphasising that this is beneficial because of the compactness of LPB
representations: solving a problem based on such a compact representation can often
be more efficient than based on a CNF or DNF encoding [45]. The following example
illustrates the compactness.

Example 3.1 The Boolean function represented by the DNF (x1 ∧ x2) ∨ (x1 ∧ x3) ∨
(x1 ∧ x4) ∨ (x1 ∧ x5) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4) ∨ (x3 ∧ x4 ∧ x5) can be represented more
compactly by a single LPB: 4x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5.

My work on LPBs was motivated by the application of SAT solving in bounded model
checking within the AVACS project7, discussed in Section 3.1.2 on page 26 (see also point
6 in Section 1.3). Via the application of SAT solving in bounded model checking, we can
establish a link between linear pseudo-Boolean constraints and transition systems (see
point 1 in Section 1.3).

(Integer) Linear Programming Linear programming is the problem of optimising
a linear objective function subject to linear equality and inequality constraints [196]. A
linear program is a problem that can be expressed in the following form:

Maximize cT x
subject to Ax ≤ b
where x ≥ 0

27

Here, x represents the vector of variables, while c and b are vectors of coefficients and A
is a matrix of coefficients. Tools for solving linear programs include Cassowary [40] and
CPLEX (by the ILOG company).

Whenever x is restricted to be a vector of integers rather than real numbers, one
speaks of integer linear programming. This restriction makes the problem NP-hard [57].

Whenever x is restricted further to be a vector of either 0 or 1, one speaks of 0-1
integer linear programming [18, 71]. A 0-1 linear constraint (i. e., one line of Ax ≤ b)
can be rewritten to an LPB, i. e. an expression of the form a1 · l1 + . . . + am · lm ≥ d,
where the a1, . . . , am, d are natural numbers [45, 110].

The relationships between SAT Solving, pseudo-Boolean solving and (integer) linear
programming have been studied by several authors [41, 45, 83, 96, 111, 162].

Binary Decision Diagrams A binary decision diagram (BDD) [99] is a directed
acyclic graph where each node is labelled with a propositional variable and has two
outgoing edges, the 0-edge and the 1-edge. Moreover, there are two nodes labelled 0 and
1, respectively, the so-called value nodes. BDDs are a formalism for representing Boolean
functions, and they are often very concise. It is interesting to compare BDDs to the class
of threshold functions. Hosaka et al. [139] have shown that there is a class of threshold
functions for which the optimal BDD representation is of exponential size in the number
of variables.

“Typical” Linear Pseudo-Boolean Constraint Problems The (not very explicit)
assumption underlying the works advocating the LPB encoding [18, 71, 96, 110, 111]
instead of the CNF encoding is that the problems, as they arise in an application domain,
have a natural encoding as a set of LPBs, and that the CNF encoding would be larger.
Linear pseudo-Boolean constraints are suited for expressing implications, which is useful
for bounded model checking applications [110, 111]. Aloul et al. [18] mention the problems
Min-Cover, Max-SAT, and MAX-ONEs. For example, Max-SAT is the problem of finding
a variable assignment that maximises the number of satisfied clauses of an unsatisfiable
SAT instance. Furthermore, applications from design automation [71], the pigeonhole
problem [96], and gate level netlists [110] are mentioned as applications. Barth [45]
mentions that LPBs arise in artificial intelligence applications [46].

However, apart from possibly the last work and one example given in the context of
bounded model checking [111], in all these applications the LPBs are actually cardinality
constraints, which are a restricted form of linear pseudo-Boolean constraints, namely
l1 + . . . + lm ≥ d. Thus all those works do not clarify what the additional expressiveness
of LPBs compared to cardinality constraints is useful for.

The Threshold Recognition Problem In my work [14, 15], I have suggested the
possibility that LPBs could be used to encode arbitrary propositional formulae, not just
the ones where the application dictates such an encoding in a straightforward way.

For this, any formula must be converted into a set of linear pseudo-Boolean con-
straints. This raises the fundamental question of whether a formula can be represented
as a single linear pseudo-Boolean constraint, which is the so-called threshold recognition
problem [83]. While this problem can be solved näıvely by formulating it as a linear pro-
gramming problem (where the coefficients one searches for become the variables of the
linear programming problem), it has been an open question studied for 30 years whether
there is a more direct, combinatorial procedure for solving this problem. I have designed
such a procedure [15].

28

4 Conclusion and Outlook

Since the research on logic programming presented in this habilitation (Section 2) has
been conducted several years ago, I would now like to give an overview of some recent
developments in logic programming. I am pleased to state that several of these develop-
ments touch upon topics related to the second main theme of this habilitation, treated
in Section 3. That is to say, those recent works establish various links between, broadly
speaking, logic programming and model checking.

4.1 Implementations of Model Checking in Logic Programming

Several authors have used the logic programming paradigm for implementing model
checking tools. We have already discussed ARMC in Section 3.1.2. Nonnengart [181]
has developed an approach to verifying hybrid systems, i. e., to showing that no un-
safe state is reachable. He argues that explicit forward reachability analysis, while not
computing redundant information, may perform redundant computations, namely when
dealing with a hybrid system where trajectories pass through a location very often. In
such cases, the author proposes to compute the behaviour of such a location once and for
all and express it as a formula. The method is implemented (mainly) in Sicstus Prolog
[214] with constraints.

Recently, coinductive logic programming has been proposed as a paradigm that can
directly represent and verify properties of ω-automata [125], i. e., automata that accept
infinite words, a formalism which is in fact the basis for defining timed [21] and hybrid
automata [130]. In coinductive logic programming, proofs (computations) are infinite
in theory, which means that results of computations can be output only if those results
exhibit a certain regularity. Just as finite automata can be programmed using standard
logic programming, ω-automata can be programmed using coinductive logic program-
ming. Properties such as safety (a certain location is never visited) or liveness (a certain
location is visited infinitely often) can then be checked by the execution of the coinduc-
tive logic program in a natural way. The authors have applied this approach also to
timed automata, where the clocks are implemented using real numbers and arithmetic
constraint programming in addition to logic programming. The authors conjecture that
adding negation to coinductive logic programming, one would obtain something resem-
bling answer set programming, see Section 4.3.

4.2 The Web

In the last years, logic programming applications concerning the World Wide Web, in
particular, the Semantic Web [52, 53, 108], have received much attention [123, 223].
Wielemaker et al. [223] have proposed an approach where an entire HTTP server is
implemented in SWI-Prolog. The features of logic programming that prove most valuable
in this context are: the safe semantics and automatic memory management (absence of
pointers), and the nondeterminism. However, the application to Web services also points
to some desirable extensions to the ISO-Prolog standard [92]. One extension is support for
concurrency, necessary mainly due to possible network delays causing a single transaction
to take a long time. Another extension is the use of arbitrary Unicode [222] characters
in Prolog atoms, to enable Prolog atoms to represent arbitrary text. It should also be
pointed out that for certain subtasks that turned out to be performance bottlenecks, the
HTTP server uses an implementation in C rather than SWI-Prolog. The applications
of this HTTP server include a Prolog-powered system for ontology management and
reasoning based on description logics [38]. The description logic reasoning services are
provided using a combination of reasoning implemented in Prolog and performed on
Prolog terms, and calls to external description logic servers.

29

The Semantic Web [52, 53, 108] develops standards and technologies to help machines
understand the information on the Web to support richer discovery, data integration,
navigation, and automation [103]. It has several layers, the highest being the Ontology
layer in the form of the OWL language based on description logics [38]. To encode
reasoning tasks in description logics for use in the Semantic Web, answer set programming
has been used [44], leading us to the next important topic of recent logic programming
research.

4.3 Answer Set Programming

In recent years, answer set programming (ASP) has become one of the most popular
topics in the field of logic programming. ASP has its root in logic programming and non-
monotonic reasoning [117, 118, 155]. It is well-suited for modelling and solving problems
involving common-sense reasoning [103]. The ASP paradigm constitutes a shift from
theorem proving (proof-finding) to constraint programming (model-finding) [67, 220].

The ASP semantics deals with negation in clause (rule in ASP terminology) bodies
of logic programs. The semantics is based on the Gelfond-Lifschitz transformation [117,
118]: assuming a literal set A, one removes all rules having an atom from A negated in
their body. Afterwards one removes all negated atoms from all rule bodies. The set A
is an answer set if the smallest model (see footnote 3 on page 13) of this transformed
program is exactly A. The ASP semantics is the definitive solution to the negation-in-
bodies problem within the class of 2-valued semantics [220]. The definition of answer
sets was motivated by the aim of providing a declarative semantics of negation-as-failure
[155].

