GOLOG and PDDL: What is the Relative
Expressiveness?

Patrick Eyerich, Bernhard Nebé| Gerhard Lakemeyérand Jens ClaRén

! Department of Computer Science, University of Freiburg, 7911ib#rg, Germany
{eyerich, nebel }@nformatik. uni-freiburg.de
2 Department of Computer Science, RWTH Aachen, 52056 Aachem&sr
{ger hard, cl assen}@ nf or mati k. rwt h- aachen. de

Abstract. Action formalisms such as GOLOG or FLUX have been developed
primarily for representing and reasoning about change in a logicalefrark.
For this reason, expressivity was the main goal in the developments# tbe
malisms. In another line of research, efficiency of planning methodsheatop-
most goal resulting in the basic STRIPS language, which has only ntedeca
pressivity. The planning language PDDL developed since 1998 is ansiite
of basic STRIPS with many expressive features. Now the interestirgfignes
how PDDL compares to GOLOG or other action languages from an esipitgs
point of view. We will show that a GOLOG fragment, which we call Restricted
Basic Action Theories, is as expressive as the ADL fragment of PODIprove
this equivalence we use the compilation framework. From a practicat pbin
view, this result can be used for employing efficient planners inside B@ED
interpreter.

1 Introduction

While action formalisms and planning methods have the samwis {6], the research
within these two fields has been developed independentiy ach other since the
introduction of STRIPS [6]. While in the area of action forisals expressivity was
the main goal and efficiency only played a minor role, in thesasf planning systems
special emphasis was put on efficiently generating actianslFor this reason, only
comparatively simple languages such as the basic variaBTBiPS (hot containing
any background theory) have been used for a long time.

However, in recent years one could observe some convergbneparticular, the
development of th@lanning Domain Definition Language (PDDijith its extensions
[1, 8], which can handle, among other things, conditiontda$§, time and continuous
effects, has led to a state, where action formalisms anchpigrianguages approach
similar expressiveness, at least if we focus on linear sezpseof actions.

In order to compare the expressiveness of PDDL and GOLOG, ieuse the
compilation approach [4], in which two planning formalisare considered as equally
expressive if planning domains and plans in the two formadisan be translated into
each other without creating an unreasonable blowup.

As a first step, we will restrict so-called Basic Action Thesr which are formu-
lated in the situation calculus—the base of GOLOG—in a way $hiahthey have the

same expressive power as the ADL fragment of PDDL. That tleefosmalisms are
indeed identical in expressive power is shown by giving a gitation scheme from
Restricted Basic Action Theories to the ADL fragment of PDand vice versa. From
a practical point of view, this result can be used for empigyéfficient planners inside
a GOLOG interpreter.

The rest of the paper is structured as follows: In Section & bwefly introduce
PDDL and its ADL fragment, which forms the relevant part foistwork. In Section 3,
we introduce the situation calculus and Basic Action TreoriVe define the so-called
Restricted Basic Action Theoriesid give compilation schemes for both directions in
Section 4. Finally we summarize the obtained results ini@e& and give an outlook
of future work.

2 PDDL

PDDL was designed by Drew McDermott in 1998 [8] and since thas been con-
tinuously further developed in order to meet the needs obtkennualinternational
Planning CompetitionThe most recent version is version 3.0 [2]. PDDL is based on
the STRIPS formalism, but also offers many additional carss like numeric fluents,
durative actions and derived predicates.

A planning task in PDDL is divided into a domain descriptiamich describes the
behavior and a problem description, which contains spegfijects, the initial state,
the goal description and a metric which can be used to splcify to measure the
quality of a plan. In the following we restrict ourselves IOPL 2.1 Level 1 [1], which
essentially corresponds to the ADL fragment [7] of the laagpy i.e., in addition to
STRIPS, we have universally quantified conditional effectd arbitrary first-order for-
mulas in preconditions, effect condition, and goal condii. In the following, we will
use PDDL to denote just the ADL fragment of PDDL.

A PDDL planning tasks a tupleP = (P’, Popjectss Prnit, PGoar) With thedomain
descriptionP’ = (Prypes, Ppredicates, Pactions). We use the common state transition
semantics of PDDL [1]. This means thsiaitesare truth assignments to the set of atoms
formed by instantiating all predicate symbols with all gbksobjects, i.e., constant
symbols, meeting the typing restrictions. Alternativelye sometimes identify a state
with the set of atoms that are true in this st&eound actionsare actions which have
all their parameters instantiated. They are applicablestat®, if their preconditions are
satisfied and their application changes the state accotdithg effects of the action.

