
FD-Autotune: Domain-Specific Configuration using Fast Downward
Chris Fawcett

University of British Columbia
fawcettc@cs.ubc.ca

Malte Helmert
Albert-Ludwigs-Universität Freiburg
helmert@informatik.uni-freiburg.de

Holger Hoos
University of British Columbia

hoos@cs.ubc.ca

Erez Karpas
Technion

karpase@technion.ac.il

Gabriele Röger
Albert-Ludwigs-Universität Freiburg
roeger@informatik.uni-freiburg.de

Jendrik Seipp
Albert-Ludwigs-Universität Freiburg

seipp@informatik.uni-freiburg.de

Abstract

In this work, we present the FD-Autotune learning planning
system, which is based on the idea of domain-specific con-
figuration of the latest, highly parametric version of the Fast
Downward Planning Framework by means of a generic auto-
mated algorithm configuration procedure. We describe how
the extremely large configuration space of Fast Downward
was restricted to a subspace that, although still very large,
can be managed by a state-of-the-art automated configuration
procedure. Additionally, we give preliminary results obtained
from applying our approach to the nine domains of the IPC-
2011 learning track, using the well-known ParamILS config-
urator and the recently developed HAL experimentation en-
vironment.

Introduction
Developers of state-of-the-art, high-performance algorithms
for combinatorial problems, such as planning, are frequently
faced with many interdependent design choices. These
choices can include the heuristics to use during search, op-
tions controlling the behaviour of these heuristics, as well as
which search techniques to use and in what combination.

Recent work in other combinatorial problem domains
such as satisfiability (SAT) and mixed-integer program-
ming (MIP) suggests that by exposing these design choices
as parameters, developers can leverage generic tools for
automated algorithm configuration to find performance-
optimizing configurations of the resulting highly parame-
terised algorithm (Hutter et al. 2007; Hutter, Hoos, and
Leyton-Brown 2010). In fact, the configurations resulting
from this process often perform substantially better than
those found manually through exploration by human ex-
perts.

These results suggest the following new approach to
building a learning planner. Given a highly-parametric, gen-
eral purpose planner P , a representative set I of planning
instances from a specific domain, and a performance metric
m to be optimised, we can obtain a configuration of the pa-
rameters of P optimised for performance on I with respect
to m using a generic automated algorithm configuration tool.

For this submission, we apply the above approach using
a new, highly-parameterised version of the Fast Downward
planning system (Helmert 2006) and the state-of-the-art

automated algorithm configuration tool ParamILS (Hut-
ter, Hoos, and Stützle 2007; Hutter et al. 2009), creating
domain-specific planning algorithms FD-Autotune.s (speed)
and FD-Autotune.q (quality). FD-Autotune.s refers to the
specific configuration of Fast Downward resulting from us-
ing mean runtime to find an initial satisficing plan as the
optimisation metric, and FD-Autotune.q is the configuration
obtained when using mean plan cost after a fixed runtime as
the optimisation metric. Due to the highly structured and po-
tentially infinite configuration space of Fast Downward, we
carefully limited the number of parameters in order to com-
ply with the requirements of ParamILS and to retain as many
potential planner configurations as possible. Our learning
approach was implemented to take advantage of HAL, a re-
cently released tool for automating the specification and ex-
ecution of common empirical algorithm design and analysis
tasks (Nell et al. 2011).

The remainder of this paper is organised as follows.
First, we describe the Fast Downward Planning Frame-
work, as well as the configuration spaces used for both
FD-Autotune.s and FD-Autotune.q. Next, we give a brief
overview of both recent work in automated algorithm con-
figuration and of the HAL experimentation environment.
We then describe the experimental design of our IPC-2011
learning track submission and give preliminary results for
the nine learning track domains. Finally, we briefly discuss
some avenues for further work in this area.

