
GOLOG and PDDL: What is the Relative
Expressiveness?

Patrick Eyerich1, Bernhard Nebel1, Gerhard Lakemeyer2, and Jens Claßen2

1 Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
{eyerich,nebel}@informatik.uni-freiburg.de

2 Department of Computer Science, RWTH Aachen, 52056 Aachen, Germany
{gerhard,classen}@informatik.rwth-aachen.de

Abstract. Action formalisms such as GOLOG or FLUX have been developed
primarily for representing and reasoning about change in a logical framework.
For this reason, expressivity was the main goal in the development of these for-
malisms. In another line of research, efficiency of planning methods was the top-
most goal resulting in the basic STRIPS language, which has only moderate ex-
pressivity. The planning language PDDL developed since 1998 is an extension
of basic STRIPS with many expressive features. Now the interesting question is
how PDDL compares to GOLOG or other action languages from an expressivity
point of view. We will show that a GOLOG fragment, which we call Restricted
Basic Action Theories, is as expressive as the ADL fragment of PDDL.To prove
this equivalence we use the compilation framework. From a practical point of
view, this result can be used for employing efficient planners inside a GOLOG
interpreter.

1 Introduction

While action formalisms and planning methods have the same roots [5], the research
within these two fields has been developed independently from each other since the
introduction of STRIPS [6]. While in the area of action formalisms expressivity was
the main goal and efficiency only played a minor role, in the area of planning systems
special emphasis was put on efficiently generating action plans. For this reason, only
comparatively simple languages such as the basic variant ofSTRIPS (not containing
any background theory) have been used for a long time.

However, in recent years one could observe some convergence. In particular, the
development of thePlanning Domain Definition Language (PDDL)with its extensions
[1, 8], which can handle, among other things, conditional effects, time and continuous
effects, has led to a state, where action formalisms and planning languages approach
similar expressiveness, at least if we focus on linear sequences of actions.

In order to compare the expressiveness of PDDL and GOLOG, we will use the
compilation approach [4], in which two planning formalismsare considered as equally
expressive if planning domains and plans in the two formalisms can be translated into
each other without creating an unreasonable blowup.

As a first step, we will restrict so-called Basic Action Theories, which are formu-
lated in the situation calculus—the base of GOLOG—in a way suchthat they have the

same expressive power as the ADL fragment of PDDL. That the two formalisms are
indeed identical in expressive power is shown by giving a compilation scheme from
Restricted Basic Action Theories to the ADL fragment of PDDLand vice versa. From
a practical point of view, this result can be used for employing efficient planners inside
a GOLOG interpreter.

The rest of the paper is structured as follows: In Section 2, we briefly introduce
PDDL and its ADL fragment, which forms the relevant part for this work. In Section 3,
we introduce the situation calculus and Basic Action Theories. We define the so-called
Restricted Basic Action Theoriesand give compilation schemes for both directions in
Section 4. Finally we summarize the obtained results in Section 5 and give an outlook
of future work.

2 PDDL

PDDL was designed by Drew McDermott in 1998 [8] and since thenhas been con-
tinuously further developed in order to meet the needs of thebi-annualInternational
Planning Competition. The most recent version is version 3.0 [2]. PDDL is based on
the STRIPS formalism, but also offers many additional constructs like numeric fluents,
durative actions and derived predicates.

A planning task in PDDL is divided into a domain description,which describes the
behavior and a problem description, which contains specificobjects, the initial state,
the goal description and a metric which can be used to specifyhow to measure the
quality of a plan. In the following we restrict ourselves to PDDL 2.1 Level 1 [1], which
essentially corresponds to the ADL fragment [7] of the language, i.e., in addition to
STRIPS, we have universally quantified conditional effectsand arbitrary first-order for-
mulas in preconditions, effect condition, and goal conditions. In the following, we will
use PDDL to denote just the ADL fragment of PDDL.