A sequence of actions,, .. ., a,, is called aplan for P iff there exists a sequence
of statess, . . ., s, such thatsg = Prit, sn = Paoal, @and each action; is applicable
in states; _1 and produces statg.

3 Situation Calculus

GOLOGis an action formalism developed at the University of Tooojg, 10]. It has
been formalized using the the situation calculus. The s@nacalculus is a second-
order language specifically designed for representing miyeedly changing worlds. A
situationin this formalism is nothing else than the history of acti¢8F The initial

situation or empty history is denoted by. Using the special binary function symbol
do and an action term, the situation after executingis denoted bylo(a, s).

Relations whose truth values vary from situation to situatire called relational
fluents. Besides their regular arguments, fluents have odiéicathl argument which
by convention is the last argumeniz(z, y, s) for example means that objectis at
positiony in situations. Furthermore, there are two binary predicatBsss and .
Poss(a, s) states under which conditions actiaris applicable in situation; s C s’
defines an ordering relation on situations (which are imtgul as sequences of actions)
and states thatis a proper subsequence ©f

Dynamic domains are described by giving a preconditionraxior every action
which is directly applicable by an agent (these are the #eecgrimitive actions),
defining under which circumstances a situation dependediigate (fluent) is true in a
situation (this is done through the so-called successte ataoms (SSA)) and defining
the initial situation of the world. Furthermore, there aveng general situation calculus
axioms and unigue name axioms. All these together form acBedion Theory (BAT).

GOLOG also offers the possibility to define complex actiang, test actions, se-
quences, nondeterministic choice of two actions, nondetéstic choice of action ar-
guments as well as nondeterministic iteration. Additiac@istructors allow for defin-
ing procedures. All these constructs are interpreted asasamnd for a given initial
situation lead to unfolding the complex action to a sequeariqgaimitive actions. We
will ignore this possibility here for two reasons. Firsipliviously lead to much conciser
representations than PDDL plans. Furthermore, since wimtested in embedding a
planner in GOLOG in order to generate a plan, we are onlyested to consider linear
sequences of primitive actions.

The starting point of our work are Basic Action Theories ainéel by Reiter [3,
page 58]. A Basic Action Theory in its general form consists of five parts:

TZEUTSSAUTPAUTUNAUTSO

where is a set of foundational axioms for situatiofi$,s 4 is a set of successor state
axioms for functional and relational fluenf&; 4 is a set of precondition axioms for ac-
tions, Ty v 4 is the set of unique names axioms for actions, &nds a set of first-order
sentences that are uniform ip, so thatsg is the only term of the sorituationmen-
tioned by the sentences @f,. Thus, no sentence @f,, quantifies over situations, or
mentionsPoss, C or the function symbafo. Finally, T, describes the initial situation.

Basic Actions Theories in their general form are much monegutul constructs
than PDDL (e.g. BAT'’s are not forced to represent a complet¢ery, and potentially
there are infinitely many objects). At this point the questarises whether it can be
shown for a useful part of the set of all Basic Action Theoties they are as expressive
as PDDL.

We call a BAT withoutT;, a BAT domainD = (¥, Tssa,Tpa, Tuna), and such
a BAT domain together witff;,, and a situation calculus formug(s) with only free
variables a BAT taskl = (D, T, G(s)). Similar to a PDDL plan, a plan for a BAT task
1, is a variable-free situation teren for which it holds thal” |= executable(c) NG(0),
wherebyezecutable(s) means that all the actions occurring in the action sequence
can be executed one after the other.

In the following we give some restrictions which define sugbaa of this set and
show that all tasks meeting these restrictions may be ceadhpito PDDL. In order to
show that these restrictions are not too strict, we alsogpitess compilation scheme for
the other direction.

3.1 Restricted Basic Action Theories

In the following, we call a Basic Action Theor¥ restricted(RBAT) if it satisfies the
following conditions:

E1 The arity of functional terms is constrained to be zeron&tunctional terms apart
from constants are allowed.