The Fast Downward Planning Framework
In this section, we describe the capabilities of the IPC-2011
version of the Fast Downward planning system. Since Fast
Downward incorporates many different algorithms and ap-
proaches, which have each been published separately in
peer-reviewed conferences and/or journals, we will simply
list the available components with pointers to further infor-
mation for the interested reader.

The Fast Downward planning system (Helmert 2006) is
composed of three main parts: the translator, the preproces-
sor, and the search component, which are run sequentially
in this order. The translator (Helmert 2009) is responsible
for translating the given PDDL task into an equivalent one
in SAS+ representation. This is done by finding groups
of propositions which are mutually exclusive and combin-
ing them into a single SAS+ variable. The preprocessor

performs a relevance analysis and precomputes some data
structures that are used by the search component and cer-
tain heuristics. The search component, whose capabilities
we will describe in detail here, searches for a solution to the
given SAS+ task.

Search
The search component features three main types of search
algorithms:

• Eager Best-First Search — the classic best-first search.
The same search code is used for greedy best-first search,
A∗, and weighted A∗ by plugging in different f functions.
The multi-path-dependent LM-A∗ (Karpas and Domshlak
2009) is also implemented here.

• Lazy Best-First Search — this is best-first search with de-
ferred evaluation (Richter and Helmert 2009). Here as
well, the same search code is used for lazy greedy best-
first search and lazy weighted A∗ by using a different f
function.

• Enforced Hill-Climbing (Hoffmann and Nebel 2001) —
an incomplete local search technique. This has been
slightly generalised from classic EHC to allow preferred
operators from multiple heuristics, as well as enabling or
disabling preferred operator pruning.

Each of these search algorithms can take several parame-
ters and use one or more heuristics (heuristic combination
methods will be discussed next). In addition, these searches
can be run in an iterated fashion. This can be used, for ex-
ample, to produce RWA∗ (Richter, Thayer, and Ruml 2010),
the search algorithm used in LAMA (Richter and Westphal
2010).

Heuristic Combination
As mentioned previously, the search algorithms described
above can work with multiple heuristic evaluators. There
are several heuristic combination methods available in the
Fast Downward planning system, which are implemented as
different kinds of open lists.

Some of these combination methods amount to simple
arithmetic combinations of heuristic values and can use a
standard (“regular”) open list implementation, while others
treat the different heuristic estimates 〈h1(s), . . . , hn(s)〉 as
a vector that is not reduced to a single scalar value (Röger
and Helmert 2010).1 As a result, some of these latter meth-
ods do not necessarily induce a total order on the set of open
states. The following combination methods are available in
Fast Downward, in addition to performing a regular search
using a single heuristic:
• Max — takes the maximum of several heuristic estimates:

max{h1(s), . . . , hn(s)}.
• Sum — takes the sum or weighted sum of several heuristic

estimates: w1h1(s) + · · ·+ wnhn(s).

1To simplify discussion, this description assumes that search al-
gorithm behaviour only depends on heuristic values, but all these
algorithms can also take into account path costs, as in A∗ or
weighted A∗.

• Selective Max (Domshlak, Karpas, and Markovitch 2010)
— a learning-based method which chooses one heuristic
to evaluate at each state: hi(s) where i is chosen on a per-
state basis using a naive Bayes classifier trained on-line.

• Tie-breaking — considers the heuristics in fixed order:
first consider h1(s); if ties need to be broken, consider
h2(s); and so on.

• Pareto-optimal — considers all states whose heuristic
value vector is not Pareto-dominated by another heuristic
value vector as candidates for expansion, with selection
between multiple candidates performed randomly.

• Alternation (Dual Queue) — uses heuristics in a round-
robin fashion: the first expansion uses h1(s), the second
uses h2(s), and so on until hn(s) and then continuing
again with h1(s). Alternation can also be enhanced by
boosting (Richter and Helmert 2009).

Each combination method can take several parameters. One
important parameter is whether the open list contains only
states which have been reached via preferred operators, or
all states.

