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Abstract. There exist a number of qualitative constraint calculi that
are used to represent and reason about temporal or spatial configura-
tions. However, there are only very few approaches aiming to create a
spatio-temporal constraint calculus. Similar to Bennettet al., we start
with the spatial calculusRCC-8 and Allen’s interval calculus in order
to construct a qualitative spatio-temporal calculus. As we will show,
the basic calculus isNP-complete, even if we only permit base rela-
tions. When adding the restriction that the size of the spatial regions
persists over time, or that changes are continuous, the calculus be-
comes more useful, but the satisfiability problem appears to be much
harder. Nevertheless, we are able to show that satisfiability is still in
NP.

1 Introduction

There exist a number of qualitative constraint calculi that are used to
represent and reason about temporal or spatial configurations. For ex-
ample,Allen’s [1] Interval Calculusis certainly the most well-known
qualitative temporal calculus in Artificial Intelligence. On the spatial
side we have, for instance, theCompass Calculus[10], the gener-
alization of Allen’s interval calculus to two dimensions [2], and the
topologicalRegion Connection CalculusRCC-8 [15]. As pointed out
by Wolter and Zakharyaschev [19], the next natural step would be to
combine these two kinds of representation and reasoning.

Most of the existing proposals for spatio-temporal formalisms
are more expressive than the above mentioned constraint calculi.
Muller’s [13] spatio-temporal theory is basically a first-order ax-
iomatization of spatio-temporal entities based onRCC [15] and for
this reason it is undecidable. Wolter and Zakharyaschev [19] com-
bined the constraint formalismRCC-8 with the propositional tempo-
ral logic PTL [11]. This combination is very elegant because it can
be expressed as a multi-modal logic based on Bennett’s [3] encod-
ing of RCC-8 as a multi-modal logic. However, the expressiveness
of the resulting family of spatio-temporal formalisms is very high.
Consequently, reasoning isPSPACE-hard for most of the proposed
formalisms.

As mentioned by Wolter and Zakharyaschev [19], Allen’s interval
calculus is much closer in spirit toRCC-8 thanPTL is. For this rea-
son, it seems much more natural to use this calculus to “temporalize”
RCC-8. A first attempt into this direction was done by Bennettet al.
[4]. They provided the syntax and semantics of a combined calculus
and embedded it into the combination ofRCC-8 andPTL mentioned
above. They also stated that the satisfiability problem of the com-
bined calculus isNP-complete.
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Such a combined spatio-temporal formalism permits us to describe
spatial configurations that change over time. We cannot state general
laws of how the spatial configurations change, though. For example,
we cannot state that regions cannot change their size, or that spatial
changes should occur continuously. On the positive side, however,
the restricted expressiveness results in only moderate computational
requirements, as mentioned above. Nevertheless, we have a price
to pay for the combination. Contrary to most other constraint for-
malisms, the spatio-temporal constraint formalism does not contain
a computational tractable fragment that contains all basic relations
and the universal relation.

Furthermore, the basic formalism does not address the issue of
change in a reasonable way, but considers simply unrelated models
over time. When adding constraints to the effect that changes have
to be continuous, things become much more difficult. In particular,
it is not obvious at all whether the satisfiability problem remains in
NP. Using a large computer-generated case analysis and an induc-
tive argument, we are able to show that satisfiability stays inNP.
This result has the practical consequence that satisfiability can be
solved by backtracking algorithms and other known techniques for
NP-complete problems.

The rest of the paper is structured as follows. In the next section
we give the necessary background onRCC-8 and Allen’s Interval
Calculus. In Section 3 we “temporalize”RCC-8 using Allen’s inter-
val calculus resulting in aspatio-temporal constraint calculuscalled
STCC. In addition, we analyze the computational complexity of rea-
soning in this calculus and fragments thereof. In Section 4, we an-
alyze the complexity of reasoning if it is required that the size of
regions does not change. Finally, in Section 5, we analyze the case
where all changes of spatial configurations happen continuously.