Unlike usual logic programming, most ASP implementations do not support function
symbols in the logic language. Finitary and finitely recursive programs were introduced
in order to allow function symbols (hence infinite domains) and recursion in ASP to some
extent. Restrictions are imposed that ensure that there are only finitely many potential
sources of inconsistency [47, 58].

4.3.1 ASP Solvers

Several ASP solvers have been proposed, e. g. Smodels [197], DLV [154], nomore++ [22],
noMoRe [158], ASSAT [156], and Cmodels [121]. In order to provide a formalism for
systematic comparison between ASP solvers, a tableau calculus has been developed [115]
and later generalised [116]. One of the key technicalities of this formalism is to define
an assignment not only for single propositional atoms, but also for entire clause bodies.
Existing ASP solvers can then be characterised by specifying a subset of the tableau
rules.

Some ASP solvers such as ASSAT [156] and Cmodels [122] are based on SAT solvers,
see Section 3.2. The SAT solver is used as a model generator. It is then checked whether
the model contains an unfounded loop. Interleaving these phases is an important aspect
of improving the performance [157].

Smodels [197] is an atom-based solver, i. e., it does not talk about the truth or falsity
of an entire body explicitly, but only about the truth or falsity of single atoms.

The essential difference between ASP solvers lies in the use of the cut, i. e., an explicit
case distinction for the assignment of a variable. One can formally show that applying the
cut exclusively to single atoms (as in Smodels) is not superior to applying it exclusively
to entire rule bodies (as in noMoRe), and vice versa, while a combination of both (as in
nomore++) is exponentially stronger.

As pointed out by Demoen [90], ASP has not yet reached a high level of maturity
when it comes to the implementation of the solvers, and he has referred to the famous
formula by Kowalski (see Section 2.1.2), stressing that it is the “Control” part that still

30

needs improvement. Recall that the “Control” issue is also considered in this habilitation,
however in the context of logic programming (see Section 2.1).

4.3.2 Applications

ASP provides a form of declarative programming well-suited to difficult combinatorial
search problems [66, 155]. Applications include data integration, configuration, diagnosis,
text mining, reasoning about actions and change [103].

Arguably, ASP is still lacking large-scale applications. However, one of the first large-
scale applications, as claimed by the authors of the application, is generating optimal
code using superoptimisation [66].

Another application is planning [155, 221]. I emphasise this application here because
planning is a search problem whose solution techniques have inspired heuristics for di-
rected model checking [148, 149], one of the themes of this habilitation work, see Section
3.1. Let us review the approach by Lifschitz [155]. The non-monotonic character of
negation-as-failure, a logic programming feature, makes logic programming particularly
suited for representing properties of actions. When modelling planning tasks in ASP, it
is helpful to view the rules under the aspect of whether they generate multiple answer
sets, or whether they eliminate some of the answer sets. The approach is demonstrated
using Blocksworld, a standard planning domain where the task is to stack building blocks
using a robot arm. The ASP rules are structured into those that describe the effects
of an action, those that state certain side conditions, and those formulating a particular
problem instance. There is a notion of generating some action sequences and then testing
them in order to eliminate the ones that are impossible or do not lead to the goal state.
For efficient execution of such an ASP program, the scheduling of the generating and
testing is an important issue (see the paragraph at the end of Section 4.3.1).

ASP has also been applied in bioinformatics. We will now turn to this field.

4.4 Bioinformatics

Bioinformatics deals with biological systems simulations and with prediction of the spatial
conformation of a biological polymer, among others.

Modelling of biological networks has been approached using ASP [100, 124], see Sec-
tion 4.3. While ASP has been related to action languages [119], in the biological context
the notion of reaction is more adequate, but this can be addressed by adaptations to the
language.

4.4.1 Systems Biology

The work by Fages and Soliman on systems biology [106, 107] ties together several con-
cepts and topics that play important roles in this habilitation work as well. Systems
biology aims at elucidating the high-level functions of the cell from their biochemical
basis at the molecular level. A central issue in systems biology is studying the behaviour
of biochemical systems at different levels of abstraction.

The biochemical basis at the molecular level is given in the form of chemical reaction
rules à la H2O + CO2 → H2CO3, which are written in a particular format called SBML
(systems biology markup language). Given a set of such rules, the behaviour of a bio-
logical system can be interpreted using at least three different semantics, which are all
interpreted using the BIOCHAM abstract machine, implemented in Prolog.

One semantics is the stochastical semantics where the transitions connect discrete
states representing the concentrations of each molecule in the system, and each transition
is labelled with a probability. Next there is the discrete semantics where one abstracts
from the probabilities and just keeps the information of whether a transition is possible
at all. Finally there is the Boolean semantics where one further abstracts from the

31

precise quantities of the molecules and just keeps the information of whether a molecule
is present at all. It has been shown that these semantics correspond to different levels of
abstraction in the sense of abstract interpretation [82, 106], a technique I have used for
groundness analysis of logic programs [9], see Section 2.2 on pages 16 and 19.

Biologists assign functions, i. e., high-level behaviour descriptions, to reaction rules,
such as kinase or phosphotase. Fages and Soliman propose to interpret these functions
as the programming-language concept of a type, which plays a prominent role in this
habilitation work, see Section 2.2. Analysis of the function of a reaction rule then boils
down to type inference. In order to refine the functions, the authors even use subtyping
in the sense of my joint work with Fages [6], see pages 15 and 17.

In another work [107], the authors use temporal logic to formalise biological properties
known from experiments. The question is similar as in model checking, see Section 1.2.2:
Given a set of reaction rules as above, does this set describe, i. e., is it a model of, the
experimental observations? If not, the model is revised, using inductive logic programming
[176] techniques. Inductive logic programming is an approach for generating logical
formulae (here: reaction rules) from data (here: the temporal formulae).

4.4.2 The Protein Structure Prediction Problem

The primary structure of a protein is a lined sequence of aminoacids. Ignoring the sec-
ondary structure here, the tertiary structure is a three-dimensional conformation associ-
ated to the primary structure. The protein structure prediction problem is the problem
of determining foldings with minimal energy. For this one uses lattice models, which are
three-dimensional graphs with repeated patterns, e. g., the so-called face-centred cube.

Backofen and Will [39] solved the problem using constraint programming for proteins
of length 160 and more on the face-centred cube. Efficiency is obtained by sophisticated
symmetry detection.

Dovier and his coauthors have also approached this problem using logic and constraint
programming wherever possible [84, 85, 97].

They use a CLP(FD) (constraint logic programming over finite domains) encoding
[84]. For efficiency reasons, the approach of constrain-and-generate is used, much like the
test-and-generate paradigm [180] mentioned in Example 2.5. In addition, the efficiency
can be enhanced using an ad-hoc labelling search with biologically motivated heuristics.

Dovier et al. have also analysed the folding process using model checking results [85]
and planning [97], concepts which are relevant for this habilitation work as well, see
Section 3.1.

4.5 Concluding Remarks and Outlook

This habilitation work contains contributions in quite diverse areas of computer science.
Yet, these contributions are not isolated from each other. There are some common aims
and techniques, which I listed in Section 1.3 and pointed out throughout Sections 2 and
3 as they became manifest. The above study of the literature has shown some further
connections and combinations of ideas and techniques from different fields. In particular,
I would like to emphasise the use of predicate abstraction for showing termination by
Podelski and Rybalchenko [186, 187], and the links established between model checking
and planning on the one hand and logic programming and type systems on the other
[85, 97, 106, 107], in the context of bioinformatics.

I conclude this summary with some directions for future work:

• Many open questions remain in the study of linear pseudo-Boolean constraints:
What exactly is the relationship to binary decision diagrams? What is the com-
plexity of the algorithm for threshold recognition [15]? How can one generate a
minimal linear pseudo-Boolean constraint for a threshold function? How can an

32

arbitrary Boolean function be represented compactly as a set of linear pseudo-
Boolean constraints?

• Concerning the problem of finding error trajectories of hybrid systems [11], I have
recently done some work pursuing the same aim, but for deterministic systems
[191]. In this work, the problem of finding an error trajectory is viewed as the
problem of optimising a numerical quality function for trajectories. There are some
relationships to heuristic search (hence to the work I have done for timed automata)
and to reinforcement learning [213], but these need to be developed further.