Moreover, wherever this makes sense, instead of using
different heuristics as their components, these combination
methods can also combine the results of different open lists
which can themselves employ combination methods, and
this nesting can even be performed recursively. For exam-
ple, it is possible to use alternation over one regular heuris-
tic, one Pareto-based open list, and one open list that uses
tie-breaking over various weighted sums.

Such combinations allow us to build the “classic” boosted
dual queue of Fast Downward: use an alternation approach,
which combines two standard open lists, one of which holds
all states, and the other only preferred states, both of which
are based on a single heuristic estimate. To use two heuristic
estimates as in Fast Diagonally Downward (Helmert 2006)
or LAMA (Richter and Westphal 2010), alternation over
four open lists would be used (for each heuristic, one hold-
ing all states and one holding only preferred states).

Heuristics
So far, we have discussed the search algorithms and heuristic
combination methods available in the Fast Downward plan-
ning system. We now turn our attention to the heuristics
available in Fast Downward. Due to the number of heuris-
tics, we simply list the available heuristics, with pointers to
relevant literature.

Admissible Heuristics
• Blind — 0 for goal states, 1 (or cheapest action cost for

non-unit-cost tasks) for non-goal states
• hmax (Bonet, Loerincs, and Geffner 1997; Bonet and

Geffner 1999) — the relaxation-based maximum heuristic
• hm (Haslum and Geffner 2000) — a very slow implemen-

tation of the hm heuristic family
• hM&S (Helmert, Haslum, and Hoffmann 2007; 2008) —

the merge-and-shrink heuristic
• hLA (Karpas and Domshlak 2009; Keyder, Richter, and

Helmert 2010) — the admissible landmark heuristic

Algorithm Categorical Numeric Total Configurations

FD-Autotune.s 40 5 45 2.99 × 1013

FD-Autotune.q 64 13 77 1.94 × 1026

Table 1: The number of categorical and numeric parameters
in the reduced configuration space for both FD-Autotune.s and
FD-Autotune.q, as well as the total number of distinct configura-
tions for each.

• hLM-cut (Helmert and Domshlak 2009) — the landmark-
cut heuristic

Inadmissible Heuristics
• Goal Count — number of unachieved goals

• hadd (Bonet, Loerincs, and Geffner 1997; Bonet and
Geffner 1999) — the relaxation-based additive heuristic

• hFF (Hoffmann and Nebel 2001) — the relaxed plan
heuristic

• hcg (Helmert 2004) — the causal graph heuristic

• hcea (Helmert and Geffner 2008) — the context-enhanced
additive heuristic (a generalisation of hadd and hcg)

• hLM (Richter, Helmert, and Westphal 2008; Richter and
Westphal 2010) — the landmark heuristic

Apart from Goal Count, all heuristics listed above are cost-
based versions (that is, they support non-unit cost actions).
This also allows another option for these heuristics: action-
cost adjustment. It is possible to tell the heuristics (as well as
the search code) to treat all actions as unit-cost (regardless of
their true cost) or to add 1 to all action costs. This has been
found to be helpful in tasks with 0-cost actions (Richter and
Westphal 2010).

Configuration Space
The configuration space of Fast Downward poses a chal-
lenge in formulating the parameter space to be explored by a
parameter-tuning algorithm: structured parameters. For ex-
ample, it is possible to configure an alternation open list that
alternates between two internal alternation open lists, each
of which alternates between their own internal alternation
open lists, and so on. Since ParamILS (Hutter et al. 2007)
does not handle structured parameters, we had to limit the
configuration space somewhat.

The configuration spaces used in this work (as shown in
Table 2, located in the appendix) contain a Boolean param-
eter for each heuristic (all heuristics for satisficing planning,
only admissible heuristics for optimal planning), indicating
whether that heuristic is in use or not. The other parameters
of the heuristic (if any) are conditional on the heuristic being
used.

For optimal planning, the search algorithm is predeter-
mined (A∗), and so our only other choice is, when more than
one heuristic is used, how the heuristics are combined (the
relevant options are Max and Selective Max). This is con-
trolled by another parameter, which is conditional on more
than one heuristic being chosen.