2 Background

RCC-8 is a well-known relation algebra for reasoning about binary
relations between spatial regions in the context of theRCC-theory
[15]. In this theory regions are non-empty regular, closed subsets of
a topological space, and can consist of more than one piece.RCC-8
has eightbasic relationswhich are jointly exhaustive and pairwise
disjoint (see Figure 1):DC (DisConnected),EC (Externally Con-
nected),PO (Partial Overlap),EQ (EQual),TPP (Tangential Proper
Part),NTPP (Non-Tangential Proper Part), and their converse rela-
tions TPP^ andNTPP^. Each non-basic relation is the union of
two or more basic relations, or the specialemptyrelation. The set
of RCC-8 relations corresponds to all possible subsets of the set of
basic relations, where each subset is interpreted as the union of its
relations. Hence, all in all, we have28 differentRCC-8 relations.

In Allen’s Interval Calculus we reason about binary relations be-
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Figure 1. Two-dimensional examples for the eight basic relations of
RCC-8

tween intervals (over the time line, usually interpreted as the ratio-
nale numbers). These relations form again a relation algebra, which
is called Interval Algebra (IA) [8]. IA has thirteen basic relations be-
tween intervals (see Figure 2):≺ (before),m (meets),o (overlaps),d
(during),s (starts),f (finishes), their converse relations (�, m^, o^,
d^, s^, f^), and= (equal). LikeRCC-8, the relations forming IA
correspond to all possible subsets of the set of basic relations.

RCC-8 and IA are closed under the following operations: union
(∪), intersection (∩), difference (\), converse (^), and composition
(◦). The first four operations are defined in the standard way. Com-
position is just relational composition, i.e., for the relationsr1 and
r2, the compositionr1 ◦ r2 is defined as follows:

r1 ◦ r2 = {〈x, y〉 | ∃z: 〈x, z〉 ∈ r1, 〈z, y〉 ∈ r2}.

A spatial constraint satisfaction problem(or briefly spatial CSP)
in our context is a setΘ of atomic formulae (calledconstraints) of
the kindXRY (using infix notation).X andY areregion variables
andR is an RCC-8 relation. Similarly, atemporal CSPis a set of
atomic formulaeISJ , whereS is an IA relation andI, J are interval
variables. If we do not want to distinguish between IA orRCC-8
formulae, we use the notationxry.

Given a spatial or temporal CSPΘ, a fundamental reasoning prob-
lem is deciding thesatisfiabilityof Θ. Θ is satisfiable if and only if
there is amodelof Θ, i.e., anassignmentof spatial regions or tem-
poral intervals, respectively, to the variables ofΘ such that all the
constraints inΘ are satisfied. This problem is calledRSAT for RCC-
8 andISAT for IA.

A related reasoning problem is finding a scenario that refines a
given CSPΘ. A scenariois a satisfiable CSP, where the constraints
between all pairs of variables are basic relations. Further, a CSPΘ′ is
a refinementof Θ if and only if Θ′ andΘ involve the same variables,
and for every pair of variables (x, y) such thatxR′y ∈ Θ′ andxRy ∈
Θ,R′ ⊆ R.3

Any spatial or temporal CSPΘ involving n variables can be pro-
cessed using anO(n3) time algorithm that refinesΘ to an equivalent
path consistentCSP [12]. A CSP is path consistent if for every sub-
set of constraints involving three variablesi, j, andk, the relation
Rik betweeni andk is stronger or equal than (i.e., is a subset of) the
composition ofRij andRjk.