A PDDL planning taskis a tupleP = 〈P ′, PObjects, PInit, PGoal〉 with thedomain
descriptionP ′ = 〈PTypes, PPredicates, PActions〉. We use the common state transition
semantics of PDDL [1]. This means thatstatesare truth assignments to the set of atoms
formed by instantiating all predicate symbols with all possible objects, i.e., constant
symbols, meeting the typing restrictions. Alternatively,we sometimes identify a state
with the set of atoms that are true in this state.Ground actionsare actions which have
all their parameters instantiated. They are applicable in astate, if their preconditions are
satisfied and their application changes the state accordingto the effects of the action.

A sequence of actionsa1, . . . , an is called aplan for P iff there exists a sequence
of statess0, . . . , sn such thats0 = PInit, sn |= PGoal, and each actionai is applicable
in statesi−1 and produces statesi.

3 Situation Calculus

GOLOG is an action formalism developed at the University of Toronto [3, 10]. It has
been formalized using the the situation calculus. The situation calculus is a second-
order language specifically designed for representing dynamically changing worlds. A
situation in this formalism is nothing else than the history of actions[3]. The initial

situation or empty history is denoted bys0. Using the special binary function symbol
do and an action termα, the situation after executingα is denoted bydo(α, s).

Relations whose truth values vary from situation to situation are called relational
fluents. Besides their regular arguments, fluents have one additional argument which
by convention is the last argument.At(x, y, s) for example means that objectx is at
positiony in situations. Furthermore, there are two binary predicates:Poss and<.
Poss(a, s) states under which conditions actiona is applicable in situations; s < s′

defines an ordering relation on situations (which are interpreted as sequences of actions)
and states thats is a proper subsequence ofs′.

Dynamic domains are described by giving a precondition axiom for every action
which is directly applicable by an agent (these are the so-called primitive actions),
defining under which circumstances a situation dependent predicate (fluent) is true in a
situation (this is done through the so-called successor state axioms (SSA)) and defining
the initial situation of the world. Furthermore, there are some general situation calculus
axioms and unique name axioms. All these together form a Basic Action Theory (BAT).

GOLOG also offers the possibility to define complex actions,e.g. test actions, se-
quences, nondeterministic choice of two actions, nondeterministic choice of action ar-
guments as well as nondeterministic iteration. Additionalconstructors allow for defin-
ing procedures. All these constructs are interpreted as macros and for a given initial
situation lead to unfolding the complex action to a sequenceof primitive actions. We
will ignore this possibility here for two reasons. First, itobviously lead to much conciser
representations than PDDL plans. Furthermore, since we areinterested in embedding a
planner in GOLOG in order to generate a plan, we are only interested to consider linear
sequences of primitive actions.

The starting point of our work are Basic Action Theories as defined by Reiter [3,
page 58]. A Basic Action TheoryT in its general form consists of five parts:

T = Σ ∪ TSSA ∪ TPA ∪ TUNA ∪ Ts0

whereΣ is a set of foundational axioms for situations,TSSA is a set of successor state
axioms for functional and relational fluents,TPA is a set of precondition axioms for ac-
tions,TUNA is the set of unique names axioms for actions, andTs0

is a set of first-order
sentences that are uniform ins0, so thats0 is the only term of the sortsituationmen-
tioned by the sentences ofTs0

. Thus, no sentence ofTs0
quantifies over situations, or

mentionsPoss, < or the function symboldo. Finally,Ts0
describes the initial situation.

Basic Actions Theories in their general form are much more powerful constructs
than PDDL (e.g. BAT’s are not forced to represent a complete theory, and potentially
there are infinitely many objects). At this point the question arises whether it can be
shown for a useful part of the set of all Basic Action Theoriesthat they are as expressive
as PDDL.