E2 All successor state axioms are in a special syntactic.fdotre SSA of a fluent”
looks as follows:

F(z1,...,xn,do(a,s)) = \/ ¢ (1)

<=

=1

for a finite numbemn. Exactly oney; is of the form

F(z1, ...y, 8) A —(
(3)p1n](a = Ar(Y11, - Yim,)

V(3)([panl(a = Az (Yo, s Y2m,))))
V(H)---)([%M(a = A3(Ys15 -+ Y3ms)))
V..

and all the othep, are of the form

3)([wAl(a = Alyr, - ym))) - 3)

It is existentially quantified over the variablgsfor which it holds thaty; # «; for

all j. These are exactly those variables which appear as a paaaig¢he action
but not as an argument of the fluent. The formulas within betecre optional. The
o, are first order formulas without functional terms. Any fregigbles in the; are
implicitly universally quantified. Each SSA has to have akaone term of form
(2). Furthermore, each action has to appear at most onertic&EA.

It can be seen that fluedt becomes true in situatiofo(a, s) iff one of the terms

¢y is true. Each terng, is of one of the forms (2) or (3). In order to describe how
F can become true, form (3) is usefdl.is true in situatiordo(a, s) if the actiona

is equal toA. Optionally further conditions for the truth @f can be given byp;.
Form (3) states thaF will be true indo(a, s) if it was already true ins and the
performed action was none of th. As in (2) there can be some more conditions
by ay;. They,; correspond to conditional effects in PDDL. Each SSA has t@ha
exactly one term of form (2) because in PDDL predicates camgé their truth
value only through actions. So a fluent which is true has taiemue as long as it
is not made false by an action, otherwise it has to stay trevéo.

Example 1.In an example domain we assume to have trucks and humans. The
fluent At(x, y, s) describes that is at positiony in situations wherebyz can be a

truck or a human. In the following we assume thatz, y, s) was already defined
to be true exactly when humanis inside trucky in situations. Furthermore, we
assume that there is an actidnive(t, p1, p2) which describes that truckdrives
from positionp; to positionp,.

The SSA ofAt(x,y) can be defined in the following way:

At(x,y,do(a, s)) =

(Ip1)(a = drive(x, p1,y))V

(3t,p1)(In(x,t,s) A a = drive(t,p1,y))V

At(z,y,s) A ~(((3p2)(a = drive(z, y,p2)))
V((3t, p2)(In(z,t,s) A a = drive(t,y,p2))))

The first and the second disjunct of this example are of forrw{8le the third is
of form (2).

E3 T, consistonly of the following sentences:
1.) For each relational fluerf with n + 1 arguments there is a sentence of the

form
F(:c,s()) =
Ty =dii N ... Nz, = din 4)
V..V =dpi N ... N2y = dpn
with m finite.

2.) For each situation independent predicBtavith n arguments there is a sen-
tence of the form

P(x) =
r1=di1 A ... N2y, = dip, (5)
V..V =dpi A ... N2y = dpn

with m finite.
3. There is alomain closure axiom

Ve(x =dy1 V...Vdy,)

for each constant; in 7.
E4 There are unique names axioms for all functions of aritg feonstants).

4 Compilation Schemes

4.1 Introduction

To analyze the expressive power of different planning fdisnas, Nebel introduced
the so-called compilation scheme framework [4]. This is fanfal tool which can be
used to measure the relative expressive power of plannimgalisms. The intuition
behind it is that a formalisnX is as expressive as a secadndf all domain descriptions
of Y can be expressed concisely M1 and the resulting plans are not blown up too
much. Compilation schemes are solution-preserving magpiith polynomially sized

results fromY” domain structures t& domain structures. While we restrict the size of
the result of a compilation scheme, we do not require any ti®on the computational
resources for the compilation. In fact, for measuring theressiveness, it is irrelevant
whether the mapping is polynomial-time computable, exptinktime computable, or
even non-recursive.

Furthermore, it is required that the operators of the plagtask can be translated
without considering the initial state and the goal. Thigrieson guarantees that com-
pilations are non-trivial. If the entire planning task adble transformed, a compilation
scheme could decide the existence of a plan for the sourkeatasthen generate a
small solution-preserving task in the target formalismiclitwould lead to the unintu-
itive conclusion that all planning formalisms have the saxgressive power.

