
PROST-DD - Utilizing Symbolic Classical Planning in THTS

Florian Geißer and David Speck
University of Freiburg, Germany

{geisserf, speckd}@informatik.uni-freiburg.de

Abstract

We describe PROST-DD, our submission to the International
Probabilistic Planning Competition 2018. Like its predeces-
sor PROST, which already participated with success at the
previous IPPC, PROST-DD is based on the trial-based heuris-
tic tree search framework and applies the UCT ? algorithm.
The novelty of our submission is the heuristic used to initial-
ize newly encountered decision nodes. We apply an itera-
tive symbolic backward planning approach based on the de-
terminized task. Similarly to the SPUDD approach and recent
work in symbolic planning with state-dependent action costs,
we encode costs and reachability of states in a single decision
diagram. During initialization, these diagrams are then used
to query a state for its estimated expected reward. One ben-
efit of this heuristic is that we can optionally interweave the
standard heuristic of PROST, the IDS heuristic.

Introduction
The 6th edition of the International Probabilistic Planning
competition initially consisted of three different tracks: the
discrete MDP track, the continous MDP track, and the dis-
crete SSP track. In this paper, we will discuss our submis-
sion to the discrete MDP track, which consists of a novel
heuristic implemented into the PROST planner (Keller and
Eyerich 2012), the winner of the previous IPPC. The goal of
the discrete SSP track is to come up with a policy for a fac-
tored Markov decision process (MDP) with fixed initial state
and fixed horizon. The reward is state-dependent and there
are no dead-ends. As in the previous IPPC, the language to
model the planning tasks is the Relational Dynamic Influenc
Diagram (RDDL) language (Sanner 2010), and planners are
evaluated by executing 75 runs per instance and comparing
the average accumulated reward.

The PROST planner is based on the trial-based heuristic
tree search framework (THTS) (Keller and Helmert 2013)
which allows to mix several ingredients to compose an any-
time optimal algorithm for finite-horizon MDPs. One of
these ingredients is the state-value initialization (or: heuris-
tic) used to give an initial estimate for previously unknown
states. Our submission exchanges the iterative deepening
search (IDS) heuristic, the original heuristic implemented
in PROST, with a heuristic based on backward symbolic
search (BSS) on the determinized task. On the one hand, this
approach can be compared to SPUDD (Hoey et al. 1999), a

stochastic planning approach using decision diagrams. On
the other hand, it can be compared to recent work on sym-
bolic planning for tasks with state-dependent action costs
(Speck, Geißer, and Mattmüller 2018).

Before we describe our heuristic, we quickly introduce
the THTS framework and the setup of the PROST planner
in the previous IPPC. The next section then explains the BSS
heuristic, before we finally sketch how we can interweave
BSS and IDS, to come up with a stronger heuristic for more
challenging tasks.

Trial-based Heuristic Tree Search
The trial-based heuristic tree search (THTS) framework
(Keller and Helmert 2013) allows to model several well-
known probabilistic search algorithms in one common
framework. It is based on the following ingredients: heuris-
tic function, backup function, action selection, outcome se-
lection, trial length, and recommendation function. Inde-
pendent of the specific ingredients, the general tree search
algorithm maintains a tree of alternating decision and chance
nodes, where a decision node contains a state s and a state-
value estimate based on previous trials. A chance node con-
tains a state s, an action a and a Q-value estimate, which es-
timates the expected value of action a applied in state s. The
algorithm performs so-called trials, until it either computed
the optimal state-value estimate of the state in the root node
of the tree, or until it is out of time. A THTS trial consists
of different phases: the selection phase traverses the tree ac-
cording to action and outcome selection until a previously
unvisited decision node is encountered. Then, in the expan-
sion phase, this selected node is expanded, where for each
action a child node is added to the tree and initialized with a
heuristic value according to the heuristic function. The trial
length parameter decides if the selection phase starts again,
or if the backup phase is initiated. In this phase, the visited
nodes are updated in reversed order according to the backup
function. A trial finishes when the backup function is called
on the root node. In the case that the algorithm is out of
time, the recommendation function recommends which ac-
tion to take, based on the values of the child nodes. For more
information on the THTS algorithm we recommend the orig-
inal THTS paper (Keller and Helmert 2013), as well as the
PhD thesis of T. Keller (Keller 2015) which introduces rec-
ommendation functions and contains a thorough theoretical

and empirical evaluation of a multitude of algorithms real-
ized within this framework.