We call a BAT withoutTs0
a BAT domainD = 〈Σ,TSSA, TPA, TUNA〉, and such

a BAT domain together withTs0
, and a situation calculus formulaG(s) with only free

variables a BAT taskI = 〈D,Ts0
, G(s)〉. Similar to a PDDL plan, a plan for a BAT task

I, is a variable-free situation termσ, for which it holds thatT |= executable(σ)∧G(σ),
wherebyexecutable(s) means that all the actions occurring in the action sequences

can be executed one after the other.

In the following we give some restrictions which define such apart of this set and
show that all tasks meeting these restrictions may be compiled into PDDL. In order to
show that these restrictions are not too strict, we also present a compilation scheme for
the other direction.

3.1 Restricted Basic Action Theories

In the following, we call a Basic Action TheoryT restricted(RBAT) if it satisfies the
following conditions:

E1 The arity of functional terms is constrained to be zero. Sono functional terms apart
from constants are allowed.

E2 All successor state axioms are in a special syntactic form. The SSA of a fluentF
looks as follows:

F (x1, ..., xn, do(a, s)) ≡

n∨

l=1

φl (1)

for a finite numbern. Exactly oneφl is of the form

F (x1, ..., xn, s) ∧ ¬(
(∃...)([ϕ1∧](a = A1(y11, ..., y1m1

)))
∨(∃...)([ϕ2∧](a = A2(y21, ..., y2m2

)))
∨(∃...)([ϕ3∧](a = A3(y31, ..., y3m3

)))
∨..)

(2)

and all the otherφl are of the form

(∃...)([ϕl∧](a = A(y1, ..., ym))) . (3)

It is existentially quantified over the variablesyi for which it holds thatyi 6= xj for
all j. These are exactly those variables which appear as a parameter of the action
but not as an argument of the fluent. The formulas within brackets are optional. The
ϕl are first order formulas without functional terms. Any free variables in theφl are
implicitly universally quantified. Each SSA has to have exactly one term of form
(2). Furthermore, each action has to appear at most one time in a SSA.
It can be seen that fluentF becomes true in situationdo(a, s) iff one of the terms
φl is true. Each termφl is of one of the forms (2) or (3). In order to describe how
F can become true, form (3) is used.F is true in situationdo(a, s) if the actiona

is equal toA. Optionally further conditions for the truth ofF can be given byϕl.
Form (3) states thatF will be true in do(a, s) if it was already true ins and the
performed action was none of theAi. As in (2) there can be some more conditions
by aϕl. Theϕl correspond to conditional effects in PDDL. Each SSA has to have
exactly one term of form (2) because in PDDL predicates can change their truth
value only through actions. So a fluent which is true has to remain true as long as it
is not made false by an action, otherwise it has to stay true forever.

Example 1.In an example domain we assume to have trucks and humans. The
fluentAt(x, y, s) describes thatx is at positiony in situations wherebyx can be a

truck or a human. In the following we assume thatIn(x, y, s) was already defined
to be true exactly when humanx is inside trucky in situations. Furthermore, we
assume that there is an actiondrive(t, p1, p2) which describes that truckt drives
from positionp1 to positionp2.
The SSA ofAt(x, y) can be defined in the following way:

At(x, y, do(a, s)) ≡
(∃p1)(a = drive(x, p1, y))∨
(∃t, p1)(In(x, t, s) ∧ a = drive(t, p1, y))∨
At(x, y, s) ∧ ¬(((∃p2)(a = drive(x, y, p2)))
∨((∃t, p2)(In(x, t, s) ∧ a = drive(t, y, p2))))

The first and the second disjunct of this example are of form (3) while the third is
of form (2).

E3 Ts0
consistsonlyof the following sentences:

1.) For each relational fluentF with n + 1 arguments there is a sentence of the
form

F (x, s0) ≡
x1 = d11 ∧ ... ∧ xn = d1n

∨... ∨ x1 = dm1 ∧ ... ∧ xn = dmn

(4)

with m finite.
2.) For each situation independent predicateP with n arguments there is a sen-

tence of the form

P (x) ≡
x1 = d11 ∧ ... ∧ xn = d1n

∨... ∨ x1 = dm1 ∧ ... ∧ xn = dmn

(5)

with m finite.
3. There is adomain closure axiom:

∀x(x = d1 ∨ ... ∨ dn)

for each constantdi in T .
E4 There are unique names axioms for all functions of arity zero (constants).