For satisficing planning, the setting that applies to the
planning and learning competition, the theoretical config-
uration space is much more complex, since combination
methods such as alternation and weighted sums introduce
an infinite set of possibilities.

To keep the configuration space manageable, we only al-
low one layer of alternation, and its components must be
standard open lists (sorted by scalar ranking values), one
for each heuristic that was selected, and possibly more if
preferred operators are used. In addition, we can combine
search algorithms using iterated search as in RWA∗. Here,
we limit the number of searches to a maximum of 5, in order
to avoid an infinitely large structured configuration space.
As shown in Table 1, FD-Autotune.s and FD-Autotune.q
have many parameters, with 2.99×1013 and 1.94×1026 dis-
tinct configurations, respectively. (The difference is due to
the fact that iterated search is not very useful for the “speed”
setting, and hence is not enabled there.) These configuration
spaces are some of the largest ever experimented with using
automated algorithm configuration tools.

Automated Configuration
For the configuration task faced in the context of this work,
we chose to use the FocusedILS variant of ParamILS (Hut-
ter, Hoos, and Stützle 2007; Hutter et al. 2009), because it
is the only procedure we are aware of that has been demon-
strated to perform well on algorithm configuration problems
as hard as the one encountered here. ParamILS is fun-
damentally based on Iterated Local Search (ILS), a well-
known, general stochastic local search method that inter-
leaves phases of simple local search – in particular, iterative
improvement – with so-called perturbation phases that are
designed to escape from local optima.

In the FocusedILS variant of ParamILS, ILS is used to
search for high-performance configurations of a given tar-
get algorithm (here: Fast Downward) by evaluating promis-
ing configurations. To avoid wasting CPU time on poorly-
performing configurations, FocusedILS carefully controls
the number of target algorithm runs performed for candi-
date configurations; it also adaptively limits the amount of
runtime allocated to each algorithm run using knowledge
of the best-performing configuration found so far. Further
information on ParamILS can be found in earlier work by
Hutter, Hoos, and Stützle (2007) and Hutter et al. (2009),
and interesting applications have been reported by Hutter et
al. (2007), and Hutter, Hoos, and Leyton-Brown (2010).

Implementation using HAL
For realising our learning planning system as well as for all
experiments performed in this work, we took advantage of
the features in HAL, a recently developed tool to support
both the computer-aided design and the empirical analysis
of high-performance algorithms (Nell et al. 2011). We used
several meta-algorithmic procedures provided by HAL, pri-
marily the algorithm configuration tool ParamILS and the
plug-ins providing support for empirical analysis of one or
two algorithms. We also leveraged the robust support in

HAL for data management and run distribution on compute
clusters.

For each given planning domain, our submission uses
HAL to run ten independent runs of ParamILS on a provided
set of training instances, using a maximum runtime cutoff of
900 CPU seconds for each run of Fast Downward and a to-
tal configuration time limit of five CPU days. In the case
of FD-Autotune.s, we can leverage support in ParamILS for
adaptive runtime capping to drastically reduce the runtime
required for each run of Fast Downward.

After all ten configuration runs have completed, we run
Fast Downward with a runtime cutoff of 900 CPU seconds
on each instance in the training set in order to evaluate the
so-called training score for each of the ten incumbent config-
urations. For FD-Autotune.s, this score is the mean runtime
required to find a satisficing solution, and for FD-Autotune.q
it represents the mean plan cost, with timeouts assigned a
(dummy) cost of 231− 1. The incumbent configuration with
the best training score is returned as the learned knowledge
for the given domain.

Preliminary IPC-2011 Learning Track Results

We have applied the framework introduced in this work
to the domains used for the learning track of the 7th In-
ternational Planning Competition (IPC-2011), currently in
progress at the time of this writing. The training sets for
each domain used for configuration consisted of 60 ran-
domly generated instances, selected such that the default
configurations of Fast Downward could find an initial sat-
isficing solution in less than 3 minutes of CPU time. Tar-
get instance distributions were provided by the competition
organizers, and our test sets for each domain contained 30
randomly generated instances from the same distribution.