Our submission is based on the PROST configuration
of the IPPC 2014, together with a novel heuristic function.
Before we describe this heuristic, we quickly mention the
other ingredients used in our configuration. The action se-
lection function is based on the well-known UCB1 formula
(Auer, Cesa-Bianchi, and Fischer 2002) which has a fo-
cus on balancing exploration versus exploitation. The out-
come selection is based on Monte-Carlo sampling and sam-
ples outcomes according to their probability, with the addi-
tional requirement that the outcome was not already marked
as solved by the backup function. This backup function is
a combination of Monte-Carlo backups and Full Bellman
backups, and weights outcomes proportionally to their prob-
ability. It allows for missing (i.e. non-explicated) outcomes
and also for labeling nodes as solved, where a node is solved
if its optimal value estimation is known. These ingredients
are the same used in the IPPC 2014. For the recommenda-
tion function, we apply the most played arm recommenda-
tion (Bubeck, Munos, and Stoltz 2009), which recommends
one of the actions that have been selected most often in
the root node (uniformly at random). This recommendation
function was shown (Keller 2015) to be superior in combi-
nation with the other ingredients.

Backward Symbolic Search Heuristic (BSS)
The Backward Symbolic Search Heuristic (BSS) exploits the
efficiency of symbolic search and the compactness of sym-
bolic data structures in form of decision diagrams. More
precisly, we use Algebraic Decision Diagrams as the under-
lying symbolic data structure. Algebraic Decision Diagrams
(Bahar et al. 1997) represent algebraic functions of the form
f : S → R ∪ {−∞,∞}. Formally, an ADD is a directed
acyclic graph with a single root node and multiple terminal
nodes. Internal nodes correspond to binary variables, and
each node has two successors. The low edge represents that
the current variable is false, while the high edge represents
that the current variable is true. Evaluation of a function
then corresponds to the traversal of the ADD according to
the assignment of the variables.

The main idea of BSS is to determinize a given MDP
while representing the MDP as decision diagrams with a
subsequent backward exploration of the state space. Re-
cently, Speck, Geißer, and Mattmüller (2018) showed how
symbolic search can be applied to deterministic planning
tasks with state-dependent action costs. Similar to their
work, we perform a symbolic backward search on the deter-
minized MDP which corresponds to a classical planning task
with state-dependent action costs. This backward search re-
sults in multiple ADDs, where each ADD represents states
associated with the maximum reward that can be achieved
from the corresponding states. More precisely, BSS can be
divided into three parts. First, a given MDP is determinized
(all-outcome or most-likely). Second, a backward breadth-
first search is performed, with the number of backward plan-
ning steps equal to the horizon. In each backward planning
step we obtain an ADD which maps reachable states to re-
wards (symbolic layers). Finally, during the actual search

the precomputed rewards (stored in decision diagrams) are
used to evaluate state actions pairs, i.e. Q-values. In the
following, we will explain each step in more detail.

Let a be an action of a given MDP. Action a has an empty
precondition and effects p(x′ := ¬x) = 1, p(y′ := 1) = 0.6
and p(y′ := 0) = 0.4. In other words, action a always
negates the value of x and sets y to 1 (0) with probability of
0.6 (0.4). Finally, the reward function of action a is defined
as R(s, a) = 2 + 5 · s(y), where s(y) is the value of y in
state s. In the initial step, action a is determinized (here:
most-likely determinization) and represented as a transition
relation in form of an ADD mapping state pairs consisting of
predecessors S and successors S′ to 1 (true) or 0 (false). Fig-
ure 1 depicts the ADD which represents action a as transi-
tion relation after applying the most-likely determinization,
i.e. only outcomes with a probability of 0.5 are considered
1. Finally, the reward function is added to the transition rela-
tion of a. If we transform the reward to a negative value, we
obtain a transition relation representing costs which is anal-
ogous to the formalization of Speck, Geißer, and Mattmüller
(2018). This transformation of an action is applied to each
action which results in a determinized planning task with
state-dependent action costs.