4 Compilation Schemes

4.1 Introduction

To analyze the expressive power of different planning formalisms, Nebel introduced
the so-called compilation scheme framework [4]. This is a formal tool which can be
used to measure the relative expressive power of planning formalisms. The intuition
behind it is that a formalismX is as expressive as a secondY if all domain descriptions
of Y can be expressed concisely inX and the resulting plans are not blown up too
much. Compilation schemes are solution-preserving mappings with polynomially sized

results fromY domain structures toX domain structures. While we restrict the size of
the result of a compilation scheme, we do not require any bounds on the computational
resources for the compilation. In fact, for measuring the expressiveness, it is irrelevant
whether the mapping is polynomial-time computable, exponential-time computable, or
even non-recursive.3

Furthermore, it is required that the operators of the planning task can be translated
without considering the initial state and the goal. This restriction guarantees that com-
pilations are non-trivial. If the entire planning task could be transformed, a compilation
scheme could decide the existence of a plan for the source task and then generate a
small solution-preserving task in the target formalism, which would lead to the unintu-
itive conclusion that all planning formalisms have the sameexpressive power.

In addition to the resource requirements on the compilationprocess, one can dis-
tinguish between compilation schemes which preserve the size of the plansexactly,
linearly andpolynomially. Exactlymeans, that the plan in the target formalism should
only be longer by a constant number of steps;linearly means that the plan should only
be longer by a constant factor, andpolynomiallymeans that the plan length in the target
formalism should be bounded by a polynom in the size of the source plan and the size
of the source domain description [4].

Because we do not want to compare the expressive power of two planning for-
malisms but those of two quite different theories, we have slightly adjusted the defini-
tion of compilation schemes for our purposes.

Definition 1. Assume a tuple of functionsf=〈fTypes, fPredicates, fActions, fObjects,
fInit, fGoal〉 that induces a functionF from RBAT tasksI = 〈D,Ts0

, G(s)〉 to PDDL
planning tasksF (I) as follows:

F (I) = 〈fTypes(), fPredicates(D), fActions(D),
fObjects(D,Ts0

), fInit(Ts0
), fGoal(G(s))〉

If the following two conditions are satisfied, we callf a compilation scheme from RBAT’s
to PDDL:

K1 there exists a plan forI iff there exists a plan forF (I).
K2 the size of the results offTypes, fPredicates, fActions, fObjects, fInit andfGoal is

polynomial in the size of their arguments.

Definition 2. Assume a tuple of functionsg=〈gΣ , gTSSA
, gTP A

, gTUNA
, gTs0

, gGoal〉
that induces a functionG from PDDL planning tasksP = 〈P ′, PInit, PGoal〉 to RBAT
tasksG(P) as follows:

G(P) = 〈gΣ , gTSSA
(P ′), gTP A

(P ′), gTUNA
(P ′),

gTs0
(PInit, PObjects, PTypes), gGoal(PGoal)〉

If the following two conditions are satisfied, we callg a compilation scheme from PDDL
to RBAT’s:

3 Of course, if one wants to capitalize on a positive result, the computational resources should
be bounded. However, until now, a positive result has always implied acomputationally cheap
translation.

K3 there exists a plan forP iff there exists a plan forG(P).
K4 the size of the results ofgΣ , gTSSA

, gTP A
, gTUNA

, gTs0
andgGoal is polynomial in

the size of the arguments.

One can see that if there exists a compilation scheme from RBAT’s to PDDL, it follows
that for every RBAT task there exists a solution-preservingPDDL planning task, that is
only polynomially larger. Similarly, for the other direction. So if we can find two com-
pilation schemes from RBAT’s to PDDL and back such that the plan size is preserved
exactly, one can indeed claim that these two formalisms havethe same expressiveness.