The FD-Autotune.s configurations for each domain are
shown in Table 3 (located in the appendix), and performance
comparisons between the FD-Autotune.s default configura-
tion and the optimised configurations on each domain are
shown in Figures 1 and 2. From these results, it is clear that
the configuration of FD-Autotune.s is very successful in all
domains, although neither the default nor the optimised con-
figuration for the Spanner domain can solve any instances
from the test set within the given CPU time limits.

Unfortunately, this process did not result in adequate per-
formance from FD-Autotune.q, as the tuned configurations
never outperformed FD-Autotune.s and in many cases could
not solve the instances in our test sets. We believe that this
is because the tuned configurations were optimised for pro-
ducing plans of high quality on the (easier) training sets,
without any regard to the speed with which they found a
solution. Additionally, due to the fixed runtime cutoff of
900 CPU-seconds and the lack of adaptive capping when
configuring for solution quality with ParamILS, much fewer
runs of Fast Downward could be performed in the time al-
located for configuration. As a result, the performance of
these solvers on the training sets did not scale to the much
harder test sets.

Conclusions and Future Work
We believe that the generic approach underlying our work
on FD-Autotune represents a promising direction for the fu-
ture development of efficient planning systems. In partic-
ular, we suggest that it is worth including many different
variants and a wide range of settings for the various compo-
nents of a planning system, instead of committing at design
time to particular choices and settings. Algorithm develop-
ers can then use automated procedures for finding configura-
tions of the resulting highly parameterised planning systems
that perform well on the problems arising in a specific appli-
cation domain (or domains) under consideration. We plan to
further investigate framing the highly structured and poten-
tially infinite space of Fast Downward in ways that permit
the effective use of automated algorithm configuration pro-
cedures, such as ParamILS.

We note that our approach naturally benefits from fu-
ture improvements in planning systems (and in particular,
from new heuristic ideas that can be integrated, in the form
of parameterised components, into existing, flexible plan-
ning systems or frameworks) as well as from progress in
developing automated algorithm configuration procedures.
In principle, planning systems developed in this way can
also be used in combination with techniques for auto-
mated algorithm selection, giving even greater performance
than any single configuration alone (Xu et al. 2008; 2009;
Xu, Hoos, and Leyton-Brown 2010). We also see much
potential in testing new heuristics and algorithm compo-
nents, based on measuring the performance improvements
obtained by adding them to an existing highly-parameterised
planner followed by automatic configuration for specific do-
mains. The results may not only reveal to which extent new
design elements are useful, but also under which circum-
stances they are most effective – something that would be
very difficult to determine manually.

Acknowledgements The authors would like to thank
WestGrid and Compute-Calcul Canada for providing ac-
cess to the cluster hardware used in our experiments, and
Chris Nell for providing support for HAL. HH acknowl-
edges funding through the MITACS NCE and through an
NSERC Discovery Grant.

References
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In ECP, 360–372.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism for planning. In AAAI,
714–719.
Domshlak, C.; Karpas, E.; and Markovitch, S. 2010. To
max or not to max: Online learning for speeding up optimal
planning. In AAAI, 1071–1076.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In AIPS, 140–149.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS, 162–169.

Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In ICAPS, 140–147.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
ICAPS, 176–183.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2008. Explicit-
state abstraction: A new method for generating heuristic
functions. In AAAI, 1547–1550.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In ICAPS, 161–170.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173(5–
6):503–535.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hutter, F.; Babic, D.; Hoos, H. H.; and Hu, A. J. 2007.
Boosting verification by automatic tuning of decision proce-
dures. Formal Methods in Computer-Aided Design 27–34.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle,
T. 2009. ParamILS: an automatic algorithm configura-
tion framework. Journal of Artificial Intelligence Research
36:267–306.
Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2010. Auto-
mated configuration of mixed integer programming solvers.
In Lodi, A.; Milano, M.; and Toth, P., eds., Integration of AI
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems, volume 6140 of Lecture
Notes in Computer Science. Springer. 186–202.
Hutter, F.; Hoos, H. H.; and Stützle, T. 2007. Automatic al-
gorithm configuration based on local search. In AAAI, 1152–
1157.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI, 1728–1733.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
complete landmarks for and/or graphs. In ECAI, 335–340.
Nell, C.; Fawcett, C.; Hoos, H. H.; and Leyton-Brown, K.
2011. HAL: A framework for the automated analysis and
design of high-performance algorithms. In LION-5. To ap-
pear.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In ICAPS, 273–
280.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In AAAI, 975–982.
Richter, S.; Thayer, J. T.; and Ruml, W. 2010. The joy of
forgetting: Faster anytime search via restarting. In ICAPS,
137–144.
Röger, G., and Helmert, M. 2010. The more, the merrier:

Combining heuristic estimators for satisficing planning. In
ICAPS, 246–249.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: portfolio-based algorithm selection for SAT. Jour-
nal of Artificial Intelligence Research 32:565–606.
Xu, L.; Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2009.
SATzilla2009: an automatic algorithm portfolio for SAT.
Solver description, SAT competition 2009.
Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2010. Hy-
dra: Automatically configuring algorithms for portfolio-
based selection. In AAAI, 210–216.

 1

 10

 100

 1000

 1 10 100 1000

FD
-A

u
to

tu
n
e
.s

 c
o
n
fi
g

u
re

d

FD-Autotune.s default

(a) Training set performance

 1

 10

 100

 1000

 1 10 100 1000

FD
-A

u
to

tu
n
e
.s

 c
o
n
fi
g

u
re

d

FD-Autotune.s default

(b) Test set performance

Figure 1: These scatter plots show the performance increase realised by the configured FD-Autotune.s compared to the default,
using runs of 900 CPU seconds on 540 (training) and 270 (test) instances obtained by combining our respective training and
test sets for all nine IPC-2011 domains. Points below the main diagonal indicate instances where the configured FD-Autotune.s
outperforms the default, and in this case this outperformance is often of several orders of magnitude.

C
P

U
 T

im
e

(s
)

1

2

5

10

20

50

100

200

300

500

700
900

Barman
(default)

Barman
(configured)

Blocksworld
(default)

Blocksworld
(configured)

Depots
(default)

Depots
(configured)

Gripper
(default)

Gripper
(configured)

Parking
(default)

Parking
(configured)

Rover
(default)

Rover
(configured)

Satellite
(default)

Satellite
(configured)

Spanner
(default)

Spanner
(configured)

TPP
(default)

TPP
(configured)

●●●●●●

●

●
●

●

●

●

●
●

●

●

●

●●

●●●●●●
●●●
●

●

●●●
●●●
●
●●

Training set performance

(a) Training set performance

C
P

U
 T

im
e

(s
)

1

2

5

10

20

50

100

200

300

500

700
900

Barman
(default)

Barman
(configured)

Blocksworld
(default)

Blocksworld
(configured)

Depots
(default)

Depots
(configured)

Gripper
(default)

Gripper
(configured)

Parking
(default)

Parking
(configured)

Rover
(default)

Rover
(configured)

Satellite
(default)

Satellite
(configured)

Spanner
(default)

Spanner
(configured)

TPP
(default)

TPP
(configured)

●●

●

●

●●

Test set performance

(b) Test set performance

Figure 2: Box plots for the CPU time used by the default and automatically configured FD-Autotune.s, on the training and
test sets for each of the nine IPC-2011 domains. Each training (test) set was composed of 60 (30) instances, and each run of
Fast Downward was allocated 900 CPU seconds of runtime for both the training and the test sets. Box plots for all default
configurations are light grey, while the plots for the configured FD-Autotune.s are dark grey. Note that for 5 of these domains,
the default configuration fails to solve all or nearly all of the instances in the test set for that domain.