In addition to the resource requirements on the compilgbi@mtess, one can dis-
tinguish between compilation schemes which preserve ttee i the plansexactly
linearly andpolynomially Exactlymeans, that the plan in the target formalism should
only be longer by a constant number of stdpgarly means that the plan should only
be longer by a constant factor, apdlynomiallymeans that the plan length in the target
formalism should be bounded by a polynom in the size of thecsoplan and the size
of the source domain description [4].

Because we do not want to compare the expressive power of lavmipg for-
malisms but those of two quite different theories, we haightlly adjusted the defini-
tion of compilation schemes for our purposes.

Definition 1. Assume a tuple of functiofs (frypes, frredicates: fActionss fobjects:
frnit, faoar) that induces a functio” from RBAT task$ = (D, T;,, G(s)) to PDDL
planning tasks'(I) as follows:

F(I) = <nypes()7 fPredicates(D)7 fActions(D)a
fObjects (D, Tso)a fInit <T30)7 fGoal (G<S)>>

If the following two conditions are satisfied, we dadl compilation scheme from RBAT's
to PDDL:

K1 there exists a plan fof iff there exists a plan foF'(I).

K2 the size of the results gﬁ"ypesa fPredicatesa fActionS7 fObjects7 fInit and fGoal is
polynomial in the size of their arguments.

Definition 2. Assume a tuple of functiors= (g9, 91ssa» 9Tra> ITunas 9T.y » 9Goal)
that induces a functioiy from PDDL planning task® = (P’, Prpit, Pcoar) t0 RBAT
tasksG(P) as follows:

G(P) = <gEagTSSA (Pl)7gTPA (P/)ngUNA (Pl)v
gTSO (Plnit; PObjects» PTypes)a 9Goal (PGoal)>

If the following two conditions are satisfied, we agl compilation scheme from PDDL
to RBAT's:

8 Of course, if one wants to capitalize on a positive result, the computatiesalirces should
be bounded. However, until now, a positive result has always implésargputationally cheap
translation.

K3 there exists a plan faP iff there exists a plan fo6(P).
K4 the size of the results @&, g1cs ., 975 4> 9Ty n 4> gr., and ggoq is polynomial in
the size of the arguments.

One can see that if there exists a compilation scheme fromIRBA PDDL, it follows
that for every RBAT task there exists a solution-preser®®BpL planning task, that is
only polynomially larger. Similarly, for the other direoti. So if we can find two com-
pilation schemes from RBAT's to PDDL and back such that thendize is preserved
exactly, one can indeed claim that these two formalisms treveame expressiveness.

Such a result would have practical relevance, because ahiliy to transform any
planning problem which occurs during the evaluation of a @GLprogram which is
based on RBAT's into PDDL, search for a solution with an effitiplanning system
based on PDDL, and transform it back to a RBAT. Prerequisitetis proceeding is
that the compilation schemes are polynomial-time compet&urthermore, one would
also need a one-to-one correspondence between PDDL and RBAS. However, this
is the case for both compilation schemes which we preseheifollowing.

One essential difference between PDDL and the situaticcukied is that changes
in the domain are described in different ways. While in theatibn calculus successor
state axioms are used for this request, in PDDL such charrgaesoted as effects of
actions. So one has to find a mapping from the fluent-basetiomta GOLOG to the
action-centered one in PDDL.

4.2 A compilation scheme from RBAT’s to PDDL

Because of the lack of space, we cannot present the wholengchitethis point. Instead
we only deal with the critical parts of the scheme and onlyakéhe other parts briefly.

We create an PDDL planning task from a RBAT taBk= (D, T,,G(s)). For
that purpose we have to specify the functigits,es(), frredicates(D), factions(D),
fObjects (ng)7 flnit (Tso) andfGoal (G(S))

Because the first five functions are relatively straightfmady we omit them here to
save space and elaborate fn..;ons (D), which is the most interesting function. Note
that in the compilation we never use the typing feature of BBcause there are no
types in the RBAT’s.

N = {n;|n; is a name of a primitive action i} be the set of all names of primitive
actions inT'. For any primitive actionA there is a precondition axiom of this form:
Poss(A(x1, .., @pn), 8) = D a(1, ..., Ty, 8). ILIS

fActions (D) = (: action n;
: parameters(hfarameters)
: precondition(ITa(x1, ..., Tpn, S))
cef fect(hETTeh)...

K3

for each action name; where

1. pParameters states the parameters of the function which are all untypedaken
directly from thePoss-predicate.