Such a result would have practical relevance, because of theability to transform any
planning problem which occurs during the evaluation of a GOLOG program which is
based on RBAT’s into PDDL, search for a solution with an efficient planning system
based on PDDL, and transform it back to a RBAT. Prerequisite for this proceeding is
that the compilation schemes are polynomial-time computable. Furthermore, one would
also need a one-to-one correspondence between PDDL and RBATplans. However, this
is the case for both compilation schemes which we present in the following.

One essential difference between PDDL and the situation calculus is that changes
in the domain are described in different ways. While in the situation calculus successor
state axioms are used for this request, in PDDL such changes are noted as effects of
actions. So one has to find a mapping from the fluent-based notation in GOLOG to the
action-centered one in PDDL.

4.2 A compilation scheme from RBAT’s to PDDL

Because of the lack of space, we cannot present the whole scheme at this point. Instead
we only deal with the critical parts of the scheme and only sketch the other parts briefly.

We create an PDDL planning task from a RBAT taskI = 〈D,Ts0
, G(s)〉. For

that purpose we have to specify the functionsfTypes(), fPredicates(D), fActions(D),
fObjects(Ts0

), fInit(Ts0
) andfGoal(G(s)).

Because the first five functions are relatively straightforward, we omit them here to
save space and elaborate onfActions(D), which is the most interesting function. Note
that in the compilation we never use the typing feature of PDDL because there are no
types in the RBAT’s.

N = {ni|ni is a name of a primitive action inT} be the set of all names of primitive
actions inT . For any primitive actionA there is a precondition axiom of this form:
Poss(A(x1, ..., xn), s) ≡ ΠA(x1, ..., xn, s). It is

fActions(D) = (: action ni

: parameters(hParameters
i)

: precondition(ΠA(x1, ..., xn, s))

: effect(hEffect
i))...

for each action nameni where

1. hParameters
i states the parameters of the function which are all untyped and taken

directly from thePoss-predicate.

2. h
Effect
i states the effects of the action. It is

h
Effect
i = (and E1 E2 ...)

where for everyφl in which the expressiona = ni occurs anEi is contained, which
is build as follows. We distinguish between the forms (2) and(3) of φl:
(a) (∃...)([ϕl∧](a = A(y1, ..., ym)))

F (x1, ..., xn, do(a, s)) is true if a = A(y1, ..., ym) and additionally the op-
tional ϕl is true. First of all, we create the PDDL-formulaΞPDDL(ϕl) which
is simply the first-order formulaϕl expressed in PDDL syntax. This formula
then is used in a conditional effect in PDDL-syntax:

(when ΞPDDL(ϕl)(F x1... xn))

Let A(v1, ..., vn) be the PDDL actionA with its parameter variablesvi, F (x1,

..., xm) the fluent with its parameter variablesxi, anda = A(y1, ..., yn) the
parameterized action with its parametersyi. We replace eachxi in ΞPDDL(ϕl)
and(F x1... xn) by vj if xi = yj .
Now we quantify universally over variablesxi for which there is noyj with
yj = xi. So we get an effect:

(forall (Xi ...)
(when ΞPDDL(ϕl) (F x1 ... xn)))

(b) F (x1, ..., xn, s) ∧ ¬
((∃...)([ϕ1∧](a = A1(y11, ..., y1m1

)))
∨(∃...)([ϕ2∧](a = A2(y21, ..., y2m2

)))
∨(∃...)([ϕ3∧](a = A3(y31, ..., y3m3

)))
∨..)

here we proceed for each actionAi like in (a); in the effect we use additionally
not:

(forall (Xi ...)
(when ΞPDDL(ϕl) (not (F x1 ... xn))))

Example 2.Assume we haveAt(x, y, do(a, s)) = (∃p1)(a = drive(x, p1, y)) and the
PDDL actiondrive(truck from to).