Parameter name Domain FD-Autotune.s Default FD-Autotune.q Default
add heuristic enabled {true, false} false true
add heuristic cost type {0, 1, 2} − 0
add heuristic pref ops {true, false} − false
blind heuristic enabled {true, false} false false
cea heuristic enabled {true, false} false true
cea heuristic cost type {0, 1, 2} − 0
cea heuristic pref ops {true, false} − true
cg heuristic enabled {true, false} false true
cg heuristic cost type {0, 1, 2} − 2
cg heuristic pref ops {true, false} − false
ff heuristic enabled {true, false} true false
ff heuristic cost type {0, 1, 2} 1 −
ff heuristic pref ops {true, false} true −
goalcount heuristic enabled {true, false} false true
goalcount heuristic cost type {0, 1, 2} − 0
goalcount heuristic pref ops {true, false} − true
hm heuristic enabled {true, false} false false
hm heuristic m {1, 2, 3} − −
hmax heuristic enabled {true, false} false false
lm ff synergy {true, false} − −
lm heuristic enabled {true, false} false false
lm heuristic admissible {true, false} − −
lm heuristic conjunctive landmarks {true, false} − −
lm heuristic cost type {0, 1, 2} − −
lm heuristic disjunctive landmarks {true, false} − −
lm heuristic hm m {1, 2, 3} − −
lm heuristic no orders {true, false} − −
lm heuristic only causal landmarks {true, false} − −
lm heuristic pref ops {true, false} − −
lm heuristic reasonable orders {true, false} − −
lm heuristic type {lm rhw, lm zg, lm hm, lm exhaust, lm rhw hm1} − −
lmcut heuristic enabled {true, false} false false
lmcut heuristic cost type {0, 1, 2} − −
mas heuristic enabled {true, false} false false
mas heuristic max states {10 000, 50 000, 100 000, 150 000, 200 000} − −
mas heuristic merge strategy {5} − −
mas heuristic shrink strategy {4, 7, 6, 12} − −
search 0 cost type {0, 1} 1 1
search 0 eager pathmax {true, false} − −
search 0 ehc preferred usage {0, 1} − −
search 0 search boost {0, 100, 200, 500, 1 000, 2 000, 5 000} 2000 1000
search 0 search open list tb {true, false} false false
search 0 search reopen {true, false} false false
search 0 search w {1, 1.125, 1.25, 1.5, 2, 3, 5, 7, 10,∞} 10 7
search 0 type {none, ehc, eager, lazy} lazy lazy
search 1 cost type {0, 1} − 0
search 1 eager pathmax {true, false} − −
search 1 ehc preferred usage {0, 1} − −
search 1 search boost {0, 100, 200, 500, 1 000, 2 000, 5 000} − 5000
search 1 search open list tb {true, false} − true
search 1 search reopen {true, false} − false
search 1 search w {1, 1.125, 1.25, 1.5, 2, 3, 5, 7, 10,∞} − 3
search 1 type {none, ehc, eager, lazy} − lazy
search 2 cost type {0, 1} − 0
search 2 eager pathmax {true, false} − true
search 2 ehc preferred usage {0, 1} − −
search 2 search boost {0, 100, 200, 500, 1 000, 2 000, 5 000} − 500
search 2 search open list tb {true, false} − true
search 2 search reopen {true, false} − true
search 2 search w {1, 1.125, 1.25, 1.5, 2, 3, 5, 7, 10,∞} − 10
search 2 type {none, ehc, eager, lazy} − eager
search 3 cost type {0, 1} − −
search 3 eager pathmax {true, false} − −
search 3 ehc preferred usage {0, 1} − −
search 3 search boost {0, 100, 200, 500, 1 000, 2 000, 5 000} − −
search 3 search open list tb {true, false} − −
search 3 search reopen {true, false} − −
search 3 search w {1, 1.125, 1.25, 1.5, 2, 3, 5, 7, 10,∞} − −
search 3 type {none, ehc, eager, lazy} − none
search 4 cost type {0, 1} − −
search 4 eager pathmax {true, false} − −
search 4 ehc preferred usage {0, 1} − −
search 4 search boost {0, 100, 200, 500, 1 000, 2 000, 5 000} − −
search 4 search open list tb {true, false} − −
search 4 search reopen {true, false} − −
search 4 search w {1, 1.125, 1.25, 1.5, 2, 3, 5, 7, 10,∞} − −
search 4 type {none, ehc, eager, lazy} − none