• Concerning directed model checking of timed automata, it would be interesting to
compare the heuristic definition formalisms proposed within the AVACS project
[12, 13, 98, 148, 149] with each other on a theoretical level, and to generalise
those formalisms to systems other than timed automata. The hope is that such a
study would reveal some fundamental results about the strengths and weaknesses
of heuristic definition formalisms, possibly revealing that some formalism is strictly
more powerful than some other formalism.

• On the more visionary side, there is one issue which at present I can only describe
at a high level of abstraction but which in my view would be highly interesting to
explore further:

My works on hybrid automata on the one hand [11, 191] and timed automata on
the other hand [12, 13] are very different on the technical level, both regarding
the exact formulation of the problem and regarding the techniques used for solving
the problem, yet they have one aspect in common: in both cases, an abstraction
technique originally conceived for the purpose of verification is used for providing
guidance in the search for an error trajectory, i.e., for falsification (see Section 1.2.2
on page 7, Section 3.1.1, and page 25). I am not aware of any other works that
have integrated verification and falsification under this aspect.

However, at present, I cannot describe a general principle underlying the use of
verification-inspired abstraction techniques for falsification. Under which circum-
stances are such techniques useful for falsification? In which ways should abstrac-
tions used for falsification be different from abstractions used for verification?8

What does this mean for approaches that interleave verification and falsification
attempts: is it good to use the same abstraction for both tasks [191], or is there
some better approach? Giving answers to these questions might be one key in
designing better abstractions for falsification of transition systems, thus enhancing
the performance of falsification algorithms.

8A first, preliminary investigation of this question [13] followed the hypothesis that they should be
different in a certain respect, but found no strong support for this hypothesis.

33

References for the Selected Articles

Logic Programming and Functional Programming

Termination and Selection Rules

[1] Annalisa Bossi, Sandro Etalle, Sabina Rossi, and Jan-Georg Smaus. Semantics and
termination of simply-moded logic programs with dynamic scheduling. In David
Sands, editor, Proceedings of the European Symposium on Programming, volume 2028
of LNCS, pages 402–416. Springer-Verlag, 2001.

[2] Annalisa Bossi, Sandro Etalle, Sabina Rossi, and Jan-Georg Smaus. Termination of
simply moded logic programs with dynamic scheduling. Transactions on Computa-
tional Logic, 5(3):470–507, 2004.

[3] Jan-Georg Smaus. Termination of logic programs using various dynamic selection
rules. In Bart Demoen and Vladimir Lifschitz, editors, Proceedings of the 20th In-
ternational Conference on Logic Programming, volume 3132 of LNCS, pages 43–57.
Springer-Verlag, 2004.

[4] Dino Pedreschi, Salvatore Ruggieri, and Jan-Georg Smaus. Classes of terminating
logic programs. Theory and Practice of Logic Programming, 2(3):369–418, 2002.

[5] Dino Pedreschi, Salvatore Ruggieri, and Jan-Georg Smaus. Characterisations of ter-
mination in logic programming. In Maurice Bruynooghe and Kung-Kiu Lau, editors,
Program Development in Computational Logic, volume 3049 of LNCS, pages 376–431.
Springer-Verlag, 2004.

Typed Programs

[6] Jan-Georg Smaus, François Fages, and Pierre Deransart. Using modes to ensure
subject reduction for typed logic programs with subtyping. In Sanjiv Kapoor and
Sanjiva Prasad, editors, Proceedings of the 20th Conference on the Foundations of
Software Technology and Theoretical Computer Science, volume 1974 of LNCS, pages
214–226. Springer-Verlag, 2000.

[7] Pierre Deransart and Jan-Georg Smaus. Subject reduction of logic programs as proof-
theoretic property. Journal of Functional and Logic Programming (electronic journal),
2002(2), 2002.

[8] Jan-Georg Smaus. The head condition and polymorphic recursion. In Zhenjiang Hu
and Mario Rodŕıguez-Artalejo, editors, Proceedings of the 6th International Sympo-
sium on Functional and Logic Programming, volume 2441 of LNCS, pages 259–274.
Springer-Verlag, 2002.

[9] Jan-Georg Smaus. Analysis of polymorphically typed logic programs using ACI-
unification. In Robert Nieuwenhuis and Andrei Voronkov, editors, Proceedings of the
8th International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, volume 2250 of LNAI, pages 280–295. Springer-Verlag, 2001.

“Formulas as Programs”

[10] Jan-Georg Smaus. Is there an optimal generic semantics for first-order equations?
In Catuscia Palamidessi, editor, Proceedings of the 19th International Conference on
Logic Programming, volume 2916 of LNCS, pages 438–450. Springer-Verlag, 2003.

34

Logic Approaches to Model Checking of Timed and Hybrid Sys-

tems

Finding Error Paths in Timed and Hybrid Systems

[11] Stefan Ratschan and Jan-Georg Smaus. Verification-integrated falsification of non-
deterministic hybrid systems. In Christos G. Cassandras, Alessandro Giua, Carla
Seatzu, and Janan Zaytoon, editors, Proceedings of the 2nd (2006) IFAC Conference
on Analysis and Design of Hybrid Systems, pages 371–376. Elsevier Science Inc.,
2007.

[12] Jörg Hoffmann, Jan-Georg Smaus, Andrey Rybalchenko, Sebastian Kupferschmid,
and Andreas Podelski. Using predicate abstraction to generate heuristic functions
in UPPAAL. In Stefan Edelkamp and Alessio Lomuscio, editors, Post-Proceedings
of the 4th (2006) Workshop on Model Checking and Artificial Intelligence, volume
4428 of LNCS, pages 51–66. Springer-Verlag, 2007.

[13] Jan-Georg Smaus and Jörg Hoffmann. Relaxation refinement: A new method to
generate heuristic functions. In Doron Peled and Michael Wooldridge, editors, Post-
Proceedings of the 5th (2008) Workshop on Model Checking and Artificial Intelli-
gence, LNCS. Springer-Verlag, 2009. To appear.

Linear Pseudo-Boolean Constraints

[14] Jan-Georg Smaus. Representing Boolean functions as linear pseudo-Boolean con-
straints. In Youssef Hamadi, editor, Proceedings of the CP 2006 Workshop on the
Integration of SAT and CP techniques, pages 49–63, 2006.

[15] Jan-Georg Smaus. On Boolean functions encodable as a single linear pseudo-Boolean
constraint. In Pascal Van Hentenryck and Laurence Wolsey, editors, Proceedings
of the 4th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, volume 4510 of
LNCS, pages 288–302. Springer-Verlag, 2007.

35

Further References

[16] E. Ábrahám, B. Becker, F. Klaedtke, and M. Steffen. Optimizing bounded model
checking for linear hybrid systems. In R. Cousot, editor, Proceedings of the 6th
International Conference on Verification, Model Checking, and Abstract Interpre-
tation, volume 3385 of LNCS, pages 396–412. Springer-Verlag, 2005.

[17] H. Aljazzar, H. Hermanns, and S. Leue. Counterexamples for timed probabilistic
reachability. In P. Pettersson and W. Yi, editors, Proceedings of the 3rd Interna-
tional Conference on Formal Modeling and Analysis of Timed System, volume 3829
of LNCS, pages 177–195. Springer-Verlag, 2005.

[18] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. Generic ILP ver-
sus specialized 0-1 ILP: an update. In L. T. Pileggi and A. Kuehlmann, editors,
Proceedings of the 2002 IEEE/ACM International Conference on Computer-Aided
Design, pages 450–457. ACM, 2002.

[19] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

[20] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In
R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Proceedings of the
1992 Hybrid Systems Conference, volume 736 of LNCS, pages 209–229. Springer,
1993.

[21] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[22] C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub. The nomore++
approach to answer set solving. In G. Sutcliffe and A. Voronkov, editors, Pro-
ceeding of the 12th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, volume 3835 of LNCS, pages 95–109. Springer-Verlag,
2005.

[23] K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

[24] K. R. Apt. A denotational semantics for first-order logic. In J. Lloyd et al., editors,
Proceedings of the 1st International Conference on Computational Logic, volume
1861 of LNAI, pages 53–69. Springer-Verlag, 2000.

[25] K. R. Apt and M. Bezem. Acyclic programs. New Generation Computing,
29(3):335–363, 1991.

[26] K. R. Apt and M. Bezem. Formulas as programs. In K. R. Apt, V. Marek,
M. Truszczynski, and D. S. Warren, editors, The Logic Programming Paradigm:
A 25 Years Perspective, pages 75–107. Springer-Verlag, 1999.