The symbolic backward search starts with all states asso-
ciated with zero costs as shown on the left side of Figure
2. We perform h backward steps where h is equal to the
horizon. Each backward step creates a symbolic Layer Li,
which stores for each state the maximal reward which can
be achieved in the remaining i steps. In Figure 2, after one
backward step (L1) we can obtain a reward of 2 or 7 by
applying an action. Note that there can be states where no
action can be applied which is represented by a reward of
−∞. Finally, we initialize the value of a state s with action
a as follows: let i be the number of remaining steps and let
S′s,a be the set of possible successor states of applying ac-
tion a in state s, i.e. S′s,a = {s′|p(s′|s, a) > 0}. The initial
Q-value of a state action pair is defined as

Qinit(s, a) =

∑
s′∈S′

s,a
Li−1(s

′)

|S′s,a|
.

In other words, we take the average of the precomputed re-
wards of all successor states of predecessor state s with re-
spect to action a. In the following, we present how we can
combine this heuristic with the usual forward search heuris-
tic applied by the PROST planner.

Combining explicit forward and symbolic
backward search heuristics

One property of the symbolic backward search heuristic is
that it explores the whole deterministic task and collects all
states and rewards reachable from the end of the horizon.
While this is certainly easier for the determinized task it still
is a hard problem and as a result we might only have results
for parts of the horizon. In this case, we can make use of

1This may contrast with some other notions of most-likely,
namely that most-likely usually means only accepting the most-
likely outcome.

p(s′|s, a):
p(x′ := ¬x) = 1
p(y′ := 1) = 0.6
p(y′ := 0) = 0.4

R(s, a) = 2 + 5s(y)

determinization
(here: most-likely)

x

x′ x′

y′

0 1

0 1

0
1 0

1

0
1

add reward

R(s, a) = 2 + 5s(y)

x

x′ x′

y

y′ y′

−∞2 7

0 1

0 1 0 1

0 1

01 0 1

Figure 1: Transformations of action a. Action a has an empty precondition and effects p(x′ := ¬x) = 1, p(y′ := 1) = 0.6 and
p(y′ := 0) = 0.4. Functions related to action a are depicted as ADDs. In the middle the determinized transition relation and
on the right the final transition relation with rewards.

2

3

5· · ·5

65

−∞

. . .

. . .

. . .

0

0

2

7

−∞

a1

a2
...

an

an−1

Layer L0: Layer L1: Layer Lh:

Backward Search (Regression)

Figure 2: Visualization of symbolic backward search start-
ing with all states associated with zero costs. At each back-
ward step, all states leading to the previous state s are stored
in an ADD called Layer Li and mapped to the maximum re-
ward which can be achieved from s in the remaining i steps.

the original heuristic implemented in the PROST planner,
which is based on iterative deepening search (IDS).

The IDS heuristic also performs a determinization of the
probabilistic task, and then conducts a depth-first search to
compute the maximal reward reachable in the next d steps.
The value of d is computed before search starts and usually
depends on the complexity of the domain and its transition
functions. The IDS heuristic can therefore be seen as an
explicit forward search algorithm which complements our
symbolic backward search approach. While our heuristic
computes maximal rewards from the end of the horizon up
to some step i, IDS computes the maximal reward reachable
in the next d steps. Therefore, whenever we are not able to
compute all layers, we combine both heuristics by querying
the backward search value of the last layer and add the value
estimated by IDS (with depth corresponding to the maximal
layer). This can also be seen as a portfolio approach: if we
are able to build all layers in the symbolic search we rely

solely on our heuristic. If the task is so complex that we
are not even able to build a single layer we only rely on the
IDS heuristic (and have a setup very similar to the previous
IPPC configuration). In all other cases we interweave both
heuristics in order to generate an initial state value estimate
which is better than when we would solely rely on a single
heuristic.