2. hET7e! states the effects of the action. It is

thfect = (cmd El E2)

?

where for everyp; in which the expression = n; occurs arF; is contained, which
is build as follows. We distinguish between the forms (2) €é3)dbf ¢;:
@ (3-)(einl(a = AW, . ym)))
F(zq,...,xp,do(a,s)) is true ifa = A(y, ..., ym) and additionally the op-
tional ¢, is true. First of all, we create the PDDL-formula” PP~ (;) which
is simply the first-order formula; expressed in PDDL syntax. This formula
then is used in a conditional effect in PDDL-syntax:

(when EFPPPL(p))(F 21... z,))

Let A(vy, ..., v,) be the PDDL actiom with its parameter variables, F'(z1,
..., T,) the fluent with its parameter variables, anda = A(yq, ..., y,) the
parameterized action with its parametgrs\Ve replace each; in Z7PPL ()
and(F zi... z,,) by v; if x; = y;.

Now we quantify universally over variables for which there is nay; with
y; = x;. S0 we get an effect:

(forall (X; ...)
(when EPPPL(o)) (F 21 ... 2,)))

(0) F(x1,....zn,8) A
(3-)([erAla = A1(y11, -, Yimy)))
V(3..)([p2A](a = Aa(ya1, s Yoms)))
\/(E)I...)([gpg/\](a = A3(Y31, -+ Y3ms)))
V..
here we proceed for each actidn like in (a); in the effect we use additionally

not:
(forall (X; ...)

(when EPPPL(p)) (not (F 21 ... 1,))))

Example 2.Assume we havelt(x, y, do(a, s)) = (Ip1)(a = drive(z, p1,y)) and the
PDDL actiondrive(truck from to).

We start withA¢(x,y) and then replace by truck andy by to. Because there
is no z; for which there is nay; with y; = x;, there is no need to quantify. We get:
(At truck to)

Example 3.Assume we havelt(z,y, do(a, s)) = At(z,y,s) A =(3t, p2)(In(z,t) A

a = drive(t,y, p2)) and the PDDL actiodrive(truck from to).

We originate inAt(z, y) and then replacg by from andt by truck. We get(when(In

x truck)(not(At x from)))At last we quantify universally over because no argument of
drive(t,y,p2)) is equal tar. We get:

(forall(x)(when(In x truck)(not(At z from))))

In the following, we will writes; 1 in order to denotéo(aj, ..., do(a1, do(a,, so))).
Now we prove that is indeed a compilation scheme. In order to show this, we need
the following lemma.

Lemma 1. In RBAT's, the truth value of each ground fluétiix, s;) is determined (so
we have a complete theory in each situation).

Proof Sketch: From restrictions E3 and E4 the claim follows fqy. Using E2 and E1
on top of that, we can prove the claim inductively for glim

In the following, we will use the expressidhos Atms(s;) to denote all ground flu-
entsF(x, s;) for which it holds thafl’ = F(«, s;). No other ground fluent is contained
in PosAtms(s;). Because of Lemma 1, the next proposition is obvious.

Proposition 1. For all ground fluentsF'(x, s;) not contained inPos Atms(o) it holds
that: T = F(x, s;).

Theorem 1. f is a compilation scheme from RBAT's to PDDL that preservas plze
exactly.

Proof Sketch: In order to prove this theorem we have to prove K1 and K2 in Defi-
nition 1. Since K2 is straight-forward, we omit the proof this condition here. The
proof for K1 is done inductively over the length of the plan.

LetI = (D, Ts,,G(s)) be an RBAT task. Thef(I) = (P’, Prnit, Pcoal) is the
planning task in PDDL syntax created hyt et s, be the initial situation of and letz,
be the initial state of(I) (represented by the set of atoms true in this state).

frnit(Ts,) is simply another encoding df,, and so does not change anything on
the fluents truth values, sg = PossAtms(sg) follows immediately. Assume now that
i — 1 actions were applied;; be the state of(7) after the application of this actions
and it holds that; = PossAtms(s;).

On the one hand we now examine the statg, which is reached by applying,
and on the other hand we look BossAtms(s;+1) = PossAtms(do(a, s;)) for the
same actiofm.

Let F' be a ground fluent is in z; iff itis in PossAtms(s;)).