[27] K. R. Apt, J. Brunekreef, A. Schaerf, and V. Partington. Alma-0: An imperative
language that supports declarative programming. ACM Transactions on Program-
ming Languages and Systems, 20(5):1014–1066, 1998.

[28] K. R. Apt and S. Etalle. On the unification free Prolog programs. In
A. Borzyszkowski and S. Sokolowski, editors, Proceedings of the 18th Interna-
tional Symposium on Mathematical Foundations of Computer Science, volume 711
of LNCS, pages 1–19. Springer-Verlag, 1993.

36

[29] K. R. Apt and I. Luitjes. Verification of logic programs with delay declarations. In
V. S. Alagar and M. Nivat, editors, Proceedings of the 4th International Conference
on Algebraic Methodology and Software Technology, volume 936 of LNCS, pages 66–
90. Springer-Verlag, 1995. Invited Lecture.

[30] K. R. Apt and E. Marchiori. Reasoning about Prolog programs: From modes
through types to assertions. Formal Aspects of Computing, 6(6A):743–765, 1994.

[31] K. R. Apt and D. Pedreschi. Reasoning about termination of pure Prolog programs.
Information and Computation, 106(1):109–157, 1993.

[32] K. R. Apt and D. Pedreschi. Modular termination proofs for logic and pure Prolog
programs. In G. Levi, editor, Advances in Logic Programming Theory, pages 183–
229. Oxford University Press, 1994.

[33] K. R. Apt and A. Pellegrini. On the occur-check free Prolog programs. ACM
Transactions on Programming Languages and Systems, 16(3):687–726, 1994.

[34] K. R. Apt and J.-G. Smaus. Rule-based versus procedure-based view of logic
programming. Joint Bulletin of the Novosibirsk Computing Center and Institute of
Informatics Systems; Series: Computer Science, 16:75–97, 2001.

[35] K. R. Apt and C. F. M. Vermeulen. First-order logic as a constraint programming
language. In M. Baaz and A. Voronkov, editors, Proceedings of the 9th Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning,
volume 2514 of LNCS, pages 19–35. Springer-Verlag, 2002.

[36] T. Armstrong, K. Marriott, P. Schachte, and H.Søndergaard. Two classes of
Boolean functions for dependency analysis. Science of Computer Programming,
31(1):3–45, 1998.

[37] T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Boolean functions
for dependency analysis: Algebraic properties and efficient representation. In B. Le
Charlier, editor, Proceedings of the 1st Static Analysis Symposium, volume 864 of
LNCS, pages 266–280. Springer-Verlag, 1994.

[38] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2003.

[39] R. Backofen and S. Will. A constraint-based aproach to fast and exact structure
prediction in three-dimensional protein models. Constraints, 11(1):5–30, 2006.

[40] G. J. Badros, A. Borning, and P. J. Stuckey. The Cassowary linear arithmetic
constraint solving algorithm. ACM Transactions on Computer-Human Interaction,
8(4):267–306, 2001.

[41] O. Bailleux, Y. Boufkhad, and O. Roussel. A translation of pseudo Boolean con-
straints to SAT. Journal on Satisfiability, Boolean Modeling and Computation,
2:191–200, 2006.

[42] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In Proceedings of the 2001 ACM SIGPLAN Conference
on Programming Language Design and Implementation, volume 36 of SIGPLAN
Notices, pages 203–213, 2001.

37

[43] T. Ball, A. Podelski, and S. K. Rajamani. Completeness of abstraction refinement
for software model checking. In J.-P. Katoen and P. Stevens, editors, Proceedings
of the 8th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, volume 2280 of LNCS. Springer-Verlag, 2002.

[44] C. Baral. Knowledge representation, reasoning and declarative problem solving.
Cambridge University Press, 2003.

[45] P. Barth. Linear 0-1 inequalities and extended clauses. In A. Voronkov, editor, Pro-
ceedings of the 4th International Conference on Logic Programming and Automated
Reasoning, volume 698 of LNCS, pages 40–51. Springer-Verlag, 1993.

[46] P. Barth and A. Bockmayr. Solving 0-1 problems in CLP(PB). In Proceedings of
the 9th Conference on Artificial Intelligence for Applications. IEEE, 1993.

[47] S. Baselice, P. A. Bonatti, and G. Criscuolo. On finitely recursive programs. In
V. Dahl and I. Niemelä, editors, Proceedings pf the 23rd International Conference
on Logic Programming, volume 4670 of LNCS, pages 89–103. Springer-Verlag, 2007.

[48] G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaal. In M. Bernardo
and F. Corradini, editors, Revised Lectures on Formal Methods for the Design of
Real-Time Systems, volume 3185 of LNCS, pages 200–236, 2004.

[49] C. Beierle. Type inferencing for polymorphic order-sorted logic programs. In
L. Sterling, editor, Proceedings of the 12th International Conference on Logic Pro-
gramming, pages 765–779. MIT Press, 1995.

[50] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In
J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures on Concurrency and Petri
Nets 2003, volume 3098 of LNCS, pages 87–124. Springer-Verlag, 2004.

[51] F. Benoy, M. Codish, A. Heaton, and A. M. King. Widening Pos for Efficient and
Scalable Groundness Analysis. Technical Report 515, University of Kent at Canter-
bury, 1997. Available at http://www.cs.ukc.ac.uk/pubs/1997/515/index.html.

[52] T. Berners-Lee. Weaving the Web. Harper, 1999.

[53] T. Berners-Lee, J. A. Hendler, and O. Lassila. The Semantic Web. Scientific
American, 284:34–43, 2001.

[54] M. Bezem. Strong termination of logic programs. Journal of Logic Programming,
15(1 & 2):79–97, 1993.

[55] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In R. Cleaveland, editor, 5th International Conference on Tools and Al-
gorithms for Construction and Analysis of Systems, volume 1579 of LNCS, pages
193–207. Springer-Verlag, 1999.

[56] R. S. Bird and L. G. L. T. Meertens. Nested datatypes. In J. Jeuring, editor,
Proceedings of the Conference on Mathematics of Program Construction, volume
1422 of LNCS, pages 52–67. Springer-Verlag, 1998.

[57] A. Bockmayr and V. Weispfenning. Handbook of Automated Reasoning, chapter
Chapter 12: Solving Numerical Constraints. Elsevier, 2001.

[58] P. Bonatti. Reasoning with infinite stable models. Artificial Intelligence, 156(1):75–
111, 2004.

38

[59] A. Bossi and N. Cocco. Successes in logic programs. In P. Flener, editor, Proceedings
of the 8th International Workshop on Logic Program Synthesis and Transformation,
volume 1559 of LNCS, pages 219–239. Springer-Verlag, 1999.

[60] A. Bossi, N. Cocco, S. Etalle, and S. Rossi. Declarative semantics of input consum-
ing logic programs. In M. Bruynooghe and K.-K. Lau, editors, Program Develop-
ment in Computational Logic, volume 3049 of LNCS, pages 90–114. Springer-Verlag,
2004.

[61] A. Bossi, N. Cocco, and M. Fabris. Norms on terms and their use in proving
universal termination of a logic program. Theoretical Comput. Sci., 124(2):297–
328, 1994.

[62] A. Bossi, S. Etalle, and S. Rossi. Properties of input-consuming derivations. In
S. Etalle and J.-G. Smaus, editors, Proc. of the ICLP Workshop on Verification of
Logic Programs, volume 30(1) of Electronic Notes in Theoretical Computer Science,
1999.

[63] A. Bossi, S. Etalle, and S. Rossi. Semantics of input-consuming logic programs.
In J. W. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi,
L. M. Pereira, Y. Sagiv, and P. J. Stuckey, editors, Proceedings of the 1st Interna-
tional Conference on Computational Logic, volume 1861 of LNCS, pages 194–208.
Springer-Verlag, 2000.

[64] A. Bossi, S. Etalle, and S. Rossi. Semantics of well-moded input-consuming logic
programs. Computer Languages, 26(1):1–25, 2000.

[65] A. Bossi, S. Etalle, and S. Rossi. Properties of input-consuming derivations. Theory
and Practice of Logic Programming, 2(2):125–154, 2002.

[66] M. Brain, T. Crick, M. D. Vos, and J. Fitch. TOAST: Applying answer set program-
ming to superoptimisation. In S. Etalle and M. Truszczyński, editors, Proceedings
of the 22nd International Conference on Logic Programming, volume 4079 of LNCS,
pages 270–284. Springer-Verlag, 2006.