From a computational point of view,RCC-8 and IA have some
similar properties. BothRSAT andISAT areNP-complete problems

3 Without loss of generality we assume that if no information betweenx and
y is provided, thenR is theuniversal relation, i.e., the union of all the basic
relations. Furthermore we assume that for every pair of variables (x, y) such
thatxRy ∈ Θ, yR^x ∈ Θ.
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Figure 2. The thirteen basic relations of the Interval Algebra

[17, 18], and several maximal tractable fragments have been identi-
fied both forRCC-8 and IA. Nebel and B̈urckert [14] identified the
unique maximal tractable sub-algebra of IA containing all the basic
relations, which is called ORD-Horn class.ISAT for the ORD-Horn
class can be decided in cubic time by using a path-consistency al-
gorithm (a CSP over ORD-Horn is unsatisfiable if and only if the
empty relation is generated when enforcing path-consistency). Other
maximal tractable subclasses which do not contain all of the basic
relations have been identified by Krokhinet al. [7].

Regarding RCC-8, Renz and Nebel identified three maximal
tractable subclasses ofRCC-8 containing all the basic relations
[17, 16]. In addition, Gerevini and Renz [6] showed (using a tech-
nique called BIPATH-CONSISTENCY) that the relations in these max-
imal classes can be combined with qualitative size constraints with-
out increasing the computational complexity.

Finally, RSAT andISAT for the full RCC-8 and IA can be solved
by finding a scenario through backtracking using path-consistency as
a forward propagation technique [9].

3 Temporalizing RCC-8 Using Allen’s Algebra

In order to temporalizeRCC-8, we annotate spatial formulae with
interval symbols. The intended meaning is that the spatial constraint
is true during the interval denoted by the symbol. In other words, we
can now write descriptions as follows:

I: (X {DC,EC} Y ), I: (Y {TPP} Z),
J : (X {PO} Y ), J : (Y {DC} Z).

This means that during intervalI regionsX andY are disconnected
or externally connected and thatY is a tangential proper part ofZ.
During J the spatial configuration is then a bit different. Of course,
the next step is to use the IA relations to form IA constraints on
interval symbols, e.g.,ImJ . Sets of constraints on annotated spatial
formulae and on intervals as in this example are calledSTCCCSPs.4

Having a closer look at this example, one notes that it seems to
be unlikely that during one interval we have(Y {TPP}Z) and in
the directly following interval we have(Y {DC}Z). Assuming that
change happenscontinuously, one would expect that betweenI and
J regionsY andZ are deformed and moved continuously, which
implies that there are time spans betweenI andJ when we have first
(Y {PO}Z) and then(Y {EC}Z). However, before we deal with this
issue, we will first lay the formal base for the combined constraint
calculus.
4 Bennettet al. [4] called a similar languageARCC-8.



As mentioned above, usually, temporal CSP variables are inter-
preted over pairs of the rational numbersQ and region variables
are interpreted over non-empty, regular, closed subsets of some topo-
logical spaceT , and we will follow this practice. A spatio-temporal
interpretation is then a tupleM = (Q, T , α), whereαmaps interval
symbols to pairs of numbers fromQ, and region symbols and ratio-
nal numbers to elements ofT . Such an interpretation is amodel of
a STCC CSPiff all temporal constraints are satisfied and each spa-
tial formula annotated with an interval symbolI is satisfied at every
point between the endpoints of the interval.5 If such a model exists,
we say that theSTCC CSP issatisfiable. The associated reasoning
problem is calledRISAT.

Of course, for a givenSTCC CSP, we could try to construct a
small, finite model, which could be extended to a full spatio-temporal
model, in order to demonstrate satisfiability. We need, in fact, only
polynomially many time points and associatedRCC-8 models. Fur-
ther, theRCC-8 models could be represented using Kripke models
that have size polynomial in the size of the spatial CSP [17]. This
implies the following proposition that has already been noted by Ben-
nettet al. [4].

Proposition 1 RISAT is NP-complete.

This sounds like good news because it means that the complex-
ity has not been increased by combiningRCC-8 and IA. However,
although the complexity is the same, we have a price to pay. While
RCC-8 and IA each contains large fragments for which satisfiability
can be decided in polynomial time (see above), this does not seem
to be the case forSTCC. In fact, the simple fragment in which we
only have basic relations and the two universal relations is already
NP-hard.