We start withAt(x, y) and then replacex by truck and y by to. Because there
is no xi for which there is noyj with yj = xi, there is no need to quantify. We get:
(At truck to)

Example 3.Assume we haveAt(x, y, do(a, s)) = At(x, y, s) ∧ ¬(∃t, p2)(In(x, t) ∧
a = drive(t, y, p2)) and the PDDL actiondrive(truck from to).
We originate inAt(x, y) and then replacey by from andt by truck. We get(when(In
x truck)(not(At x from))). At last we quantify universally overx because no argument of
drive(t, y, p2)) is equal tox. We get:
(forall(x)(when(In x truck)(not(At x from))))

In the following, we will writesi+1 in order to denotedo(ai, ..., do(a1, do(ao, s0))).
Now we prove thatf is indeed a compilation scheme. In order to show this, we need

the following lemma.

Lemma 1. In RBAT’s, the truth value of each ground fluentF (x, si) is determined (so
we have a complete theory in each situation).

Proof Sketch: From restrictions E3 and E4 the claim follows fors0. Using E2 and E1
on top of that, we can prove the claim inductively for allsi.

In the following, we will use the expressionPosAtms(si) to denote all ground flu-
entsF (x, si) for which it holds thatT |= F (x, si). No other ground fluent is contained
in PosAtms(si). Because of Lemma 1, the next proposition is obvious.

Proposition 1. For all ground fluentsF (x, si) not contained inPosAtms(σ) it holds
that: T 6|= F (x, si).

Theorem 1. f is a compilation scheme from RBAT’s to PDDL that preserves plan size
exactly.

Proof Sketch: In order to prove this theorem we have to prove K1 and K2 in Defi-
nition 1. Since K2 is straight-forward, we omit the proof forthis condition here. The
proof for K1 is done inductively over the length of the plan.

Let I = 〈D,Ts0
, G(s)〉 be an RBAT task. Thenf(I) = 〈P ′, PInit, PGoal〉 is the

planning task in PDDL syntax created byf. Let s0 be the initial situation ofI and letz0

be the initial state off(I) (represented by the set of atoms true in this state).
fInit(Ts0

) is simply another encoding ofTs0
and so does not change anything on

the fluents truth values, soz0 = PossAtms(s0) follows immediately. Assume now that
i − 1 actions were applied,zi be the state off(I) after the application of this actions
and it holds thatzi = PossAtms(si).

On the one hand we now examine the statezi+1, which is reached by applyinga,
and on the other hand we look atPossAtms(si+1) = PossAtms(do(a, si)) for the
same actiona.

Let F be a ground fluent (F is in zi iff it is in PossAtms(si)).

1. F ∈ PosAtms(si) andF 6∈ PossAtms(si+1)

Because of E2, this can only be the case if the SSA ofF contains aφl which
is of the form (2) and one of the actions inφl is actiona. f contains a function
h

Effect
i , which translates this scheme so that with each execution ofa fluent F

will be asserted false. SoF is not inzi+1.
2. F 6∈ PosAtms(si) andF ∈ PossAtms(si+1)

Because of E2, this can only be the case if the SSA ofF contains aφl which is of
the form (3) and whose action isa. f contains a functionhEffect

i , which translates
this scheme so that with each execution ofa fluentF will be asserted true. SoF is
in zi+1.

3. F 6∈ PosAtms(si) andF 6∈ PossAtms(si+1)

Because of E2, this can only be the case if the SSA ofF does not contain aφl

which is of the form (3) and whose action isa. Thenf does not create any effect
regardingF for a. Because truth values of fluents may be changed in PDDL only
by actions,F is not inzi+1.

4. F ∈ PosAtms(si) andF ∈ PossAtms(si+1)
Because of E2, this can only be the case if the SSA ofF does not contain aφl

which is of the form (2) and whose action isa. Thenf does not create any effect
regardingF for a. Because truth values of fluents may be changed in PDDL only
by actions,F will stay in zi+1.