[67] G. Brewka. Preferences, contexts and answer sets. In V. Dahl and I. Niemelä,
editors, Proceedings pf the 23rd International Conference on Logic Programming,
volume 4670 of LNCS, page 22. Springer-Verlag, 2007.

[68] F. Bronsard, T. K. Lakshman, and U. S. Reddy. A framework of directionality
for proving termination of logic programs. In K. R. Apt, editor, Proc. of the Joint
International Conference and Symposium on Logic Programming, pages 321–335.
MIT Press, 1992.

[69] M. Bruynooghe, M. Codish, S. Genaim, and W. Vanhoof. Reuse of results in ter-
mination analysis of typed logic programs. In M. V. Hermenegildo and G. Puebla,
editors, Proceedings of the 9th International Static Analysis Symposium, volume
2477 of LNCS, pages 477–492. Springer-Verlag, 2002.

[70] M. Bruynooghe, W. Vanhoof, and M. Codish. Pos(T): Analyzing dependencies
in typed logic programs. In D. Bjørner, M. Broy, and A. V. Zamulin, editors,
Proceedings og the 4th International Andrei Ershov Memorial Conference, Revised
Papers, volume 2244 of LNCS, pages 406–420. Springer-Verlag, 2001.

[71] D. Chai and A. Kuehlmann. A fast pseudo-Boolean constraint solver. In Proceedings
of the 40th Design Automation Conference, pages 830–835. ACM, 2003.

39

[72] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. In Proceedings of the 25th International Conference on
Software Engineering, pages 385–395. IEEE Computer Society, 2003.

[73] E. Clarke, A. Gupta, and O. Strichman. SAT-based counterexample-guided ab-
straction refinement. IEEE Transactions on Computer Aided Design, 23(7):1113–
1123, 2004.

[74] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2002.
5th print.

[75] M. Codish. Efficient goal directed bottom-up evaluation of logic programs. In
L. Naish, editor, Proceedings of the 14th Joint International Conference and Sym-
posium on Logic Programming. MIT Press, 1997. Presented as poster.

[76] M. Codish, M. Bruynooghe, M. Garćıa de la Banda, and M. Hermenegildo. Ex-
ploiting goal independence in the analysis of logic programs. Journal of Logic
Programming, 32(3):247–261, 1997.

[77] M. Codish, D. Dams, and E. Yardeni. Bottom-up abstract interpretation of logic
programs. Theoretical Computer Science, 124(1):93–125, 1994.

[78] M. Codish and B. Demoen. Deriving polymorphic type dependencies for logic
programs using multiple incarnations of Prop. In B. Le Charlier, editor, Proceed-
ings of the 1st Static Analysis Symposium, volume 864 of LNCS, pages 281–296.
Springer-Verlag, 1994.

[79] M. Codish and B. Demoen. Analyzing logic programs using “PROP”-ositional logic
programs and a Magic Wand. Journal of Logic Programming, 25(3):249–274, 1995.

[80] M. Codish, M. Garćıa de la Banda, M. Bruynooghe, and M. Hermenegildo. Goal
dependent versus goal independent analysis of logic programs. In F. Pfenning,
editor, Proceedings of the 5th International Conference on Logic Programming and
Automated Reasoning, volume 822 of LNCS, pages 305–319. Springer-Verlag, 1994.

[81] M. Codish and V. Lagoon. Type dependencies for logic programs using ACI-
unification. Theoretical Computer Science, 238(1–2):131–159, 2000.

[82] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the 4th Symposium on Principles of Programming Languages, pages 238–252.
ACM Press, 1977.

[83] Y. Crama and P. L. Hammer. Boolean Functions – Theory, Algorithms, and Ap-
plications. Cambridge University Press, 2008. To appear.

[84] A. Dal Palù, A. Dovier, and F. Fogolari. Constraint logic programming approach
to protein structure prediction. BMC Bioinformatics, 5:186, 2004.

[85] E. De Maria, A. Dovier, A. Montanari, and C. Piazza. Exploiting model checking in
constraint-based approaches to the protein folding. In Proceedings of the Workshop
on Constraint Based Methods for Bioinformatics, pages 46–54, 2006.

[86] D. De Schreye and S. Decorte. Termination of logic programs: the never-ending
story. Journal of Logic Programming, 19-20:199–260, 1994.

[87] S. K. Debray and D. S. Warren. Detection and optimization of functional com-
putations in Prolog. In E. Shapiro, editor, Proceedings of the 3rd International
Conference on Logic Programming, LNCS, pages 490–504. Springer-Verlag, 1986.

40

[88] S. Decorte and D. De Schreye. Termination analysis: Some practical properties of
the norm and level mapping space. In J. Jaffar, editor, Proceedings of the 15th Joint
International Conference and Symposium on Logic Programming, pages 235–249.
MIT Press, 1998.

[89] S. Decorte, D. De Schreye, M. Leuschel, B. Martens, and K. F. Sagonas. Termina-
tion analysis for tabled logic programming. In N. E. Fuchs, editor, Proceedings of
the 7th International Workshop on Logic Programming Synthesis and Transforma-
tion, volume 1463 of LNCS, pages 111–127. Springer-Verlag, 1998.

[90] B. Demoen. My life as a Prolog implementor. In Newsletter. As-
sociation for Logic Programming, February 2008. Available from
http://www.logicprogramming.org/newsletter/.

[91] B. Demoen, M. Garćıa de la Banda, W. Harvey, K. Marriott, and P. J. Stuckey.
An overview of HAL. In J. Jaffar, editor, Proceedings of the 5th International
Conference on Principles and Practice of Constraint Programming, volume 1713 of
LNCS, pages 174–188. Springer-Verlag, 1999.

[92] P. Deransart, A. A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer-
Verlag, 1996.

[93] P. Deransart and J. Ma luszyński. A Grammatical View of Logic Programming. The
MIT Press, 1993.

[94] H. Dierks, S. Kupferschmid, and K. G. Larsen. Automatic abstraction refinement
for timed automata. In J.-F. Raskin and P. S. Thiagarajan, editors, Proceedings
of the 5th International Conference on Formal Modelling and Analysis of Timed
Systems, volume 4763 of LNCS, pages 114–129. Springer-Verlag, 2007.

[95] R. Dietrich and F. Hagl. A polymorphic type system with subtypes for Prolog. In
H. Ganzinger, editor, Proceedings of the 2nd European Symposium on Programming,
volume 300 of LNCS, pages 79–93. Springer-Verlag, 1988.

[96] H. E. Dixon and M. L. Ginsberg. Combining satisfiability techniques from AI and
OR. The Knowledge Engineering Review, 15:31–45, 2000.

[97] A. Dovier, A. Formisano, and E. Pontelli. Multivalued action languages with con-
straints in CLP(FD). In V. Dahl and I. Niemelä, editors, Proceedings of the 23rd
International Conference on Logic Programming, volume 4670 of LNCS, pages 255–
270. Springer-Verlag, 2007.

[98] K. Dräger, B. Finkbeiner, and A. Podelski. Directed model checking with distance-
preserving abstractions. In A. Valmari, editor, Proceedings of the 13th International
SPIN Workshop on Model Checking Software, volume 3925 of LNCS, pages 19–34.
Springer-Verlag, 2006.

[99] R. Drechsler and B. Becker. Binary Decision Diagrams - Theory and Implementa-
tion. Kluwer Academic Publishers, 1998.

[100] S. Dworschak, S. Grell, V. J. Nikiforova, T. Schaub, and J. Selbig. Modeling
biological networks by action languages via answer set programming. Constraints,
13(1-2):21–65, 2008.

[101] S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state model check-
ing in the validation of communication protocols. International Journal on Software
Tools for Technology, 5(2-3):247–267, 2004.

41

http://www.logicprogramming.org/newsletter/

[102] S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Partial order reduction and trail
improvement in directed model checking. International Journal on Software Tools
for Technology, 6(4):277–301, 2004.

[103] T. Eiter. Answer set programming for the Semantic Web. In V. Dahl and I. Niemelä,
editors, Proceedings of the 23rd International Conference on Logic Programming,
volume 4670 of LNCS, pages 23–26. Springer-Verlag, 2007.

[104] S. Etalle, A. Bossi, and N. Cocco. Termination of well-moded programs. Journal
of Logic Programming, 38(2):243–257, 1999.

[105] S. Etalle and M. Gabbrielli. Layered modes. Journal of Logic Programming, 39:225–
244, 1999.