Theorem 2 RISAT is NP-hard, even if the CSP contains only basic
relations and the two universal relations.

Proof. Consider theSTCC CSP {I: (X{DC}Y ), J : (X{EC}Y )}.
This implies, however, I{≺,m,m^,�}J . The relation {≺
,m,m^,�} taken together with the basic temporal relations leads
to the full algebra when closing the relations under intersection,
converse, and composition [14], which implies that the satisfiability
problem isNP-hard.

Of course, if we refine every constraint between intervals and ev-
ery constraint between regions inside an interval to a basic relation,
then satisfiability becomes polynomial. However, such descriptions
do not appear to be very useful. They imply that once two time in-
tervals have more than their ending points in common, the two cor-
responding spatial scenarios must be identical over the full intervals.
Conversely, if the spatial scenarios associated with different time in-
tervals are pairwise different, only the relations≺,�,m, and m^

are possible between the intervals. For these reasons, such descrip-
tions are probably hardly ever used in practice for describing spatio-
temporal configurations. Nevertheless, such descriptions can be use-
ful in the reasoning process. We will call descriptions which contain
only spatial scenarios for each interval and the mentioned tempo-
ral relations between temporal intervalsSTCC-scenarios. Obviously,
these scenarios will not necessarily arise by a refinement of the tem-
poral and spatial constraints. However, if we have refined the tem-
poral relations to a scenario, we get a totally ordered set of interval

5 In contrast to Bennettet al. [4] we do not require satisfaction at the end-
points because we want to allow that the spatial configurations change at
endpoints of intervals.

endpoints. This in turn can be used to define new temporal intervals,
which can be ordered by≺,�,m, andm^.

As an example, assume that we have the temporal scenario
IoJ . From this we get the ordering start(I) < start(J) <
end(I) < end(J). Based on that we can define the intervals
K = (start(I), start(J)), L = (start(J), end(I)), and M =
(end(I), end(J)), with the spatial constraints associated withI and
J as constraints holding duringK andM respectively, and with the
intersection of the constraints associated withI andJ as the con-
straints holding duringL. Clearly this set of annotated spatial con-
straints combined with the (induced) temporal constraintsKmJ and
JmM gives rise to aSTCC CSPΘ that is satisfiable iffΘ admits
a STCC scenario.STCC scenarios can obviously be used to generate
STCC models. Hence, we can concentrate on generating such sce-
narios when we want to demonstrate satisfiability of aSTCC CSP.
In general, whenΘ is aSTCCCSP, we will call the CSPΘ′ induced
STCCscenario, ifΘ′ is generated fromΘ in the way described above.

From the above, it follows that we will get a polynomial satisfia-
bility problem, even if the CSP is not aSTCCscenario.

Theorem 3 For STCC CSPs where the temporal relations form a
temporal scenario and the spatial relations are all elements of one
tractable class of relations,RISAT is polynomial.

4 The Size Persistence Constraint

As mentioned above, when we consider spatial scenarios changing
over time, we may want to restrict the changes. For example, we may
want to consider only changes where the regionsdo not change their
size. Such restrictions cannot be stated inside theSTCC formalism.
However, we can, of course, restrictSTCCmodels to those satisfying
these restrictions.

Let S(X) indicate the size of a spatial regionX. EachRCC-8
constraintY RZ, whereR is a basic relation, entails a qualitative
size relation betweenY andZ, which can be one of the follow-
ing relations “<”, “>”, “ =” or the indefinite relation “?”. For in-
stance,(Y {TPP}Z) entailsS(Y ) < S(Z), while (Y {PO}Z) en-
tailsS(Y )?S(Z). Table 1 gives the entailed size relations for each
basicRCC-8 relationR.

XRY S(X)sS(Y ) XRY S(X)sS(Y )
TPP |= < EQ |= =

NTPP |= < PO |= ?
TPP^ |= > EC |= ?