So F is in zi+1 iff it is in PossAtms(si+1) and therefore it holds thatzi+1 =
PossAtms(si+1).

Hence, if there is a plansn+1 in I, it holds thatI |= ((∀a, s∗).do(a, s∗) ⊑ sn ⊃
Poss(a, s∗)) ∧ G(sn). This means thatI |= Poss(ai, si) for 1 ≤ i ≤ n − 1. As just
shownPosAtms(si) = zi holds sozi |= Pre(ai) holds too.

Also because ofI |= G(sn) andzn = PosAtms(sn), zn |= fGoal(G(sn)) holds
as well.

Soa1, ..., an is a plan for the PDDL taskf(I) too.
If there is no such plan, there cannot be a plan inf(I) with a similar argumentation

either.
As is obvious from the construction,f also preserves plan size exactly.
From this the claim follows.

4.3 A compilation scheme from PDDL to RBAT’s

In order to create a RBAT task from a PDDL planning taskP = 〈P ′, PInit, PGoal〉,
we have to specify the functionsgΣ , gTSSA

(P ′), gTP A
(P ′), gTUNA

(P ′), gTs0
(PInit,

PObjects, PTypes) and gGoal(PGoal). Again, because of the lack of space, we only
presentgTSSA

(P ′) here.
All fluents occurring inP ′ are declared in a(: predicates)-clause.gTSSA

(P ′) cre-
ates for each of these fluents an successor state axiom. During this process each effect of
each PDDL action is ”built” into the SSA by creating aφl in which the action together
with optional conditions is coded. One expression of form (2) for all actions setting the
fluent to false and one expression of form (3) for each action setting the fluent to true is
used.

SogTSSA
(P ′) creates an SSA for each PDDL predicate(F v1 − T1 ... vn − Tn)

(where theTi’s are PDDL types):

F (v1, ..., vn, do(a, s)) ≡ (T1(v1) ∧ ... ∧ Tn(vn))
∧(ξ1 ∨ ξ2 ∨ ξ3 ∨ ...

∨(F (v1, ..., vn, s) ∧ ¬(ζ1 ∨ ζ2 ∨ ζ3 ∨ ...))

Theξl andζl for the SSA’s are generated by decomposing the effectE of each PDDL
action(A x1 x2 x3 ...) until the predicate constrained by the SSA is reached.

During the decomposition each occurring part effectE′ has an assigned setΦE′

with additional conditions. The decomposition takes placerecursively and distinguishes
between the following cases:

1. If E is of the form(and A B C ...), decomposeA, B andC separately. It is
ΦA = ΦB = ΦC = Φ(and A B C ...).

2. If E is of the form(forall (x − (either T1 T2...)...) E′), decomposeE′. It is
ΦE′ = ΦE ∪ ((T1(x) ∨ T2(x)) ∧ ...).

3. If E is of the form(when Π E′), decomposeE′. It is ΦE′ = ΦE ∪ ΞFOL(Π).
4. If E is of the form(P y1 y2 ... yn), break off this branch of the decomposition and

create a proper formula(a = A(x1, x2, x3...))∧φ1 ∧φ2 ∧φ3 ∧ ... for all φi ∈ ΦE .
Then we have to adjust the variables.F (v1, v2, ..., do(a, s)) be the fluent with its
parameters in the SSA. We proceed for1 ≤ i ≤ n as follows:
(a) if xi = yj , replacexi by vj

(b) if yi 6= xj for all j, replaceyi by vi in all φk. Finally, we quantify existentially
over all remainingxi and getξl for P .

((∃...)(a = A(x1, x2, x3...)) ∧ φ1 ∧ φ2 ∧ φ3 ∧ ...)