[106] F. Fages and S. Soliman. Abstract interpretation and types for systems biology.
Theoretical Computer Science, 403(1):52–70, 2008.

[107] F. Fages and S. Soliman. Model revision from temporal logic properties in computa-
tional systems biology. In L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton,
editors, Probabilistic Inductive Logic Programming - Theory and Applications, vol-
ume 4911 of LNCS, pages 287–304. Springer-Verlag, 2008.

[108] D. Fensel, W. Wahlster, H. Lieberman, and J. A. Hendler, editors. Spinning the
Semantic Web: Bringing the World Wide Web to its Full Potential. MIT Press,
2002.

[109] M. Fränzle and M. R. Hansen. Deciding an interval logic with accumulated dura-
tions. In O. Grumberg and M. Huth, editors, Proceedings of the 13th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
volume 4424 of LNCS, pages 201–215. Springer-Verlag, 2007.

[110] M. Fränzle and C. Herde. Efficient SAT engines for concise logics: Accelerating
proof search for zero-one linear constraint systems. In M. Y. Vardi and A. Voronkov,
editors, Proceedings of the 10th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning, volume 2850 of LNCS, pages 302–316.
Springer-Verlag, 2003.

[111] M. Fränzle and C. Herde. HySAT: An efficient proof engine for bounded model
checking of hybrid systems. Formal Methods in System Design, 30(3):179–198,
2007.

[112] T. Gabric, K. Glynn, and H. Søndergaard. Strictness analysis as finite-domain con-
straint solving. In P. Flener, editor, Proceedings of the 8th International Workshop
on Logic Programming Synthesis and Transformation, volume 1559 of LNCS, pages
255–270. Springer-Verlag, 1998.

[113] J. P. Gallagher and K. S. Henriksen. Abstract domains based on regular types. In
B. Demoen and V. Lifschitz, editors, Proceedings of the 20th International Confer-
ence on Logic Programming, volume 3132 of LNCS, pages 27–42. Springer-Verlag,
2004.

[114] J. P. Gallagher and A. d. Waal. Fast and precise regular approximations of logic
programs. In P. Van Hentenryck, editor, Proceedings of the 11th International
Conference on Logic Programming, pages 599–613. MIT Press, 1994.

[115] M. Gebser and T. Schaub. Tableau calculi for answer set programming. In S. Etalle
and M. Truszczyński, editors, Proceedings of the 22nd International Conference on
Logic Programming, volume 4079 of LNCS, pages 11–25. Springer-Verlag, 2006.

42

[116] M. Gebser and T. Schaub. Generic tableaux for answer set programming. In V. Dahl
and I. Niemelä, editors, Proceedings pf the 23rd International Conference on Logic
Programming, volume 4670 of LNCS, pages 119–133. Springer-Verlag, 2007.

[117] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. A. Kowalski and K. A. Bowen, editors, Proceedings of the 5th International
Conference and Symposium on Logic Programming, pages 1070–1080. MIT Press,
1988.

[118] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365–385, 1991.

[119] M. Gelfond and V. Lifschitz. Representing action and change by logic programs.
Journal of Logic Programming, 17(2/3&4):301–321, 1993.

[120] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In P. Dembinski and M. Sredniawa, editors,
Proceedings of the 15th International Symposium on Protocol Specification, Testing,
and Verification, volume 38 of IFIP Conference Proceedings, pages 3–18. Chapman
& Hall, 1996.

[121] E. Giunchiglia, Y. Lierler, and M. Maratea. A SAT-based polynomial space al-
gorithm for answer set programming. In J. P. Delgrande and T. Schaub, editors,
Proceedings of the 10th 10th International Workshop on Non-Monotonic Reasoning,
pages 189–196, 2004.

[122] E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based on
propositional satisfiability. Journal of Automated Reasoning, 36(4):345–377, 2006.

[123] D. C. Gras and M. V. Hermenegildo. Distributed WWW programming using
(Ciao-)Prolog and the PiLLoW library. Theory and Practice of Logic Program-
ming, 1(3):251–282, 2001.

[124] S. Grell, T. Schaub, and J. Selbig. Modelling biological networks by action lan-
guages via answer set programming. In S. Etalle and M. Truszczyński, editors,
Proceedings of the 22nd International Conference on Logic Programming, volume
4079 of LNCS, pages 285–299. Springer-Verlag, 2006.

[125] G. Gupta, A. Bansal, R. Min, L. Simon, and A. Mallya. Coinductive logic pro-
gramming and its applications. In V. Dahl and I. Niemelä, editors, Proceedings of
the 23rd International Conference on Logic Programming, volume 4670 of LNCS,
pages 27–44. Springer-Verlag, 2007.

[126] M. Hanus. Logic Programming with Type Specifications, chapter 3, pages 91–140.
MIT Press, 1992. In [185].

[127] A. Heaton, M. Abo-Zaed, M. Codish, and A. King. A simple polynomial groundness
analysis for logic programs. Journal of Logic Programming, 45(1-3):143–156, 2000.

[128] A. Heaton, P. M. Hill, and A. King. Analysing logic programs with delay. In N. E.
Fuchs, editor, Proceedings of the 7th International Workshop on Logic Program
Synthesis and Transformation, volume 1463 of LNCS. Springer-Verlag, 1998.

[129] F. Henglein. Type inference with polymorphic recursion. ACM Transactions on
Programming Languages and Systems, 15(2):253–289, 1993.

[130] T. A. Henzinger. The theory of hybrid automata. Verification of Digital and Hybrid
Systems, 170:265–292, 2000.

43

[131] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear
hybrid systems. IEEE Transactions on Automatic Control, 43(4):540–554, 1998.

[132] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
proofs. In N. D. Jones and X. Leroy, editors, Proceedings of the 31st Symposium
on Principles of Programming Languages, pages 232–244. ACM, 2004.

[133] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? Journal of Computer and System Sciences, 57:94–124, 1998.

[134] M. Hermenegildo, R. Warren, and S. K. Debray. Global flow analysis as a practical
compilation tool. Journal of Logic Programming, 13(1-4):349–366, 1992.

[135] P. M. Hill. The completion of typed logic programs and SLDNF-resolution. In
A. Voronkov, editor, Proceedings of the 4th International Conference on Logic
Programming and Automated Reasoning, volume 698 of LNCS, pages 182–193.
Springer-Verlag, 1993.

[136] P. M. Hill and J. W. Lloyd. The Gödel Programming Language. The MIT Press,
1994.

[137] P. M. Hill and R. W. Topor. A Semantics for Typed Logic Programs, chapter 1,
pages 1–61. MIT Press, 1992. In [185].

[138] J. N. Hooker. Generalized resolution for 0-1 linear inequalities. Annals of Mathe-
matics and Artificial Intelligence, 6(1-3):271–286, 1992.

[139] K. Hosaka, Y. Takenaga, T. Kaneda, and S. Yajima. Size of ordered binary decision
diagrams representing threshold functions. Theoretical Computer Science, 180(1-
2):47–60, 1997.

[140] G. Janssens and M. Bruynooghe. Deriving descriptions of possible values of program
variables by means of abstract interpretation. Journal of Logic Programming, 13(2
& 3):205–258, 1992. First author name erroneously spelt “Janssen”.

[141] S. Kahrs. Limits of ML-definability. In H. Kuchen and S. D. Swierstra, editors,
Proceedings of the 8th Symposium on Programming Language Implementations and
Logic Programming, volume 1140 of LNCS, pages 17–31. Springer-Verlag, 1996.

[142] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type reconstruction in the presence of
polymorphic recursion. ACM Transactions on Programming Languages and Sys-
tems, 15(2):290–311, 1993. Title wrongly given in table of contents: Type recursion
in the presence of polymorphic recursion.

[143] A. King, J.-G. Smaus, and P. M. Hill. Quotienting Share for dependency analysis. In
D. Swierstra, editor, Proceedings of the 8th European Symposium on Programming,
volume 1576 of LNCS, pages 59–73. Springer-Verlag, 1999.

[144] D. Kleitman and G. Markowsky. On Dedekind’s problem: the number of isotone
Boolean functions. II. Transactions of the American Mathematical Society, 213:373–
390, 1975.

[145] R. A. Kowalski. Algorithm = Logic + Control. Commun. ACM, 22(7):424–436,
1979.

[146] M. Krishna Rao, D. Kapur, and R. K. Shyamasundar. Proving termination of GHC
programs. New Generation Computing, 15(3):293–338, 1997.