NTPP^ |= > DC |= ?

Table 1. Size relations entailed by the basicRCC-8 relations

Thesize persistence constraintstates that the size of every region
persists over time, while their shape or relative position could change.
For example, the followingSTCC CSP does not satisfy size persis-
tence because the specified topological relations entail different size
relations, regardless of the temporal relation betweenI andJ :

I: (X {TPP} Y ), J : (X {EQ} Y ).

In general, we will require that there exist a scenario induced by the
CSP that satisfies the condition that the relation between two regions
does not conflict with respect to the derivable size relations. If this
condition is satisfied, we say that theSTCC CSP is satisfiable with
respect to the size persistence constraint.

Theorem 4 RISAT for a STCC CSP with the size persistence con-
straint isNP-complete.
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Figure 3. Neighborhood graph defining the continuous change of the basic
RCC-8 relations. Dashed lines visualize the changes permitted if the size

persistence constraint is not enforced.

Proof. NP-hardness obviously follows from theNP-completeness
of RSAT for RCC-8 and ofISAT for IA. The following algorithm
proves membership inNP. Guess a scenarioΘt for the temporal CSP
in the STCC CSPΘ under consideration, and then guess a spatial
scenario for each sub-intervalI of Θt. Check that the resulting set
of spatial scenarios associated withΘt is an inducedSTCC scenario
Θ′ for Θ. In order to check that the persistence size constraint is
satisfied, from the set of spatial scenarios ofΘ′ derive a new spatial
CSPΘs, extended with size constraints, such that: for each spatial
variableX of Θ and each intervalI of Θt, XI is a variable ofΘs;
for each each pair of variablesXI andYI , the constraint betweenXI
andYI is the constraint betweenX andY in the scenario associated
with I in Θ′; finally, for each pair of variablesXI andXJ such that
I 6= J , S(XI) = S(XJ) ∈ Θs. Satisfiability ofΘs can be checked
in polynomial time by using BIPATH-CONSISTENCY[6].

5 The Continuity Constraint

As mentioned, we may want to restrict spatial changes to those that
are continuous. Similarly to thesize persistent constraint, this cannot
be expressed in the language itself, but it can be enforced as a condi-
tion on the models. Instead of requiring continuity of change on the
models, we will be satisfied with a change of the relations between
the models that is induced by a continuous change. For example, we
may want to allow that a relation changes fromDC to EC and then
to PO, but a direct change fromDC to PO is not allowed. Figure 3
gives a visualization of these changes, whereby the dashed lines vi-
sualize changes that are forbidden if the size persistence constraint
has to be obeyed.

A path fromr1 to r2 represents a multi-step transition, i.e., a se-
quence of continuous changes from relationr1 to relationr2. The set
of all the paths in the graph represent all possible one-step or multi-
step transitions. It is worth noting that, according to the semantics
of STCC, during an interval of timeI in the CSP, the spatial regions
can be deformed and moved an arbitrary number of times changing
the relative topological relation, and resulting into an arbitrary long
sequence of spatial scenarios. What is important to preserve satisfi-
ability of the CSP is that each of these configurations satisfies the
formulae annotated withI in the CSP.

Moreover, under the continuous change restriction, each config-
uration should correspond to a scenario that can be modified only
by transitions satisfying the neighborhood graph of Figure 3. For in-
stance, if we haveI: (X {DC,EC,TPP}Y ), then duringI the re-
lation betweenX andY can only change back and forth fromDC
to EC, or stayTPP (because a continuous change from, e.g.,EC to
TPP, requires that the relation is firstPO, but this is forbidden by
the given topological constraint).

This could makeRISAT significantly harder, since the models of a
STCC CSP might all involve an exponential number ofRCC-8 mod-
els. In other words, it could be the case that in order to transform
a scenario into another one by continuous changes, an exponential
number of one-step transitions should happen, which would make

membership inNP questionable at best. As we will show, fortunately
this is not the case, at least under the size persistence restriction.