5. If E is of the form(not (P y1 y2 ... yn)), we proceed as in 4. and getζl for P .

Example 4.Assume we have the following PDDL actionA=(:action Drive :parameters
(car from to))

with effectE=

:effect (and (At car to)
(not (At car from))

(forall
(x - (either Men Women))
(when (In x car)

(and (At x to)
(not (At x from))

)
)

)
)

If we apply the decomposition above, we get the following effects forAt(v1, v2):

ξ1 = ∃p1(a = drive(v1, p1, v2))

ζ1 = ∃p2(a = drive(v1, v2, p2))

ξ2 = ∃car, p2(a = drive(car, p2, v2)∧
(Man(v1) ∨ Women(v1)) ∧ In(v1, car))

ζ2 = ∃car, p2(a = drive(car, v2, p2)∧
(Man(v1) ∨ Women(v1)) ∧ In(v1, car))

Under the assumption thatdrive is the only action affectingAt(x, y) and that all pa-
rameters ofAt(x, y) are untyped, the SSA ofAt(x, y) looks as follows:

At(v1, v2, do(a, s)) ≡ ξ1 ∨ ξ2

∨(At(v1, v2, s) ∧ ¬(ζ1 ∨ ζ2))

We state the next theorem without proof, which in fact is similar to the proof of
Theorem 1.

Theorem 2. g is a compilation scheme from PDDL planning tasks to RBAT’s that pre-
serves plan size exactly.

5 Conclusion and Outlook

We have defined a subset of Basic Action Theories, the so-calledRestricted Basic Ac-
tion Theories, which have the same expressive power as the ADL fragment of PDDL
(PDDL 2.1 Level 1). To show this equivalence, we have presented compilation schemes
for both directions.

From a practical point of view, one can use this result to embed efficient planning
engines in GOLOG for generating plans when the GOLOG non-deterministic choice
operator appears and the language restrictions are met. A semantic base for that and
first experiments are described in a companion paper [11].

On the theoretical side, we have for the first time identified asyntactic fragment
of GOLOG that is expressively equivalent with the ADL fragment of PDDL and have
with this bridged the gap between planning languages and action formalisms. Of course,
such a result triggers a number of related questions. For example, how far can we ex-
tend the expressiveness of RBAT’s without invalidating theresult? Can we find more
correspondences between GOLOG and PDDL fragments? Which features of GOLOG
are provably not compilable to PDDL? We will address some of these questions in the
future with the intention to extend the applicability of planning techniques in action
formalisms even further.

References

1. Fox, M., Long, D.: An extension to pddl for expressing temporal planning domains. Journal
of Artificial Intelligence Research (2003)

2. Gerevini, A., Long, D.: Plan constraints and preferences in PDDL 3. Technical Report, Univ.
Brescia, Italy (2005)

3. Reiter, R.: Knowledge in Action. MIT Press (2001)
4. Nebel, B.: On the compilability and expressive power of propositionalplanning formalisms.

Journal of Artificial Intelligence research (2000)
5. Green, C.: Application of theorem proving to problem solving. Proceedings of the 1st Inter-

national Joint Conference on Artificial Intelligence, pages 219-240 (1996)
6. Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the application of theorem proving to

problem solving. Proceedings of the Australian Joint Conference on Artificial Intelligence,
2:189-208 (1971)

7. Pednault, E.P.D.: ADL: Exploring the middle ground between STRIPSand the situation cal-
culus. Proceedings of the First International Conference on Principles of Knowledge Repre-
sentation and Reasoning (1989)

8. McDermott, D.: PDDL - The Planning Domain Definition Language, Version 1.2. Technical
Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control
(1998)

9. Lifschitz, E.: On the Semantics of STRIPS. Proceedings of 1986 Workshop: Reasoning about
actions and plans (1986)

10. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A logic programming
language for dynamic domains. Journal of Logic Programming, 31:59-84 (1997)

11. Claßen, J., Eyerich, P., Lakemeyer, G., Nebel, B.: Towards an Integration of GOLOG and
Planning. Proceedings of the International Joint Conference on Artificial Intelligence (to ap-
pear)