Competition Analysis
Now that the competition is over we present a brief analysis
of some of the results (Keller 2018b). The two versions of
our planner differ only in the heuristics. Version 1 computes
the BSS heuristic based on a most-likely determinization,
while version 2 is based on an all-outcome determinization.
We are especially interested in a comparison to the base-
line planners (the PROST planner configurations of 2011
and 2014), since our planner mostly differs in the heuris-
tic.2 This year’s IPPC consisted of eight domains with 20
instances each, resulting in a total of 160 instances. It turns
out that grounding was a major challenge this year. For ex-
ample, the hardest Academic Advising instance has more
than 11 billion grounded actions, due to the combinatorial
blowup (5 out of 269 actions are applicable concurrently).
In total, our planner was unable to ground 31 instances.
This certainly warrants investing more research effort into
the grounding of concurrent actions. Regarding the remain-
ing instances, the PROST-DD planner crashed during search
in 16 instances, mainly in the Earth observation domain due
to a bug. Table 1 shows the average rewards of our planner
(bug fixed) compared to the PROST versions of the IPPCs
2011 and 2014 on the Earth Observation domain. The dif-
ferences in performance are minor.

2We additionally fixed some bugs of the PROST planner which
were mostly concerned with not exceeding the memory limit (the
baseline planners only used 2GB RAM). Unfortunately, we intro-
duced a bug which led to a crash in most of the Earth Observation
domain instances; otherwise our planner’s score would have ex-
ceeded the baseline score.

PROST-DD PROST

ID most-likely (v1) all-outcome (v2) 2011 2014

1 -8.84 -8.92 -15.95 -8.49
2 -486.75 -483.91 -478.11 -484.93
3 -704.89 -709.97 -697.33 -714.44
4 -1574.65 -1600.60 -1591.32 -1616.31
5 -649.13 -644.63 -643.91 -672.15
6 -239.01 -236.27 -237.88 -248.41
7 -39.40 -39.65 -40.79 -42.04
8 -431.67 -429.09 -455.09 -455.47
9 -1355.19 -1355.19 -1291.91 -1278.41

10 -3203.95 -3222.25 -3167.59 -3163.08
11 -820.28 -819.43 -833.20 -825.21
12 -1668.00 -1693.24 -1657.35 -1665.31
13 -1919.39 -1922.29 -1841.96 -1839.17
14 -10099.60 -10103.80 -9957.04 -9827.79
15 -2645.88 -2627.17 -2588.33 -2775.01
16 -353.41 -351.64 -380.27 -368.68
17 -1875.48 -1875.48 -1791.63 -1736.52
18 -3186.06 -3186.60 -2989.44 -2843.33
19 -5170.25 -5114.09 -4954.21 -4825.60
20 -12702.90 -12665.50 -12731.80 -12622.90

Table 1: Average reward of the PROST-DD planner (version
1 and version 2) compared to the PROST versions of the
IPPCs 2011 and 2014 on the Earth Observation domain.

The key question remains: has the BSS heuristic paid off?
To answer this question, we analyze the number of tasks for
which it was possible to compute at least one layer, which
meant that the BSS heuristic could also be used during the
search. Unfortunately, it turns out that it was only possible to
compute at least one layer in 23 instances. This is certainly
due to the fact that the domains of this years IPPC were
more challenging compared to previous problems of former
IPPCs. The BSS heuristic was mostly succesful in the do-
mains Academic Advising and Push Your Luck. In both do-
mains, the performance of both configurations was evenly
good, and superior to other planners. The heuristic compu-
tation took around 10% of the search time. In the Manu-
facturer and Cooperative Recon domains the heuristic was
unable to generate a single layer and thus consumed time
in the precomputation phase without providing useful infor-
mation. This might be a reason for the low performance.
However, once computed the BSS heuristic is informative
and helpful. This certainly shows that the heuristic has po-
tential, but needs to be more efficient, especially when faced
with large and difficult problems. We already have some
ideas for such improvements. Interestingly, we also outper-
formed other planners in Wildlife Preserve, even though we
use the same heuristic as the baseline planner in this case.
This may be due to the additional memory we use, but also
due to some modifications to the grounding of actions which
differs slightly from the baseline.

In summary, the heuristic presented here has paid off in
some domains and has affected the planner’s performance
in others due to loss of time. PROST-DD proved to be a
competitive planner and the BSS heuristic showed promis-
ing results.