44

[147] M. R. K. Krishna Rao. Input-termination of logic programs. In S. Etalle, editor,
Proceedings of the 14th International Symposium on Logic Based Program Synthesis
and Transformation, volume 3573 of LNCS, pages 215–230. Springer-Verlag, 2005.

[148] S. Kupferschmid, K. Dräger, J. Hoffmann, B. Finkbeiner, H. Dierks, A. Podel-
ski, and G. Behrmann. Uppaal/DMC – Abstraction-based heuristics for directed
model checking. In O. Grumberg and M. Huth, editors, Proceedings of the 13th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems, volume 4424 of LNCS, pages 679–682. Springer-Verlag, 2007.

[149] S. Kupferschmid, J. Hoffmann, H. Dierks, and G. Behrmann. Adapting an AI
planning heuristic for directed model checking. In A. Valmari, editor, Proceedings
of the 13th International SPIN Workshop on Model Checking Software, volume
3925 of LNCS, pages 35–52. Springer-Verlag, 2006.

[150] V. Lagoon, F. Mesnard, and P. Stuckey. Termination analysis with types is more
accurate. In C. Palamidessi, editor, Proceedings of the 19th International Confer-
ence on Logic Programming, volume 2916 of LNCS, pages 254–268. Springer-Verlag,
2003.

[151] V. Lagoon and P. J. Stuckey. A framework for analysis of typed logic programs. In
H. Kuchen and K. Ueda, editors, Proceedings of the 5th International Symposium on
Functional and Logic Programming, volume 2024 of LNCS, pages 296–310. Springer-
Verlag, 2001.

[152] T. K. Lakshman and U. S. Reddy. Typed Prolog: A semantic reconstruction of the
Mycroft-O’Keefe type system. In V. Saraswat and K. Ueda, editors, Proceedings
of the 1991 International Symposium on Logic Programming, pages 202–217. MIT
Press, 1991.

[153] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. International
Journal on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[154] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.
The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic, 7(3):499–562, 2006.

[155] V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence,
138(1-2):39–54, 2002.

[156] F. Lin and Y. Zhao. ASSAT: computing answer sets of a logic program by SAT
solvers. Artificial Intelligence, 157(1-2):115–137, 2004.

[157] Z. Lin, Y. Zhang, and H. Hernandez. Fast SAT-based answer set solver. In Pro-
ceedings on the 21st National Conference on Artificial Intelligence and the 18th
Innovative Applications of Artificial Intelligence Conference. AAAI Press, 2006.

[158] T. Linke, C. Anger, and K. Konczak. More on noMoRe. In S. Flesca, S. Greco,
N. Leone, and G. Ianni, editors, Proceedings of the European Conference on Logics
in Artificial Intelligence, volume 2424 of LNCS, pages 468–480. Springer-Verlag,
2002.

[159] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[160] P. Louvet and O. Ridoux. Parametric polymorphism for Typed Prolog and λProlog.
In H. Kuchen and S. D. Swierstra, editors, Proceedings of the 8th Symposium on
Programming Language Implementations and Logic Programming, volume 1140 of
LNCS, pages 47–61. Springer-Verlag, 1996.

45

[161] S. Lüttringhaus-Kappel. Control generation for logic programs. In D. S. Warren,
editor, Proceedings of the 10th International Conference on Logic Programming,
pages 478–495. MIT Press, 1993.

[162] V. M. Manquinho and O. Roussel. The first evaluation of pseudo-Boolean solvers
(PB’05). Journal on Satisfiability, Boolean Modeling and Computation, 2:103–143,
2006.

[163] E. Marchiori and F. Teusink. Proving termination of logic programs with delay
declarations. In J. W. Lloyd, editor, Proceedings of the 12th International Logic
Programming Symposium, pages 447–461. MIT Press, 1995.

[164] E. Marchiori and F. Teusink. On termination of logic programs with delay decla-
rations. Journal of Logic Programming, 39(1-3):95–124, 1999.

[165] J. P. Marques Silva and K. A. Sakallah. GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

[166] K. Marriott and H. Søndergaard. Precise and efficient groundness analysis for logic
programs. ACM Letters on Programming Languages and Systems, 2(1–4):181–196,
1993.

[167] J. C. Martin and A. King. Generating efficient, terminating logic programs. In
M. Bidoit and M. Dauchet, editors, Proceedings of the 7th International Joint Con-
ference on Theory and Practice of Software Development, volume 1214 of LNCS,
pages 273–284. Springer-Verlag, 1997.

[168] J. C. Martin, A. M. King, and P. Soper. Typed norms for typed logic programs.
In J. P. Gallagher, editor, Proceedings of the 6th International Workshop on Logic
Program Synthesis and Transformation, LNCS, pages 224–238. Springer-Verlag,
1997.

[169] K. L. McMillan. Applications of Craig interpolants in model checking. In N. Halb-
wachs and L. D. Zuck, editors, Proceedings of the 11th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, volume 3440
of LNCS, pages 1–12. Springer-Verlag, 2005.

[170] L. Meertens. First steps towards the theory of rose trees. CWI, Amsterdam; IFIP
Working Group 2.1 working paper 592 ROM-25, 1988.

[171] R. Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17(3):348–375, 1978.

[172] R. E. Moore. Interval Analysis. Prentice Hall, 1966.

[173] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Engineering
an efficient SAT solver. In Proceedings of the 38th Design Automation Conference,
pages 530–535. ACM, 2001.

[174] L. M. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for bounded model
checking over infinite domains. In A. Voronkov, editor, Proceedings of the 18th
International Conference on Automated Deduction, volume 2392 of LNCS, pages
438–455. Springer-Verlag, 2002.

[175] L. M. de Moura, H. Rueß, and M. Sorea. Bounded model checking and induction:
From refutation to verification (extended abstract, category A). In W. Hunt, Jr. and
F. Somenzi, editors, Proceedings of the 15th International Conference on Computer
Aided Verification, volume 2725 of LNCS, pages 14–26. Springer-Verlag, 2003.

46

[176] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19/20:629–679, 1994.

[177] A. Mycroft. Polymorphic type schemes and recursive definitions. In M. Paul and
B. Robinet, editors, Proceedings of the 6th International Symposium on Program-
ming, volume 167 of LNCS, pages 217–228. Springer-Verlag, 1984.

[178] A. Mycroft and R. O’Keefe. A polymorphic type system for Prolog. Artificial
Intelligence, 23:295–307, 1984.

[179] G. Nadathur and F. Pfenning. Types in Higher-Order Logic Programming, chap-
ter 9, pages 245–283. MIT Press, 1992. In [185].

[180] L. Naish. Coroutining and the construction of terminating logic programs. Tech-
nical Report 92/5, University of Melbourne, 1992.

[181] A. Nonnengart. Hybrid systems verification by location elimination. In N. A. Lynch
and B. H. Krogh, editors, Proceedings of the 3rd International Workshop on Hybrid
Systems, volume 1790 of LNCS, pages 352–365. Springer-Verlag, 2000.

[182] C. Okasaki. Catenable double-ended queues. In Proceedings of the International
Conference on Functional Programming, volume 32(8) of SIGPLAN Notices, pages
66–74. ACM Press, 1997.

[183] L. C. Paulson. ML for the Working Programmer. Cambridge University Press,
1996.

[184] D. Pedreschi and S. Ruggieri. Bounded nondeterminism of logic programs. Annals
of Mathematics and Artificial Intelligence, 42(4):313–343, 2004.

[185] F. Pfenning, editor. Types in Logic Programming. MIT Press, 1992.

[186] A. Podelski and A. Rybalchenko. Transition invariants. In Proceedings of the 19th
Symposium on Logic in Computer Science, pages 32–41. IEEE, 2004.

[187] A. Podelski and A. Rybalchenko. Transition predicates and fair termination. In
M. Abadi, editor, Conference Record of the 32nd ACM Symposium on Principles
of Programming Languages, pages 132–144, 2005.

[188] A. Podelski and A. Rybalchenko. ARMC: the logical choice for software model
checking with abstraction refinement. In M. Hanus, editor, Proceedings of the 9th
International Symposium on Practical Aspects of Declarative Languages, volume
4354 of LNCS, pages 245–259. Springer-Verlag, 2007.

[189] S. Ratschan and Z. She. Constraints for continuous reachability in the verification
of hybrid systems. In Proceedings of the 8th International Conference on Artifi-
cial Intelligence and Symbolic Computation, volume 4120 of LNCS, pages 196–210.
Springer-Verlag, 2006.