Given two scenariosσi and σf of a spatial CSPΣ, we define
thescenario transformation problemas the problem of determining
whether there exists a sequenceσ1, ..., σn of scenarios forΣ such
that σ1 = σi, σn = σf , and the changes fromσi to σi+1 satisfy
the neighborhood graph (i = 1...n − 1). We call such a sequence a
transition chainfrom σi to σf in Σ, and we indicate an instance of
scenario transformation with a triple〈Σ, σi, σf 〉. Note that in a sin-
gle step fromσi toσi+1 of a transition chain some changes regarding
different pairs of regions must occur in parallel. For example, in or-
der to change the scenario{X{EQ}Y, Y {EQ}Z, Z{EQ}X}, it is
necessary to simultaneously change two relations.

By using a large computer-generated case analysis we can prove
that, for any solvable instance of scenario transformation involving
three variables, under the size persistence restriction there exists a
transition chain fromσi to σf of fixed length. We conjecture that the
same holds without the persistence size restriction, but in this paper
we don’t address this case. This program, which we will refer to as
the transition generator, generates transition chains where, for ev-
ery pairX, Y of variables and every basicRCC-8 relationR,XRY
appears at most once in all scenarios of the chain. In other words,
cyclic changes are not permitted. Furthermore, each scenarioσi+1 is
derived fromσi by performing a one-step transition to only one pair
of regions, unless it is necessary to perform multiple parallel one-step
transitions. When during the transformation ofσi into σf we reach a
scenarioσj such thatX{EQ}Y ∈ σj andX{EQ}Y ∈ σf (j 6= f ),
we collapseX andY , and we proceed by considering changes only
between eitherX andZ or Y andZ (further details are given in
[5]). We call such transition chains fromσi to σf one-step transition
chains. The longest transition chains that are generated by the pro-
gram have length 12. These chains are those solving the instances of
scenario transformation where either

• in Σ the relation between every pair of variables is the universal
relation or{DC,EC,PO,TPP,NTPP} and

σi = {X{DC}Y, Y {DC}Z, Z{DC}X}

σf = {X{NTPP}Y, Y {NTPP}Z, Z{NTPP}X},
• or in Σ the relation between every pair of variables is the universal

relation or{DC,EC,PO,TPP,NTPP^} and

σi = {X{DC}Y, Y {DC}Z, Z{DC}X}

σf = {X{NTPP^}Y, Y {NTPP^}Z, Z{NTPP^}X}.
Hence, we can prove the following lemma that will be used to prove
the main claim of this section.

Lemma 5 Let Σ be a satisfiable spatial CSP involving three vari-
ables. If the scenario transformation〈Σ, σi, σf 〉 is solvable under
the size persistence restriction, then inΣ there exists a one-step tran-
sition chain fromσi to σf of at most12 scenarios.

Another property that can be verified by the transition generator
is that, under certain conditions, there are only two types of parallel
changes in any one-step transition chain. This property is exploited
in the proof of the next lemma.

Proposition 6 Let 〈Σ, σi, σf 〉 be a scenario transformation that is
solvable under the size persistence restriction. If there is no pair of
variablesX and Y such thatX{EQ}Y ∈ σi andX{EQ}Y ∈
σf , then in the transition chain computed by the transition generator
every parallel change is of the form either(X{EQ}Y → X{PO}Y )
or (X{PO}Y → X{EQ}Y ).



We now generalize Lemma 5 to CSPs involving an arbitrary num-
ber of variables, showing that any scenario transformation instance
can be solved by transition chains of polynomial length, and thus that
RISAT with continuous change and persistence size is inNP.6

Lemma 7 Let 〈Σ, σi, σf 〉 be any scenario transformation that is
solvable under the size persistence restriction. Then inΣ there exists
a transition chain fromσi to σf of length less than12 · n2, wheren
is the number of variables inΣ.