Table 2: Parameters in the configuration space for the satisficing planner, comprising 45 parameters for FD-Autotune.s and 77 parameters
for FD-Autotune.q. The parameters for each heuristic are only active if the corresponding heuristic is enabled. If search i type is none for
some i, then that entry is left out of the iterated search in Fast Downward. “−” indicates that the given parameter is not active.

Parameter name FD-Autotune.s Default Barman Blocksworld Depots Gripper Parking Rover Satellite Spanner Tpp
add heuristic enabled false false false false false false false false false false
add heuristic cost type − − − − − − − − − −
add heuristic pref ops − − − − − − − − − −
blind heuristic enabled false false false false false false false false true false
cea heuristic enabled false false false false false false false false true false
cea heuristic cost type − − − − − − − − 1 −
cea heuristic pref ops − − − − − − − − true −
cg heuristic enabled false false false false false true false true false false
cg heuristic cost type − − − − − 1 − 2 − −
cg heuristic pref ops − − − − − true − true − −
ff heuristic enabled true true true false true false true false false true
ff heuristic cost type 1 2 1 − 0 − 1 − − 1
ff heuristic pref ops true false true − false − false − − false
goalcount heuristic enabled false false false false false false false true false false
goalcount heuristic cost type − − − − − − − 2 − −
goalcount heuristic pref ops − − − − − − − true − −
hm heuristic enabled false false false false false false false false false false
hm heuristic m − − − − − − − − − −
hmax heuristic enabled false false false false false false false false false false
lm ff synergy − true − − true − true − − true
lm heuristic enabled false true false true true true true false false true
lm heuristic admissible − false − true false false false − − false
lm heuristic conjunctive landmarks − true − false true true true − − true
lm heuristic cost type − 2 − 0 2 0 0 − − 2
lm heuristic disjunctive landmarks − − − − − − − − − −
lm heuristic hm m − 1 − 1 1 1 1 − − 1
lm heuristic no orders − true − true true false false − − true
lm heuristic only causal landmarks − − − − − − − − − −
lm heuristic pref ops − true − − true false true − − true
lm heuristic reasonable orders − false − − true false false − − true
lm heuristic type − lm hm − lm hm lm hm lm hm lm hm − − lm hm
lmcut heuristic enabled false false false false false false false false false false
lmcut heuristic cost type − − − − − − − − − −
mas heuristic enabled false false false false false false false false false false
mas heuristic max states − − − − − − − − − −
mas heuristic merge strategy − − − − − − − − − −
mas heuristic shrink strategy − − − − − − − − − −
search 0 cost type 1 1 1 0 1 0 0 0 1 0
search 0 eager pathmax − − − − − − − − false −
search 0 ehc preferred usage − − − − − − − − − −
search 0 search boost 2000 200 5000 200 2000 5000 500 0 5000 2000
search 0 search open list tb false − − false − − true − false −
search 0 search reopen false false false false true true false true true false
search 0 search w 10 ∞ ∞ 3 ∞ ∞ 10 ∞ 1 ∞
search 0 type lazy lazy lazy lazy lazy lazy lazy lazy eager lazy

Table 3: Results for FD-Autotune.s on the nine provided IPC-2011 learning track domains. “−” indicates that the given parameter is not
active.