[190] S. Ratschan and Z. She. Safety verification of hybrid systems by constraint
propagation-based abstraction refinement. ACM Transactions on Embedded Com-
puting Systems, 6(1), 2007.

[191] S. Ratschan and J.-G. Smaus. Finding errors of hybrid systems by optimising an
abstraction-based quality estimate. In T. Uustalu and J. Vain, editors, Proceedings
of the 20th Nordic Workshop on Programming Theory, 2009. To appear.

[192] A. W. Roscoe. Theory and Practice of Concurrency. Prentice Hall, 1997.

47

[193] S. Ruggieri. Verification and Validation of Logic Programs. PhD thesis, Diparti-
mento di Informatica, Università di Pisa, 1999.

[194] S. Ruggieri. ∃-universal termination of logic programs. Theoretical Comput. Sci.,
254(1-2):273–296, 2001.

[195] H. Sağlam and J. P. Gallagher. Approximating constraint logic programs using
polymorphic types and regular descriptions. Technical Report CSTR-95-017, Uni-
versity of Bristol, 1995. Presented as a poster at the 7th Symposium on Program-
ming Language Implementations and Logic Programming.

[196] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

[197] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

[198] J.-G. Smaus. Modes and Types in Logic Programming. PhD thesis, University of
Kent at Canterbury, 1999.

[199] J.-G. Smaus. Proving termination of input-consuming logic programs. In D. De
Schreye, editor, Proceedings of the 16th International Conference on Logic Pro-
gramming, pages 335–349. MIT Press, 1999.

[200] J.-G. Smaus. Proving termination of input-consuming logic programs. Technical
Report 10-99, Computing Laboratory, University of Kent at Canterbury, United
Kingdom, 1999. Long version of [199].

[201] J.-G. Smaus. Analysis of polymorphically typed logic programs
using ACI-unification. Long version of [9], available via CoRR:
http://arXiv.org/archive/cs/intro.html, 2001.

[202] J.-G. Smaus. Termination of logic programs using various dynamic selection rules.
Technical Report 203, Institut für Informatik, Universität Freiburg, 2004. Long
version of [3].

[203] J.-G. Smaus, F. Fages, and P. Deransart. Using modes to ensure sub-
ject reduction for typed logic programs with subtyping. Technical Re-
port RR-4020, INRIA, 2000. Long version of [6], available via CoRR:
http://arXiv.org/archive/cs/intro.html.

[204] J.-G. Smaus, P. M. Hill, and A. King. Termination of logic programs with block

declarations running in several modes. In C. Palamidessi, editor, Proceedings of the
10th Symposium on Programming Language Implementations and Logic Program-
ming, volume 1490 of LNCS, pages 73–88. Springer-Verlag, 1998.

[205] J.-G. Smaus, P. M. Hill, and A. King. Verification of logic programs with block

declarations running in several modes. Technical Report 7-98, University of Kent at
Canterbury, Canterbury, CT2 7NF, United Kingdom, July 1998. Contains proofs
for [204, 206]; see also [208].

[206] J.-G. Smaus, P. M. Hill, and A. King. Preventing instantiation errors and loops for
logic programs with multiple modes using block declarations. In P. Flener, editor,
Proceedings of the 8th International Workshop on Logic-based Program Synthesis
and Transformation, volume 1559 of LNCS, pages 289–307. Springer-Verlag, 1999.

[207] J.-G. Smaus, P. M. Hill, and A. King. Mode analysis domains for typed logic
programs. In A. Bossi, editor, Proceedings of the 9th International Workshop on
Logic-based Program Synthesis and Transformation, volume 1817 of LNCS, pages
83–102, 2000.

48

[208] J.-G. Smaus, P. M. Hill, and A. King. Verifying termination and error-freedom of
logic programs with block declarations. Theory and Practice of Logic Programming,
1(4):447–486, 2001.

[209] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1–3):17–64, 1996.

[210] L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, 1986.

[211] O. Strichman. Tuning SAT checkers for bounded model checking. In E. A. Emerson
and A. P. Sistla, editors, Proceedings of the 12th International Conference on Com-
puter Aided Verification, volume 1855 of LNCS, pages 480–494. Springer-Verlag,
2000.

[212] O. Stursberg, S. Kowalewski, I. Hoffmann, and J. Preußig. Comparing timed and
hybrid automata as approximations of continuous systems. In P. J. Antsaklis,
W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems IV, volume 1273 of
LNCS, pages 361–377. Springer-Verlag, 1997.

[213] R. S. Sutton and A. G. Barto. Reinforcement Learning. The MIT Press, 1998.

[214] Swedish Institute of Computer Science. SICStus Prolog User’s Manual, 2003.
http://www.sics.se/isl/sicstuswww/site/documentation.html.

[215] J. Tan and I. Lin. Recursive modes for precise analysis of logic programs. In
J. Ma luszyński, editor, Proceedings of the 14th International Logic Programming
Symposium, pages 277–290. MIT Press, 1997.

[216] S. Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.

[217] S. Thompson. Miranda: The Craft of Functional Programming. Addison-Wesley,
1995.

[218] S. Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley,
1999. Second Edition.

[219] V. I. Torvik and E. Trintaphyllou. Inference of monotone Boolean functions. In
C. A. Floudas and P. M. Pardalos, editors, Encyclopedia of Optimization, pages
472–480. Kluwer Academic Publishers, 2001.

[220] M. Truszczyński. Logic programming for knowledge representation. In V. Dahl
and I. Niemelä, editors, Proceedings pf the 23rd International Conference on Logic
Programming, volume 4670 of LNCS, pages 76–88. Springer-Verlag, 2007.

[221] P. H. Tu, T. C. Son, and C. Baral. Reasoning and planning with sensing actions, in-
complete information, and static causal laws using answer set programming. Theory
and Practice of Logic Programming, 7(4):377–450, 2007.

[222] The Unicode Consortium. The Unicode Standard, Version 5.0. Addison-Wesley
Professional, 2006.

[223] J. Wielemaker, Z. Huang, and L. van der Meij. SWI-Prolog and the Web. Theory
and Practice of Logic Programming, 8(3):363–392, 2008.

[224] P. H. Winston and B. K. P. Horn. LISP. Addison Wesley, 1987.

49

[225] S. Yovine. Model checking timed automata. In G. Rozenberg and F. W. Vaandrager,
editors, Lectures on Embedded Systems, European Educational Forum, School on
Embedded Systems, Veldhoven, The Netherlands, November 25-29, 1996, volume
1494 of LNCS, pages 114–152. Springer, 1998.

[226] H. Zhang. SATO: An efficient propositional prover. In W. McCune, editor, Proceed-
ings of the 14th International Conference on Automated Deduction, volume 1249
of LNCS, pages 272–275. Springer-Verlag, 1997.

50

Index

abstract domain, 19

Boolean function, 27
bounded model checking, 26

clock, 23
CNF, 27

declared type, 17
directed model checking, 24
DNF, 27
dynamic scheduling, 9

error trajectory, 24

flow, 23

guard, 23

head condition, 17
HSOLVER, 26
hybrid automaton, 22
hybrid system, 22

input-consuming, 11
integer linear programming, 27
invariant, 23

LD, 10
linear programming, 27
linear pseudo-Boolean constraint, 27
location, 22
LPB, 27

mode, 10
model, 7, 13
model checking, 7
monotone Boolean function, 27

nondeterminism, 14, 24

polymorphic recursion, 18
polymorphism, 16
predicate, 16, 22
predicate abstraction, 22
process, 23

SAT solving, 27
selection rule, 10
subject reduction, 17
subterm type, 19
subtyping, 15

term constructor, 16
threshold functions, 27
timed automaton, 23
trajectory, 23
type, 16
type constructor, 16

Uppaal, 23

verification, 11, 24

51

	Introduction
	Transition Systems and Logic
	The Themes of this Habilitation
	Common Aims and Techniques
	Structure of this Summary
	Logic Programming and Functional Programming
	Termination and Selection Rules
	Typed Programs
	``Formulas as Programs''
	Logic Approaches to Model Checking of Timed and Hybrid Systems
	Finding Error Paths in Timed and Hybrid Systems
	Linear Pseudo-Boolean Constraints

	Conclusion and Outlook
	Implementations of Model Checking in Logic Programming
	The Web
	Answer Set Programming
	Bioinformatics
	Concluding Remarks and Outlook

	References for the Selected Articles
	Further References

	Index