1. F € PosAtms(s;) andF ¢ PossAtms(si+1)
Because of E2, this can only be the case if the SSA'dfontains ap; which
is of the form (2) and one of the actions ¢ is actiona. f contains a function
hE17et which translates this scheme so that with each executianfbfent F
will be asserted false. SBis notinz; ;.

2. F ¢ PosAtms(s;) andF € PossAtms(s;+1)
Because of E2, this can only be the case if the SSA obntains ap; which is of
the form (3) and whose action s f contains a functiorhiEff“t, which translates
this scheme so that with each executior dfuent F will be asserted true. SB is
in Zit1-

3. F ¢ PosAtms(s;) andF ¢ PossAtms(s;+1)
Because of E2, this can only be the case if the SSA&'afoes not contain &
which is of the form (3) and whose actionds Thenf does not create any effect
regardingF for a. Because truth values of fluents may be changed in PDDL only
by actionsF' is notinz; ;.

4. F € PosAtms(s;) andF € PossAtms(si+1)
Because of E2, this can only be the case if the SSA afoes not contain a;
which is of the form (2) and whose actionds Thenf does not create any effect
regardingF’ for a. Because truth values of fluents may be changed in PDDL only
by actions /" will stay in z; ;1.

So Fisin z4 iffitis in PossAtms(s;+1) and therefore it holds that,,; =
PossAtms(s;+1)-

Hence, if there is a plag,,11 in I, it holds thatl = ((Va, s*).do(a,s*) C s, D
Poss(a, s*)) A G(sy,). This means thaf = Poss(a;,s;) for1 <i < mn — 1. As just
shownPosAtms(s;) = z; holds soz; = Pre(a;) holds too.

Also because of = G(s,,) andz, = PosAtms(sy), zn = faoa(G(sy)) holds
as well.

Soay, ..., a, is a plan for the PDDL task(I) too.

If there is no such plan, there cannot be a plaf{ i) with a similar argumentation
either.

As is obvious from the constructiohalso preserves plan size exactly.

From this the claim followss

4.3 A compilation scheme from PDDL to RBAT's

In order to create a RBAT task from a PDDL planning t@8k= (P’, Prpit, Pcoal),
we have to specify the functiongs, grys, (P'), 9704 (P'), 97054 (P'), 91, (Prnit,
Popjects, Prypes) and gaoai(Paoar). Again, because of the lack of space, we only
presenyr, ., (P’) here.

All fluents occurring inP’ are declared in & predicates)-clause gz , (P’) cre-
ates for each of these fluents an successor state axiomgDRhisrprocess each effect of
each PDDL action is "built” into the SSA by creatingpain which the action together
with optional conditions is coded. One expression of forif@2 all actions setting the
fluent to false and one expression of form (3) for each acttting the fluent to true is
used.

Sogr,,, (P') creates an SSA for each PDDL predicété vy — T ... v, — 1)
(where ther;’s are PDDL types):

F(vy,..eyvp,do(a, 8)) = (Th (v1) A oo A Tp(vp))
ANEVEVEV ..
\/(F(’Ul, veey Unyy S) AN _|(C1 V CQ \Y Cg \Y))

The&; and(; for the SSAs are generated by decomposing the efitof each PDDL
action(A z; x2 x3 ...) until the predicate constrained by the SSA is reached.

During the decomposition each occurring part effééthas an assigned sétz
with additional conditions. The decomposition takes plaoairsively and distinguishes
between the following cases:

1. If Eis of the form(and A B C ...), decomposed, B andC separately. It is
Pa=Pp=Pc=PanaaBC..)

2. If E is of the form(forall (x — (either T1 T2...)...) E’), decomposé’. It is
¢E’ = ¢E @] ((Tl(,T) Vv TQ(,CE)) A)

3. If Eis of the form(when IT E'), decomposé’. Itis g = & U ZFOL(IT).

4. If E'is of the form(P y; y2 ... y»), break off this branch of the decomposition and
create a proper formul@ = A(x1,x2,23..)) A1 Ada Aps A ... forall ¢; € Pp.
Then we have to adjust the variablé¥v, vs, ..., do(a, s)) be the fluent with its
parameters in the SSA. We proceed fox i < n as follows:

(a) if z; = y;, replacex; by v;
(b) if y; # «; for all j, replacey; by v; in all ¢;,. Finally, we quantify existentially
over all remainingz; and get; for P.