Our planner submission is available in the official IPPC
repositories on Bitbucket (Keller 2018a). We fixed the bug

which led to crashes in the Earth Observation domain in the
branch ipc2018-disc-mdp. The original competition version
is available on the branch ipc2018-disc-mdp-competition.

Acknowledgments
David Speck was supported by the German National Sci-
ence Foundation (DFG) research unit FOR 1513 on Hy-
brid Reasoning for Intelligent Systems (http://www.
hybrid-reasoning.org).

References
[Auer, Cesa-Bianchi, and Fischer 2002] Auer, P.; Cesa-
Bianchi, N.; and Fischer, P. 2002. Finitetime Analysis
of the Multiarmed Bandit Problem. Machine Learning
47:235–256.

[Bahar et al. 1997] Bahar, R. I.; Frohm, E. A.; Gaona, C. M.;
Hachtel, G. D.; Macii, E.; Pardo, A.; and Somenzi, F.
1997. Algebraic decision diagrams and their applications. In
Proceedings of the International Conference on Computer
Aided Design (ICCAD 1993), volume 10, 171–206.

[Bubeck, Munos, and Stoltz 2009] Bubeck, S.; Munos, R.;
and Stoltz, G. 2009. Pure Exploration in Multiarmed Ban-
dits Problems. In Algorithmic Learning Theory, 20th Inter-
national Conference (ALT 2009), 23–37.

[Hoey et al. 1999] Hoey, J.; St-Aubin, R.; Hu, A.; and
Boutilier, C. 1999. SPUDD: Stochastic planning using de-
cision diagrams. In Proceedings of the Fifteenth conference
on Uncertainty in artificial intelligence, 279–288.

[Keller and Eyerich 2012] Keller, T., and Eyerich, P. 2012.
PROST: Probabilistic Planning Based on UCT. In Proceed-
ings of the Twenty-Second International Conference on Au-
tomated Planning and Scheduling (ICAPS 2012), 119–127.

[Keller and Helmert 2013] Keller, T., and Helmert, M. 2013.
Trial-based Heuristic Tree Search for Finite Horizon MDPs.
In Proceedings of the Twenty-Third International Confer-
ence on Automated Planning and Scheduling (ICAPS 2013),
135–143.

[Keller 2015] Keller, T. 2015. Anytime Optimal MDP Plan-
ning with Trial-based Heuristic Tree Search. Ph.D. Disser-
tation, University of Freiburg.

[Keller 2018a] Keller, T. 2018a. Bitbucket repository
of the ippc 2018 planners. https://bitbucket.
org/account/user/ipc2018-probabilistic/
projects/EN. [Online; accessed 08-October-2018].

[Keller 2018b] Keller, T. 2018b. Presentation slides of the
ippc 2018. https://ipc2018-probabilistic.
bitbucket.io/results/presentation.pdf.
[Online; accessed 08-October-2018].

[Sanner 2010] Sanner, S. 2010. Relational Dynamic Influ-
ence Diagram Language (RDDL): Language Description.

[Speck, Geißer, and Mattmüller 2018] Speck, D.; Geißer, F.;
and Mattmüller, R. 2018. Symbolic Planning with Edge-
Valued Multi-Valued Decision Diagrams. In Proceedings of
the Twenty-Eighth International Conference on Automated
Planning and Scheduling (ICAPS 2018), 250–258.

http://www.hybrid-reasoning.org
http://www.hybrid-reasoning.org
https://bitbucket.org/account/user/ipc2018-probabilistic/projects/EN
https://bitbucket.org/account/user/ipc2018-probabilistic/projects/EN
https://bitbucket.org/account/user/ipc2018-probabilistic/projects/EN
https://ipc2018-probabilistic.bitbucket.io/results/presentation.pdf
https://ipc2018-probabilistic.bitbucket.io/results/presentation.pdf

	Introduction
	Trial-based Heuristic Tree Search
	Backward Symbolic Search Heuristic (BSS)
	Combining explicit forward and symbolic backward search heuristics
	Competition Analysis
	Acknowledgments