Proof Sketch. Consider every setVj consisting of three different
variablesXj ,Yj andZj appearing inΣ. Let Σj be the set of con-
straints inΣ involving the variables inVj , σij and σif the sub-
scenarios ofσi andσf , respectively, involving the variables inVj ,
andCj the one-step transition chain that is identified by the transi-
tion generator for〈Σj , σij , σfj〉. We show that bysynchronizingall
Cj we can find a transition chain fromσi to σf in Σ involving less
than12 · n2 transitions (scenarios ofΣ).

There are two cases to consider, depending on whether there ex-
ists ak such thatCk involves a parallel transition. If there is no such
a chain, then we can synchronize all the chains by running a topo-
logical sort algorithm on thesynchronization graphG constructed
as follows. The vertices ofG are the constraints that are changed
in one or more chains, and the edges correspond to the order of the
changes. For instance, if a transition chain changesc1 = X{DC}Y ,
thenc2 = X{DC}Z and finallyc3 = Y {DC}Z,G will contain the
verticesc1, c2 andc3, and edges fromc1 to c2 and fromc2 to c3.
Vertices corresponding to the same change performed by different
transition chains are collapsed into the same vertex, and the edges
are appropriately updated.7 From the the resulting topological sort
we can derive a transition chain inΣ fromσi toσf and, furthermore,
by Lemma 5 this chain involves less than12 · n2 transitions.

For the case where there are parallel changes, we can use a similar
argument, although the synchronization becomes more complicated,
because parallel changes in a transition chain can imply further par-
allel changes that occur serialized in another chain. However, by ex-
ploiting Proposition 6 and Lemma 5 we can show that synchroniza-
tion can still be accomplished by topological sort on a graph similar
toG, where vertices represent sets of parallel changes and edges or-
dering constraints between them.

Theorem 8 RISAT for a STCCCSP with the continuous change and
size persistence constraints isNP-complete.

Proof Sketch. NP-hardness obviously follows from theNP-
completeness ofRSAT for RCC-8. Membership inNP can be proved
by an argument similar to the one in the proof of Theorem 4, with the
difference that instead of guessing one spatial scenario for each sub-
intervalI of Θt, we guess a sequence of12 ·n2 scenarios. We check
that they actually are all scenarios for the set of constraints associated
with I, except for the first and the last one which can also be scenar-
ios for the predecessor and the successor, respectively, sub-intervals.
We then check that each sequence satisfies the continuity constraint.
Lemma 7 guarantees that the number of scenarios in each sequence is
sufficient. Finally, we check size persistence using a technique simi-
lar to the one used in the proof of Theorem 4.

6 Complete proofs and further details are available in [5].
7 For instance, if there is another transition chain with the sequence of

transitions changingc′1 = X{EC}W , thenc′2 = X{DC}Z and then
c′3 = W{DC}Z, the verticesc2 andc′2 are collapsed and the destination
(source) of all incoming (outgoing) edges involvingc2 or c′2 is revised to
the new collapsed vertex.

6 Summary and Conclusion

Similar to the approach by Bennettet al.[4], we temporalizedRCC-8
using Allen’s interval algebra IA. As we showed, satisfiability in the
resulting calculus, calledSTCC, is NP-complete even if only basic
relations and the two universal relations are permitted. Furthermore,
we showed that the complexity does not increase if we additionally
require changes to respect the size persistence and the continuity con-
straints.

While these results are quite useful and pave the ground for devel-
oping qualitative spatio-temporal reasoning algorithms, there remain
a number of open questions that we intend to address in the near
future. Firstly, it is not evident whether enforcing the continuity con-
straint guarantees that the regions can indeed change continuously.
Secondly, it is not clear whatefficientreasoning algorithms would
look like. Such algorithms would most probably rely on forward-
checking. Thirdly, there is the question for other reasonable restric-
tion on spatial change, and how this could be incorporated in the
constraint-reasoning framework.
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