((3)(@ = A(.’L‘l,l‘g, 1‘3)) A\ (bl A ¢2 A ¢3 N)
5. If Eis of the form(not (P y1 y2 ... yn)), We proceed as in 4. and ggtfor P.

Example 4.Assume we have the following PDDL actié(:action Drive :parameters
(car from to))
with effect E=
.effect (and (At car to)
(not (At car from)
(forall
(x - (either Men Wonen))
(when (In x car)
(and (At x to)
(not (At x from)

)
)

)
If we apply the decomposition above, we get the followinget$ forAt(vy, vs):
&1 = Ip1(a = drive(vy, p1,v2))

C1 = 3pa(a = drive(v, va, p2))
& = Jcar, pa(a = drive(car, pa, va)A
(Man(vy) V Women(v1)) A In(vy, car))
(o = Jcar, pa(a = drive(car, va, p2) A
(Man(vy) V Women(v1)) A In(vy, car))
Under the assumption thdtive is the only action affectingl¢(z, y) and that all pa-
rameters ofdt(x, y) are untyped, the SSA oft(zx, y) looks as follows:
At(vy,v2,do(a, s)) =& V&
\/(At(vla V2, S) A _'(Cl Vv CQ))
We state the next theorem without proof, which in fact is &mio the proof of
Theorem 1.

Theorem 2. g is a compilation scheme from PDDL planning tasks to RBATs pine-
serves plan size exactly.

5 Conclusion and Outlook

We have defined a subset of Basic Action Theories, the seed@istricted Basic Ac-
tion Theories which have the same expressive power as the ADL fragmenD&fLP
(PDDL 2.1 Level 1). To show this equivalence, we have presktabmpilation schemes
for both directions.

From a practical point of view, one can use this result to alréfficient planning
engines in GOLOG for generating plans when the GOLOG noerdehistic choice
operator appears and the language restrictions are metnArgie base for that and
first experiments are described in a companion paper [11].

On the theoretical side, we have for the first time identifiesyatactic fragment
of GOLOG that is expressively equivalent with the ADL fragrhef PDDL and have
with this bridged the gap between planning languages amhgcrmalisms. Of course,
such a result triggers a number of related questions. Fangbea how far can we ex-
tend the expressiveness of RBAT'’s without invalidating tésult? Can we find more
correspondences between GOLOG and PDDL fragments? Whitirdsaof GOLOG
are provably not compilable to PDDL? We will address soméie$é questions in the
future with the intention to extend the applicability of ptang techniques in action
formalisms even further.

References

1. Fox, M., Long, D.: An extension to pddl for expressing tempolahping domains. Journal
of Artificial Intelligence Research (2003)

2. Gerevini, A., Long, D.: Plan constraints and preferences in PDDIeghnical Report, Univ.
Brescia, Italy (2005)

3. Reiter, R.: Knowledge in Action. MIT Press (2001)

4. Nebel, B.: On the compilability and expressive power of propositiptaaining formalisms.
Journal of Artificial Intelligence research (2000)

5. Green, C.: Application of theorem proving to problem solving. Prdicess of the 1st Inter-
national Joint Conference on Atrtificial Intelligence, pages 219-280§)L

6. Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the applicafittreorem proving to
problem solving. Proceedings of the Australian Joint Conference tifich Intelligence,
2:189-208 (1971)

7. Pednault, E.P.D.: ADL: Exploring the middle ground between STRiRSthe situation cal-
culus. Proceedings of the First International Conference on PrisciflEnowledge Repre-
sentation and Reasoning (1989)

8. McDermott, D.: PDDL - The Planning Domain Definition Language, Merd.2. Technical
Report CVC TR-98-003/DCS TR-1165, Yale Center for Computatiorisio¥ and Control
(1998)

9. Lifschitz, E.: On the Semantics of STRIPS. Proceedings of 198&&kop: Reasoning about
actions and plans (1986)

10. Levesque, H., Reiter, R., Lésnce, Y., Lin, F., Scherl, R.: GOLOG: A logic programming
language for dynamic domains. Journal of Logic Programming, 38458.997)

11. Claf3en, J., Eyerich, P., Lakemeyer, G., Nebel, B.: Towandsitegration of GOLOG and
Planning. Proceedings of the International Joint Conference on Aatifigelligence (to ap-
pear)

